JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 197, 227-248 (1996)
ARTICLE NO. 0017

Solutions of the Strong Hamburger Moment Problem

Olav Njastad*

Department of Mathematical Sciences, University of Trondheim—NTH,
N-7034 Trondheim, Norway

ietadata, citation and similar papers at core.ac.uk

The strong Hamburger moment problem for a bi-infinite sequence {c,:n = 0, +
1, + 2,...} can be described as follows: (1) Find conditions for the existence of a
(positive) measure pu on (—o,%) such that ¢, = [* . ¢" du(¢) for all n. (2) When
there is a solution, find conditions for uniqueness of the solution. (3) When there is
more than one solution, describe the family of all solutions. In this paper a theory
concerning question (3) is developed. In particular, an analog to the Nevanlinna
parametrization describing the solutions of the classical Hamburger moment
problem is given. © 1996 Academic Press, Inc.

1. INTRODUCTION

The classical Hamburger moment problem can be defined as follows: A
sequence {c,:n = 0,1,2,...} of real numbers is given. (1) Find conditions
for there to exist a (positive) measure w on (—o,) such that ¢, =
2. t"du(t) for n = 0,1,2,....(2) When there is a solution, i.e., when at
least one such measure u exists, find conditions for uniqueness of the
solution. (3) When there is more than one solution, describe the family of
all solutions. The problem is called determinate when there exists exactly
one solution, indeterminate when there exists more than one solution. The
problem was first discussed by Stieltjes [28] for the case that w has support
in [0, %) (the classical Stieltjes moment problem), and then by Hamburger
[9] for the general case that the support of w is only required to be
contained in (—oo,), This initial work was followed by an extensive
development of a theory of moment problems, where the connection with
the theory of orthogonal polynomials plays a central role. We refer the
reader to the papers and monographs [1, 6, 9, 13, 17, 19, 20, 26-30].
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The strong Hamburger moment problem (and strong Stieltjes moment
problem) can be formulated in the same way as the classical problem,
except that here bi-infinite sequences {c,:n =0, + 1, +2,...} are in-
volved. This problem was introduced by Jones and Thron about 1980
[14-16] (and for the Stieltjes case by Jones et al. [17]) A theory of these
problems and their connection with orthogonal Laurent polynomials was
developed in the ensuing years as far as questions (1) and (2) are con-
cerned. See [7, 10-12, 23-25]. Also in [2] the strong moment problem was
briefly discussed. In this paper we continue these investigations to develop
a theory concerning question (3), and present an analog of the Nevanlinna
parametrization in the classical case.

The classical and strong moment problems are special cases of a more
general theory, where moments corresponding to an arbitrary countable
sequence {a,} of points are involved (in the classical and strong cases the
points are {=} repeated and {e, 0} cyclically repeated, respectively), and
where orthogonal rational functions play the role of orthogonal polynomi-
als and Laurent polynomials. For an introduction to orthogonal rational
functions and discussions of question (1) (and question (2) in the case of a
finite number of points cyclically repeated), see [3-5, 8, 21, 22].

2. PRELIMINARIES

The basic theory of orthogonal Laurent polynomials and strong moment
problems including the results sketched in this section can be found in
[7, 10-12, 14-17, 23-25].

For any pair (p, ¢) of integers with p < ¢, let A , , denote the complex
linear space spanned by the functions z/, j =p,...,q. We shall write
Nom=AN_pmand Ay, oy =AN_(s1, for m=0,1,2,..., and A =
U%_o A ,. An element of A is called a Laurent polynomial.

Let M be a linear functional on A, and assume that M is positive on
(—o,) (i.e., M[L]> 0 for all L € A where L(z) # 0, L(z) > 0 when
z € (—o,)). The moments ¢, are defined for all n € Z by ¢, = M[z"].
The strong Hamburger moment problem (SHMP) consists of finding all
positive Borel measures u on (—o, ) such that M[L] = [*_ L(6) du(6)
for all L € A, or equivalently such that M[z"] = [Z_ 6" du(8) for all
n € Z. A necessary and sufficient condition for there to exist at least one
such measure is that M is positive on (—o,) (as defined above.) The
problem is called determinate if there is only one solution, indeterminate
otherwise.

An inner product <, ) is defined on Az X A by

(P,Q) =M[P(z)-0(z)]. (2.1)
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(Here Ay denotes the real space spanned by z/, j =0, + 1, + 2,... . By
orthonormalization of the base {1,z7',z,z°22z%...,z° " z",...}, or-

thonormal Laurent polynomials {¢,} are obtained. They have the form

q2m,fm m
QDZm(Z) = Zm t+ - +QZm,mZ ’ q2m,m > 0 (2’2)
Dom+1,—(m+1) m
Cami1(2) = Tl t o G, mZ
q2m+1,—(m+1)>0 (2.3)
for m = 0,1,2,.... We shall in the following assume that M gives rise to a

regular system, which means that q,,, _,, # 0, 45, ;1 ,, # 0 for all m.
The associated orthogonal Laurent polynomials {¢s,} are defined by

¢, (0) — %(Z)}.

- (2.4)

u(2) =M [
(The functional is applied to its argument as a function of §.) We note that
D=0, ¥, €EAN_mts Yomi1 € N _(nitym-1- We further define

quasi-orthogonal Laurent polynomials ¢,(z,7) and their associated
Laurent polynomials i,(z, 7) of order n (n = 2m and n = 2m + 1) by

P2n(2,7) = €2,,(2) = 7203, -1(2) (2.5)
Cane(5:7) = €201(2) = 7 €2(2) (2:6)
Fan(2:7) = 2(2) = 72003, (2) (2.7)
P (527) = Ur(2) = = U (2) (28)

Here r€ R = R U {«}. For n = 1,2,... we may also write

‘Pn(g’T) - ¢11(Z’T) )

,T) =M 2.9

h(2,7) — (29)
The quasi-approximants R,(z, 7) are defined by
$(z,7)

R(z,7) = —"2. 2.10

(27) = 255 (2.10)

For 7 = 0 they are simply called approximants.
All zeros of ¢,(z,7) are real and simple, and for 7 € R there are n of
them (while for 7= o there are n — 1). Let {"X7),..., () denote
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these zeros. Then the following quadrature formulas are valid, where
N(7), ..., A(7) are positive weights:

M[F] = Y2 N2(7)F({™M(r)) (2.11)
k=1
valid for F € A_,, ,,-, when n =2m, for F€ A_,, ,, when n =
2m + 1.

In particular,
2m

M) = X agm(n)[eem ()]’ for p = — 2m,....2m — 2
k=1

(2.12)

2m+1

M[z] = ¥ A" O(r)[ g8t 0(n)]" forp = —2m,....2m.
k=1

(2.13)

The function f(6) = (¢,(0,7) — ¢,(z,7))/(6 — z) belongs to A _,,, 5,,»
for n = 2m, and to A _,,, ,, for n =2m + 1. Therefore by the quadra-
ture formulas (taking into account that ¢,({{(7), 7) = 0) we may write

()
R/(z,7)=—) ———. (2.14)
k=1 g (1) —z
It follows from (2.12)—(2.14) that
2m—1
Ry (z,7) = = X ¢ izt +0(z2*) at0, (2.15)
k=0
2m—1 1
R, (z,7)= Y ¢,z ¥+0 Tm) ato, (2.16)
k=1 z
2m—1
Ry, (z,7)=—- ) c,(kﬂ)zk + 0(z*™) at0, (2.17)
k=0
2m+1

;) atw.  (2.18)

22m+2

Rywii(z,7) = X 27+ 0
k=1
The following determinant formulas are valid:

2 @am(2)Pam1(2) = 2@ i(2)han(2) = q"— (2.19)

m—1,—-m

9om+ 1,m

2020 (2) Y2 +1(2) = 203, 41(2) P2,0(2) = (2.20)

2m,m
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The following general Christoffel-Darboux formulas are valid for arbitrary
complex coefficients a, b, ¢, d, and for z, { € C — {0}:

Z[a‘ﬁzm—1(z) + b@zm—l(z)] ) [C%m(f) + d%m({)]
_f[c%mﬂ(é’) + dﬁpzm—l({)] ) [a‘r//zm(z) + b¢2m(z)]

2m—1

= Lmm | e —bdy 4+ (2 - ¢) E (agy(2)

Dom—-1,-m

Fhe()(ew(0) + dgoj(z))] (21

z[ayy, 1(2) + bey, . i(2)] - [cr, (L) +de,, ()]
L [etyp () +dey, ()] - [ay,,(2) + bey,(2)]

_ q2m+1,m

2m
[(uc —bd) +(z—-10) »go(a%(Z)

qu,m

+hg(2))(cts(£) +de (1)) (222)

Let U denote the open upper half-plane: U = {¢ € C:Im ¢ > 0}. For
each z € U and each n the mapping 7 — w is defined by

w=w,=—R,(z,7). (2.23)

This linear fractional transformation maps R onto a circle bounding a disk
contained in U. We use the notation A,(z) for the open disk, dA,(z) for
the boundary circle, and A, (z) for the closed disk A, (z) U dA,(z). By
solving (2.23) with respect to 7 we get

¢2m(z)w2m + ¢2m(z)

= ) =2m, 2.24
’ 2[ @2 1(2)Wap + P2 1(2)] ! " ( )
_ Z[¢2m+1(z)wzm+1 + ‘l’2m+1(z)]

¢2m(z)w2m+1 + me(z)

, n=2m+1. (2.25)

The circle dA,(z) is given by Im 7 = 0, from which follows (by use of
(2.15)-(2.22)) that

weAA(z) e ni l.(z) + Won(z)I2 < (2.26)
j=0
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This shows that
K,..(z) € E,(2). (2.27)

It follows that the intersection A, (z) = N%_, A, (z) is either a single point
or a closed disk. We write A.(z) for the interior and JA.(z) for the
boundary of A, (z). The radius p,(z) of A,(z) is given by

n—1 -1
pa(2) = [Iz -zl X Iso,-(Z)Izl (2.28)
j=0

and the radius p(z) of A(z) is given by

-1

p(2) = [lz H Y lg ()P (2.29)
j=0

If A (z) reduces to a single point for some z € U, it reduces to a single
point for every z € U (Theorem of Invariability.) If A (z) is a proper disk,
the series ¥7_, |<,oj(z)|2 and ¥7_, Izpj(z)l2 converge locally uniformly in
C — {0}. (The uniform convergence is implicitly contained in the Proof of
Theorem 3.5 of [24].)

The Stieltjes transform F, of a finite measure p is defined by

FM(Z) ='/‘°° du(9)

— 0_2.

(2.30)

The quadrature formulas described earlier give rise to discrete measures
v™(0, 7) having masses of magnitude A{’(7) at the points £((7). It
follows from (2.12), (2.13) that »@™(@, 7) solves the truncated moment
problem

/j 07 du(0) =c, forp=—2m,....2m—2, (231)
and v@™*1(0, 1) solves the truncated moment problem
[ orap(o)=c, forp=-2m....2m. (2.32)
Formula (2.14) shows that
F(z) = —R(z,7)  when u(6) = »™(0,7).  (2.33)
This means that F(z) € dA,(z) when u(6) = u(6, 7), and every point

in 0A,(z) is the value F(z) of the Stieltjes transform of a measure
w(9) = v"(0, 7).
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We use the following notations for sets of values of Stieltjes transforms
for solutions of moment problems:

z) = { F (z): pn solution of the truncated moment problem
1
q.r

fx 07 du(0) =c, for p =q,...,r} (2.34)

Y.(z2) = {Fﬂ(z): w solution of the moment problem

[ 0rap(o) =c, forp=0,+1,+ 2} (2.35)
It follows by compactness arguments (Helly’s theorems) that

() - n . (2.36)

—q,r=1 q,r

From the remarks above it follows that

dMy(z) C X (z)  and A, (2)C X (2).
—2m,2m—2 —2m,2m
Then also sz(Z) C Z—Zm,Zm—Z(Z)’ Z2m+1(z) c z:—2m,2m(z) since Zp,q(z)
is a convex set. Bessel’s inequality for the function f(6) = 1/(6 — z) and
the use of (2.26) show that if we X ,, ,, ,(2), respectively, w €
Y _3m2m(2), then also w € A, (2), respectively, w € A, (z). Thus

Mp(2) = X (2), A()= X (2). (237)

—2m,2m—2 —2m,2m

It follows that

A(z) = Y. (2). (2.38)

Thus A.(z) consists of exactly the values of Stieltjes transforms of solu-
tions of the moment problem. Since a measure is uniquely determined by
its Stieltjes transform, it follows that the moment problem is determinate if
and only if A (z) reduces to a single point (for one z, or for all z).

It is seen by the compactness arguments (Helly’s theorems) applied
above that every subsequence {v"*’(6, 7))} contains a subsequence
converging to a measure v(6) which is a solution of the moment problem.
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Solutions that can be obtained in this way shall be called quasi-natural
solutions. Solutions obtained from the orthogonal Laurent polynomials
(k) = 0 for all k) are the natural solutions.

3. SEPARATE CONVERGENCE AND
N-EXTREMAL SOLUTIONS

Let x, be an arbitrary, fixed point on R — {0}. We define functions
a,(2), B,(2), y(2), §,(z) (depending on x,) by

a(z) = (2 —xo):gl B () (3.)
B(z) = —1+ (—)Z B0 e(2) (32)
W) =1+ (—)Z 6 (50) 0 (2) (33)
5,05) = (2 =) T o) (2). (3.4)

j=0

Since the coefficients in ¢(z) and y(z) are real, it follows that
a,(z), B,(2),v,(2), §,(z) are real for real z.

The definition of «,(2), B,(2), v,(2), 8,(z) together with the
Christoffel-Darboux-type formulas (2.21), (2.22) gives

@2 (2) = Ky [ 2020 1(2) 2, (X)) — X2, (2) - 1( X0)] (3.5)
e 1(2) = Ko 1 [ 2020 41(2) 2, (X0) = Xo¥2,(2) 22 1(X0)] (3:6)
Bom(2) = Ky 282, (X0) @20 -1(2) = XoW1(X0) @2, (2)] (3.7)
Bom+1(2) = Ko 1 [ 202,0(X0) €200 11(2) = X2 41(%0) €2,,(2)] (38)
Yom(2) = Ko 202 1(2) @2u(X0) = X0 @2 —1(X0) ¥2,,(2)] (3.9)
Vam+1(2) = Koy 1[ 2020 1(2) €200(%0) = X0 @2 41(X0) #2,,(2)]  (3.10)
83m(2) = Ky [ 2020 1(2) €2,0(X0) = X0 @2 (2) @2 —1(%0)] (3.11)

S2m+1(2) :K2m+1[2€02m+1(z)€02m(x0) _x0¢2m(z)€02m+1(x0)]’ (3.12)
where

_ q2m—1,—m qu,m
m 5
QZm,—m q2m+1,m

K, (3.13)
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We note that B,,(2), 8,,,(z) are quasi-orthogonal Laurent polynomials of

order 2m and «,,(2),v,,(z) are associated quasi-orthogonal Laurent

polynomials of order 2m, while z7'8,,,,(2),2z7'8,,,,(z) are quasi-

orthogonal Laurent polynomials of order 2m + 1 and

270, 1(2), 27 Yom 1 (2)

are associated quasi-orthogonal Laurent polynomials of order 2m + 1.
By elimination in the formulas (3.5)-(3.12) we can express ¢,(z) and

,(2) as follows:

Pom(2) = [lpZm(xO)SZm(z) - GDzm(xo)Bzm(Z)] (3.14)
om(2) = [¥2,(%9) 82 +1(2) — ‘P2m(xo)32m+1(z)] (3.15)

[
Poms1(2) = x?[¢2m+1(x0)62m+1(z) €02m+1(x0)32m+1(z)] (3.16)

Prm-1(2) = [‘/fzm 1(%9) 8,,,(2) — ‘PZm—l(xO)BZm(Z)] (3.17)

¥(2) = [¢2m(xo)72m(z) - <p2m(x0)a2m(z)] (3.18)
¥,(2) = [‘ffzm(xo)')’ZmH(z) - ¢2m(x0)a2m+1(z)] (3.19)

Vomai(2) = %[¢2m+](x0)72m+l(z) - ¢2m+1(xo)azm+1(z)] (3.20)

Vom-1(2) = %[‘pzmq(xo)yzm(z) - ‘sz—l(xo)am(z)]- (3.21)

It follows that all quasi-orthogonal Laurent polynomials of order 2m,
respectively 2m + 1, are linear combinations of S,,(2), §,,(2), resp.
27 Bom1(2), 27185, (2).

By substituting from the expressions (3.14)—(3.21) in the determinant
formulas (2.19), (2.20) at the point x, we get

2 (2) 02(2) = Bo(2)Vam(2) = 1 (3:22)

0 +1(2) 82 +1(2) = Bom+1(2) Yam1(2) = 1. (3.23)

It follows from (3.22), (3.23) that for an arbitrary complex constant ¢,
a,(2)t — y,(z) and B,(2)t — §,(z) have no common zeros.

Substituting from the formulas (3.14)—(3.21) into the expressions
(2.5)-(2.8) for ¢,(z,7) and ¢z, 7) we obtain
aZm(Z)th(T) - yZm(Z)
BZm(z)IZm(’T) - 6Zm(Z)

@ +1(2) 2 1(T) = Yoms1(2)
Baom+1(2) 2 1(T) = 85, 14(2)

Ry, (2,7) = (3.24)

Rypmsi(2,7) = (3.25)
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where
2 X0) = TX0 Py, 1( %)
t = 3.26
Zm(T) l/jZm(xO) - Txﬂlrmefl(xO) ( )
fo(7) = XoPom+1(X0) = T02,,(X0) (3.27)

XoWam+1(X0) = T2,( %) '

We note that the linear fractional transformation 7 — ¢ =1,(7) maps R
bi-uniquely onto R.

We set
a2~ 3(2)
Tn(Z,t) = m (328)
We may then write
R,(z,7)=T,(z,t) (3.29)

where ¢ is obtained from 7 by the transformations (3.26), (3.27).

We shall denote by wu{™(6) the discrete measure determined by the
quadrature formula associated with B,(z)t — §,(z). Then u{(9) =
v"(0, 7), where ¢ = 1,(7). It follows by (2.14), (2.33), (3.28), and (3.29) that

a,(2)t — v,(2)
B,(2)t — §,(2)

THEOREM 3.1. Assume that the moment problem is indeterminate. Then
the functions a,(z), B,(2), v,(2), §,(z) converge locally uniformly in C — {0}
to analytic functions a(z), B(z2), y(z), 8(z) given by

F(z) =~ when p = ui™. (3.30)

a(2) = (2 —m}i B2 (2) (3:31)
B(z) = —1+ (2 —xo)é 550 (2) (3.32)
y(2) =1+ (2 —xo)g 6/ (x0) () (3.33)
5(2) = (2 —mé 6 (x0)9(2). (3.34)

The functions a(z), B(z2), y(z), 8(z) satisfy the equation
a(2)5(2) - B(2)7(2) = 1. (3.35)
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For each t € R the discrete measures p\™(0) converge to a solution u(6) of
the SHMP, and

[ ) e ) 36)
—x -2z B(z)t — 8(z)

Proof. The locally uniform convergence of «,(z), 8,(2),v,(2),§,(2)
and the form of the limit functions a(z), B(z2), y(z), 8(z) follow from the
locally uniform convergence of the series Y7_, Igoj(z)l2 and X7_, |l[Ij(Z)|2
(see Section 2, after formula (2.29)) together with Schwarz’ inequality. It
follows from (3.30) that [*, (du!™(0)/(6 — z)) converge locally uniformly
to an analytic function in C — R (since all the zeros of B,(z)t — §,(z) are
real). A standard type of argument (involving Helly’s theorems) then shows
that w{"(#) converges to a measure w/(0), that F,(2) = —(a(2)t -
8(2))/(B(2)t — 8(2)), and that u(0) is a solution of the moment prob-
lem. Formula (3.35) follows from (3.22), (3.23). 1}

Set w = —(a(2)t — y(2))/(B(2)t — 8(2)). Tt follows by the use of
formula (3.35) that

_ ! . (3.37)
dt [ B(2)t = 8(2)]

Hence for real z, dw/dt > 0. Thus in this situation w increases along R as
¢t increases along R, and consequently the mapping ¢ - —(a(z)f —
v(2))/(B(2)t — 8(¢)) maps U onto U. A continuity argument then shows
that for z € U the mapping ¢ - —(a(z)t — y(2))/(B(2)t — 8(z)) maps
R onto JA_(z) and U onto A,(z). See the argument given in the classical
situation in [1, p. 98].

THEOREM 3.2.  The mapping t — p, establishes a one-to-one correspon-
dence between R and the set of all quasi-natural solutions of the SHMP.

Proof. Different values of ¢ give different functions —(a(z)t—
v(2))/(B(2)t — 6(2)), hence the mapping ¢ — u, is one-to-one from R
onto all solutions of the form u,. Let » be a quasi-natural solution. By
definition there exists a sequence {v"")(6,,, )} (cf. Section 2, after

formula (2.30)) converging to v. For every k there is a ¢, such that
v, 7,)) = u"*(6). Since

o0 dﬂgf(k»(e) _ @(2) e = Yoy (2)
— 00—z Bn(k)(z)tk - 8n(k)(z) ’

since o, 4(2), B (2)s Yo (2)s B,04)(2) converge to a(z2), B(2), y(2), 8(2),
and since [*. (du{"*’(0)/(0 — 2)) converges, it follows that {z;} con-
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verges to a value ¢ € R. Thus F(2) = —(a(2)t — y(2))/(B(2)t — 8(2)),
hence v = pu,. |

It follows from the way the quasi-natural solutions w, are obtained that
F,(z) € 8A(2) for all z € U. A solution wu which has this property
F(z) € dA.(2) for all z € U shall be called a Nevanlinna extremal, or
N-extremal solution, as in the classical case. Thus all quasi-natural solu-
tions are N-extremal solutions. We shall later show that they are the only
N-extremal solutions. (In fact, all other solutions w have Stieltjes trans-
forms F, with values F,(z) in the open disk A.(z) for all z € U)

We close this section with a result concerning separate convergence of
subsequences of the orthogonal Laurent polynomials ¢,(z) and their
associated Laurent polynomials ,(z), and of the discrete measures deter-
mined by ¢,(2).

THEOREM 3.3. Assume that for some x, € R — {0} a subsequence
Cuii(X0)/ Wi (xo) converges to a value t, € R —{0}. Then the Laurent
polynomials {@,(2) /P, (x0)} and (i, (2)/P,4(x()} converge locally
uniformly to analytic functions ¢(z), #(z) respectively in C — {0}, and the
measures v"*’(0,0) converge to the solution p, .

Proof. Let a,(2), B,(2),v,(2), 5,(z) be defined in terms of the point x,
in the assumption. It follows from (3.26), (3.27) that ¢,,,(0) =
@uci(X0)/ Wi (X)), hence by assumption ¢,,,(0) converges to ;. It follows
that  a,(2)t,4(0) — 7,4(2) converges to a(2)t, — y(z) and
B2t (0) — 8,4,(2) converges to B(2)t, — 8(z). From the formulas
(3.14), (3.16), (3.18), and (3.20) we then conclude that {@,\(z)/¥,\(x)}
and {4, 1,(2) /¥, (x¢)} converge (locally uniformly) in C — {0}. Further-
more, »"(9,0) = p{"%Y, hence {»"“)(g,0)} converge to u,.

4. NEVANLINNA PARAMETRIZATION

In the following let .#" denote the class of Nevanlinna functions, i.e.,
analytic functions in U mapping U into U — {»} (the closed finite upper
half-plane), and let .#* denote the extended class of Nevanlinna functions:
N =4 U {o}). We recall that the Stieltjes transform FM(z) =
/7., (du(0) /(0 — 2)) of a finite positive measure belongs to .#. Note that a
function ¢ in .# either maps U into U, or ¢(z) =r, where r is a real
constant. Thus .#* consists of the analytic functions mapping U into U and
the constants in [R.

In the whole of this section we assume that the SHMP is indeterminate.



STRONG HAMBURGER MOMENT PROBLEM 239

PROPOSITION 4.1. Let w be an arbitrary solution of the moment problem.
Then there exists a ¢ €™ such that

= du(0) a(2)e(2) — v(2)
B BEEEEER &b
Proof. Define the function ¢ by the formula
F(z)6(z z
oy - F20(2) 4 () 42

F(2)B(2) + a(z)’

This function ¢ satisfies (4.1). We shall show that ¢ €./*.

Assume first that F(z) = —(a(z)/B(2)). Then by (4.2), ¢(z2) = o=,
which is consistent with (4.1).

Next assume that F(z) # —(a(z)/B(2)). Then ¢ as defined by (4.2) is
analytic in U, except p0s51b1y for poles. We know that F,(z) € A.(z). We
also know that ¢t € U if and only if —(a(z)t — y(z))/( B(2)t — 6(2))
A(z). Let z € U. For the value ¢ = @(z) we have —(a(z)t —
y(2)/(B(2)t — 8(2)) = F(2) € A(z), hence t = ¢(z) € U. It follows
that ¢(z) € U for z € U. ThlS mapping property excludes the possibility
of poles in U. Thus ¢ is an analytic function mapping U into U. |

We recall the formulas

2m—1

Bow(z) = =1+ (z —x) kgl P(x0) @i (2) (4.3)

2m
Bom+1(2) = =1+ (2 =x0) X (%) ¢u(2). (4.4)
k=1
We may write
me —m
BZm(z) = , + +b2m,mzm (45)
b2m+],—(m+1) m
Bani (2) = 2 by, (46)

We shall call B,(z) regular if b,,, _, # 0 and b,, , # 0 for n =2m, if
bymit, —m+ry* 0and by, .y, #0forn=2m + 1.

PROPOSITION 4.2.  For each m, either 3,,(z) or B,,,, (z) is regular.

Proof. Tt follows from (4.3) and (4.5) that if ,,,_,(x,) # 0, then
by —m # 0and by, , # 0. Similarly, it follows from (4.4) and (4.6) that if
¥y,(x0) # 0, then by, .\ (.1 #0 and by, ., # 0. (Recall that we
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have assumed that the orthogonal system {¢,} is regular.) Thus the
coefficients Gy, 1> Gam+1, —m+1y> 92m, —m> 92m+1,m are all different from
zero. See (2.2), (2.3) and the following remark. Since ¢,(x,) and ¥, (x,)
cannot both be zero (cf,, e.g., (2.19), (2.20)) we conclude that b,, _, # 0,
b 9&07 or b2m+1,—(m+l)¢07 b2m+1,m¢0‘ I

2m, m

Let ¢ be an arbitrary function in .#*. For every natural number n we
define

a,(z)e(z) — v(2)
B.(2)¢(2) — 8,(2)

wi(2) = = (4.7)

First let ¢(z) # . Then for z € U we have t = ¢(z) € U, hence w,(z) €

A,(z) c U. Tt follows that w, is analytic and maps U into U. Next let

qo(z) = . Then w,(z) = —(a (2)/B,(2)) € U. Thus in all cases, w, €.
An arbitrary function ¢ in .#" can be written in the form

1+ uz
— dv(u), (4.8)

o(z) —Az+B+f

where A > 0, B € R, v is a finite positive measure. (See, e.g., [1, p. 92; 27,
p. 23].) It follows from this and Julia—Carathéodory’s lemma that ¢(z) can
be written in the form

e(z)=Cz + g + O(z) (4.9)

where C > 0, D < 0, and & is a bounded function in .7.
By taking into account (2.22), (2.23) we find that

) + “(z) ! 4.10)
A Y E BN | X B & R e5) R
LEMMA 4.3. Assume that C + 0, D #+ 0 in (4.9).
A. If B,,(2) is regular, then
a2m(z) 1
Wy(2) + 5, (7) = O( TS ) for z — o (4.11)
2’"( ) Z2m+1
Wy(2) + O(z ) for z — 0. (4.12)

B2m(z)
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B. If B,,, . (2) is regular, then

241

wa i(2) + % —0(1/22"%)  forz—ow  (4.13)
Wy i(2) + % —0(z2" Yy forz—0. (4.14)
Proof Under the stated assumptions,
(Bon(2)[ Ban(2) @(2) + 8,(2)]) " = m (4.15)
(Bow(2)[ Ban(2) @(2) + 8,(2)]) ' = ﬁ (4.16)
(Bom i A(D[ Bamir(2)0(2) + 83 i(2)]) ' = Zmﬂzmlﬂzo(l) (4.17)
(Bon (D[ Bamsr(2)0(2) + 83 i(2)]) ' = ﬁ- (4.18)
The results then follow by (4.10). 11
LEMMA 4.4. The following formulas hold:
- 22:8 - - 2:;11 iz K E Oz for zo® (4.19)
- Z:EZ = 2:21 izt +O(2™) for z—0 (4.20)
- % = — zzgll o2 K+ 0(z7Bmy for z > (4.21)
G 1(2) 75 ¢ eanzt + O(22) for z 0. (4.22)

C Buii(2) S

Proof. The functions «,(z)/B,(z) are quasi-approximants, so the re-

sults follow from (2.15)-(2.18). 1
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PROPOSITION 4.5.  Assume that C # 0, D #+ 0 in (4.9).
A. If B,,(z2) is regular, then

2m—1
won(2) + Y, iz F=0(z7) for z > o (4.23)
k=1
2m—1
Won(2) = L gzt =0(2*") for z—0 (4.24)
k=0

B. If B,,, . (2) is regular, then

2m+1
Womsi(2) + Z ck—lz_k = 0(2_[2m+2]) for z > = (4.25)
k=1
2m—1
Womei(2) = X Cf(k+1)zk = 0(z*") for z—0. (4.26)
k=0

Proof. The results follow by combining Lemmas 4.3 and 4.4. |I
PROPOSITION 4.6. Assume that C + 0, D # 0 in (4.9).

A. If B,,(2) is regular, then there exists a positive measure o,,, such
that

Won(2) =fx M

4.27
o O —2z ( )

and

¢, = f: 0“do,, (0), k= —2m,....2m—2.  (4.28)

B. If B,,,.(2) is regular, then there exists a positive measure o,
such that

i d0-2m+1(0)

Womsi(2) = f_oc 92 (4.29)
and
ck=f°c 0 doy,, . 1(0), k= —-2m,...,2m. (4.30)
Proof. 1t follows from (4.23), (4.25) that
sup | yw,,(iy)] < o= (431)

y=1
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(z =x + iy) when B,(z) is regular. Since w,(z) belongs to .#" there exists a
measure g, such that

- day(0)
= . 4.32
w(2) = [ (4.32)
(see, e.g., [1, p. 93; 27, pp. 24-25].) From the asymptotic expansions
- do(0) & da(6)
f—:x: 60—z Z f 0k+1 (433)

= do,(0) = =
~ — z7k =ldo 4.34
| ) [ o da(9) (4.34)

together with (4.23)—(4.24), respectively (4.25)-(4.26), we conclude that
(4.28), respectively (4.29), holds under the conditions stated. 1

PROPOSITION 4.7.  Assume that C # 0, D # 0 in (4.9). Then there exists a
measure p which solves the SHMP

ck=fj€ 0% du(6), k=0,+1,+2,..., (4.35)

and such that

[ ) a@e) - o)
—w 00—z B(z)e(z) —8(z)°
Proof.  For each n such that B,(z) is regular there exists by Proposition

4.6 a measure g, which solves the truncated moment problem (4.28),
respectively (4.30), and such that

(4.36)

I do(0) _ a,(2)e(2) — %(2) (437)

= 60—z B(2)e(2) - 8,(2)

(cf. (4.7), (4.27), and (4.19).) It follows from Proposition 4.2 that there are
infinitely many indices such that B,(z) is regular. By using Helly’s theo-
rems and the convergence of «,(z), B,(2),v,(2), 5,(z) we then establish
the existence of a measure u satisfying (4.35) and (4.36). |

THEOREM 4.8. Assume that the functional M gives rise to a regular
system. Then there exists a one-to-one correspondence between the functions ¢
in the extended Nevanlinna class 4™ and the measures . in the class # of
solutions of the SHMP. The correspondence is given by

= du(0) a(z)¢(z) — v(z)
/‘730 - = — B(2)e(z) = 8(2) " (4.38)
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Proof.  According to Proposition 4.1 there exists for every u in .Z a
function ¢ in #* satisfying (4.38). Now let ¢ be a function in .#. It follows
from Proposition 4.7 that there exists a solution u of the moment problem
such that (4.38) is satisfied if C # 0, D # 0 in (4.9). If this is not the case,
we consider a Nevanlinna function

B
¢4 5(z) =Az + 5 + ¢(z2) (4.39)

of the desired form. Then according to Proposition 4.7 a solution u, p of
the moment problem exists such that

f°° duy 5(z) _ a(z) ey 5(2) — v(2)
e 60—z B(2) @4 p(2) —8(2) "

Letting 4, B — 0, hence ¢, 3(z) = ¢(z), and again using Helly’s theo-
rems, we obtain a solution u of the SHMP such that (4.38) holds. Finally,
if ¢(z) = o, then w,(z) = —(e,(2)/B,(2)). Then the existence of mea-
sures o, as in Proposition 4.6 follows directly from Lemma 4.4. Hence the
existence of a solution w with the desired properties follows as in the
proof of Proposition 4.7.

That the correspondence is one-to-one follows directly from formulas
(4.1), (4.2) together with the fact that a measure u is determined by its
Stieltjes transform F(z) = (7 (du(6)/(6 — 2)). 1

(4.40)

5. CANONICAL SOLUTIONS

A solution u of the SHMP is called a canonical solution if the Nevan-
linna function ¢ in (4.38) is of the form ¢(z) = P(z)/Q(z), where P and
Q are polynomials with real coefficients. (This is analogous to the defini-
tion of canonical solution in the classical situation.) Note that all real
constants and the constant o are among these functions. The canonical
solution is said to be of order r if max(degree P, degree Q) = r, where P
and Q have no common factors.

A canonical solution of order 0 is then a solution u where

r dp(0)  a(2)t—y(2)

e -z B(z)t—8(z)’
According to Theorem 3.2 these solutions are exactly the quasi-natural
solutions. It follows from Theorem 4.8 that these solutions are also exactly

the N-extremal solutions.
We note that if P and Q are polynomials, then the functions

P(z)a(z) — O(z)y(2) and P(z)B(z) — 0O(z)6(=2)

eR. (5.1)
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are analytic in C — {0}. The zeros of these functions thus form discrete
sets in C — {0}, with 0 and « as the only possible limit points. We also note
that if P and Q have no common zeros, then a(z)P(z) — y(z)Q(z) and
B(z)P(z) — 8(2)Q(z) have no common zeros. This follows from the fact
that z, being a common zero would imply a(z,)8(z,) — B(z,)y(z,) = 0,
which is not the case (cf. (3.35)). Thus the function —(a(z)P(z) —
v(2)0(2)) /(B(z)P(z) — 8(2)Q(z)) has singularities exactly at the zeros
of B(z)P(z) — 8(z2)Q(z), and possibly at the origin.

The zeros of B(z)P(z) — 8(z)Q(z) are real and simple since the
function F,(z) = (a(2)P(z) — y(2)Q(2))/( B(2)P(2) — 8(2)Q(2)) is an-
alytic in U and maps U into U. Thus all singularities of F,(z) are simple
poles on the real axis, except for 0 which is a limit point for the poles if it
is a singularity. We note that u cannot have a mass point at the origin,
since the negative moments c¢_, of u are assumed to exist.

To obtain a description of the measure u we shall use the Stieltjes—
Perron inversion formula (see, e.g., [1, pp. 124-125]). It follows from this
that

p(b+)+pu(b—) wlat)+pla—)
2 2

im — ["1m E(é+in)de (5.2
= lim — m +i .
lim — ["Im F,(¢ +in)d¢ (5.2)
for arbitrary points a,b on R. We note that if (u(x +) + u(x —))/2 is
constant on an open interval, then w(x) is also constant on that interval.
(We have here used u(x) for the distribution function which determines
the measure w as well as for the measure itself.)

THEOREM 5.1. Let u be a canonical solution of the SHMP, with ¢(z) =
P(2)/0Q(z), where P and Q are polynomials with no common factors. Then
the spectrum of w consists of a discrete subset of R — {0}, namely the set
{zi k =1,2,...} of zeros of B(2)P(z) — 8(2)Q(z), and in addition the
origin. The measure p has a mass of magnitude A, = — p, at z;, where p,, is
the residue of F,(z) at z,. The origin is a point of continuity.

Proof. Formula (4.38) may be written as
[ )Pe) - 12)00)
—w O0—2z B(z)P(z) — 86(2)Q(2)
in this case. It is known that the integral to the left is analytic for z not in
the spectrum of u. It then follows from the foregoing discussion that all
the zeros of B(z)P(z) — 6(2)Q(z) belong to the spectrum, and the origin

if (and only if) it is a limit point for the zeros. We shall show that the
spectrum contains no other points.

(5.3)
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Let ¢, and ¢, be two zeros of B(z)P(z) — 6(2)Q(z) such that there
are no zeros between, and such that both are positive or both are negative.
Assume ¢, < {,,and let {; <a < b < {,. Let I' denote the contour in the
complex plane consisting of the line segments T, from (b,0) to (a,0), T,
from (a,0) to (a,i{), T, from (a,i{) to (b,i{), and I, from (b,i{) to
(b,0). By Cauchy’s integral theorem [ F,(z) dz = 0. Clearly, [ F, dz and
Jr, Fu(2) dz tend to 0 when 7 tends to 0. It follows that

I E(z)d F(z)dz| =0, 5.4
i [ ey e+ [ 1o | (54
ie.,

. a b )

iimo[fb (&) de+ | FM(§+m)d§} =0, (5.5)
hence also

lim U:ImFM(g)d§+ fabImFM(§+in) dg} 0. (5.6)

n—=0
Since F,(z) is real for real z, this implies

lim [*Im F,( &+ in) dé = 0. (5.7)
n—-0 Jq

So from (5.2) we conclude that wu(x) is constant on ({;, £,). This shows
that the spectrum of u contains no other points than the zeros of
B(2)P(z) — 8(2)Q(z), and possibly the origin, and since the zeros are
isolated, w has point masses there. It remains to determine the magnitude
of the masses.

Let z, be one of the zeros of B(z)P(z) — 8(2)Q(z), and let p, denote
the residue of Fu(z) = —(a(2)P(z) — y(2)0(2))/(B(z)P(z) —
8(2)Q(2)) at z,. Let a < z, < b, let there be no other zeros in (a, b), and
let A denote the contour consisting of the half circle S,:z —z, = ine',
¢ €[0, 7], and the line segments A, from z, — 31 to a; [, from a to
a +in; I, from a + in to b + in; T}, from b + in to b°, and A, from b
to z, + 3m. By Cauchy’s integral theorem |, F(z)dz = 0. Clearly
v, F(2) dz, [y, F,(z)dz tend to zero when 7 tends to zero. Hence

fAFM(z) dz+/AFM(z) dz + /S F.(z) dz+/FFM(z) dz} =0.

(5.8)

lim

n—o®

Since F,(z) is real for real z, this implies

n—0

lim [Imf E(z)dz+ [(ImE(&+in) dg} 0. (59
Sy a
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Since z, is a simple pole of F,(z), we have

li F dz = mip,, 5.10
inf (2) dz = wip, (5.10)

hence

lim Im : F(z)dz

mP) - (5.11)
n—->0

n

It follows from (5.2), (5.9), (5.10), and the fact that u(x) is constant on
(a, z;) and (z, b) that

u(b) — u(a) = —p,. (5.12)

This shows that p(x) has a jump of magnitude A, = —p, at z,. Just as in
the classical case a Hamburger moment problem is determinate if a
solution has bounded support; it can be shown that a SHMP is determi-
nate if a solution has support which is bounded or bounded away from
zero. Thus for an indeterminate problem the origin belongs to the support.
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