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Abstract 

McMillan ( 1992) described a technique for deadlock detection based on net unfoldings. We 
extend its applicability to the properties of a temporal logic with a possibility operator. The new 
algorithm is shown to be polynomial in the size of the net for i-safe conflict-free Petri nets, while 
the algorithms of the literature require exponential time. 

1. Introduction 

In the early eighties, Quielle and Sifakis [33], Clarke et al. [ 111 and others begun 

a new approach for the verification of finite-state concurrent systems. This approach 

is known as “model-checking”, because the idea is to express a desirable property in 

some logic, view the system as a structure on which to interpret the logic by means of 

some formal semantics, and check whether this structure is a model of the formula. In 

a nutshell, “system enjoys property” is formalised as “system’s semantics is model of 

formula”. 

Model checking was intensively studied in the next years. It proved to be simpler 

and more efficient than former approaches based on theorem proving, in which both 

the system and the formula are expressed in the logic, and “system enjoys property” is 

formalised as “system’s formula implies property’s formula”. It was applied to the veri- 

fication of communication protocols, asynchronous circuit designs and mutual exclusion 

algorithms, among others (see, for instance [ 8,401). Model checkers were proposed 
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for a rich variety of logics (linear and branching time, state and event based, p-calculi, 

etc.). 

The main problem of finite-state model checking is the so called state explosion: the 

number of states of the system may grow exponentially in its size, which complicates 

or prevents the verification of large systems. Many different solutions have been pro- 

posed to cope with this problem. In [ 121, properties of networks with many identical 

processes are parametrically verified. In [ 1,241, methods for compositional verifica- 

tion - in which the verification of a property of a system is reduced to the verification 

of properties of its components -are described. Binary Decision Diagrams have been 

used in [9] to intelligently encode state spaces which exhibit some kind of regularity. 

Other researchers have observed that the arbitrary interleaving of concurrent actions- 

that is, the identification of “a is concurrent with b” with “a can occur before b and b 

can occur before a” -greatly contributes to the state explosion problem. This paper is 

also based on this observation; it proposes a new model checking algorithm based on 

net unfoldings, a well studied partial order semantics of Petri nets. 

In order to motivate this new approach, it is convenient to briefly overview the verifi- 

cation algorithms based on partial orders described in the literature. In a series of papers, 

Valmari has developed the stubborn set method. Originally, the method constructed a 

reduced state space in which some interleavings were removed while preserving some 

properties, essentially the existence of deadlocks [ 381. Later on, Valmari et al. extended 

the technique by considering reductions that preserve different equivalences (see, for 

instance, [ 391). More than a partial order method, the stubborn set method is the ap- 

plication of a partial order notion to the interleaving method in order to cleverly obtain 

reduced state spaces. 

The method of Godefroid et al. (see, for instance, [ 21,221) uses Mazurkiewicz’s 

traces as semantic model. It constructs a trace automaton, which can also be considered 

as a sort of reduced state space in which at least one interleaving of each trace is 

present. Very general logics can be checked due to the use of “on the fly” verification: 

the system, represented by a product of automata or a l-safe Petri net, is composed 

with an automaton corresponding to the negation of the property to be verified. Then, 

an equivalent trace automaton is computed and checked for nonemptyness. “On the fly” 

verification has the advantage that it may reduce the size of the final trace automaton 

in favourable cases, and the disadvantage that the verification has to start anew for each 

new property. The method makes light use of trace theory, and concentrates more on 

algorithmical aspects. 

Probst and Li [32] have developed a method based on an ad hoc partial order 

semantics called “behaviour machines”. Properties are not specified within a logic, but 

by semantical methods. This method is difficult to compare with the others due to 

the particular way in which both systems are properties are modeled, and we will not 

consider it any further. 

Finally, McMillan proposes in 1291 a method for deadlock detection, which, as we 

shall see, is one of the direct sources of inspiration of this paper. The method is based 

on net unfoldings [ 6, 16,311. Net unfoldings can be seen as concurrent versions of the 
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Fig. 1. A simple class of concurrent systems. 

usual notion of unfolding of a loop. They have the problem of being infinite whenever 

the system may exhibit an infinite computation (this is usually the case in reactive 

systems), which complicates their use for verification. McMillan proposes an elegant 

algorithm for the complltation of a finite initial part of the unfolding in which every 

reachable marking is represented. 

This variety of proposals has been successfully applied to a number of examples. 

However, there are still open points which have not been addressed in a satisfactory 

way. None of the proposals matches the clear and well defined structure of interleaving 

model checkers, in which a logic is given and a state space computed which can be 

repeatedly used to check every formula of the logic; it would be interesting to develop a 

partial order model checker following this pattern. Also, partial orders are used to obtain 

compact semantics, but the more sophisticated results on partial orders are not used to 

improve the efficiency of the search algorithms. Finally, there ixist properties for which 

these proposals (when applicable) have a too large computational cost. 

We consider this last point in more detail in an example. Consider the family of 

systems composed by a number n of independent subsystems which can just execute an 

action, A Petri net model of this family is shown in Fig. 1. The reachability graph of 

the systems of this class contains 2” markings, where n is the number of transitions. It 

should be clear that the only reason of this combinatorial explosion is the representation 

of concurrency by interleaving. Let us examine the methods of Valmari, Godefroid and 

McMillan on the problem of deciding if a given marking or submarking of one of 

these systems is reachable (a submarking is a partially specified marking). Valmari’s 

method cannot be directly applied to this problem; if we remove a reachable marking 

M, then we can no longer check whether M is reachable by traversing the reduced 

state space. Therefore, no state space reduction can be applied. A blind application of 

Godefroid’s method can take exponential time. The reason is that “on the fly” verification 

modifies the system according to the property that has to be checked. In this case, a 

new transition is added, having as input places the set of places that have to get a token 

at the specified marking. 3 After this addition, the system is no longer composed of IZ 

independent subsystems, and, in the worst case, the whole state space of the system 

may have to be generated before the desired marking is found. By means of the same 

3 Some other places and transitions have to be added as well, but this is not relevant for our discussion 
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S2 S4 s 2n-2 

Fig. 2. A simplified model of a concurrent buffer of capacity n - 1. 

addition, McMillan’s method can also be used to decide the reachability of a marking, 

but it faces the same problem. 

Of course, all these methods can solve our problem in polynomial time, if we just 

modify them so that they can recognize independent subsystems, but this is an ad hoc 
solution which, for instance, will not be applicable to the next example: the family of 

systems shown in Fig. 2. These systems model concurrent buffers of different capacities. 

The buffer consists of a certain number of cells, but the cells are no longer independent. 

A token in one odd place represents that the corresponding cell is empty, and a token 

in an even place that the corresponding place is full. The items enter the buffer via 

the occurrence of tt and leave it via the occurrence of t,,. It is not difficult to see 

that the number of reachable markings grows exponentially in the number of cells. We 

consider again the problem of the reachability of a marking (for the marking that puts 

a token in all places with an even index, this is the problem of deciding if all cells 

can simultaneously be full). Now, none of the algorithms discussed above can give an 

answer in polynomial time, and there seems to be no simple way to modify them so that 

the state explosion is avoided. However, the problem is polynomial in the size of the 

system: a well known result of net theory [ 14,201 states that the marking is reachable 

if and only if a certain set of linear equations, whose size is roughly equal to the size of 

the system, has a solution. So we are lead to the conclusion that, for certain properties 

such as the reachability of a state, partial order model checking has not yet been able 

to palliate the state explosion problem. 

In this paper, we show how a combination of McMillan’s idea and a deeper use 

of the theory of net unfoldings can provide solutions to the open points that have 

been mentioned. We construct a model checker in which the state space is replaced by 

McMillan’s unfolding; this unfolding can be stored and used to check all the properties 

of a temporal logic with a possibility operator able to express properties as reachability, 

mutual exclusion or the liveness of a transition. 

To support the interest of the model checker, we first prove that it is linear in the size 

of McMillan’s unfolding for the class of persistent nets; this unfolding can be much 

smaller than the state space. Furthermore, we show that the model checker is polynomial 

in the size of the net for l-safe conflict-free nets. The class of conflict-free nets have 

been very thoroughly studied in the literature [ 17,25-27,411, and contains the two 

examples we have discussed in this introduction. In [ 17,411 it has been proved that two 

particular problems on l-safe conflict-free nets can be solved in polynomial time in the 
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size of the net. Our result subsumes these two as special cases, and extends the range 

of polynomial properties to all those expressible in a logic. 

2. Nets and branching processes 

Many different classes of Petri nets have been described in the literature. We first spec- 

ify the class we consider as system models. Then, we introduce Engelfriet’s branching 

processes [ 161. Finally, we briefly recall the notions of configuration and cut. 

2.1. I-Safe Petri net systems 

We choose a basic model of Petri nets in which places can contain at most one 

unstructured token, and have therefore a boolean character (marked/unmarked). In [ 31, 

a survey on different classes of Petri nets, they are called l-safe net systems. A triple 

(S,T,F) isanetifSnT=Q)and FL (SxT)U(TxS).TheelementsofSarecalled 

places, and the elements of T transitions. Places and transitions are generically called 

nodes. We identify F with its characteristic function on the set (S x T) U (T x S). The 

preset of a node X, denoted by l X, is the set {y E S U T 1 F(y, x) = 1 }. The postset of 

X, denoted by x’, is the set {y E S U T 1 F(x, y) = 1). 

A marking of a net (S, T, F) is a mapping S --) N. A fourtuple .Z = (S, T, I? MO) is 

a net system if (S, T, F) is a net and MO is a marking of (S, T, F) (called the initial 

marking of X). A marking M enables a transition t if V’s E S: F( s, t) < M(s). If t is 

enabled at M, then it can occur, and its occurrence leads to a new marking M’ (denoted 

M 2 M’), defined by M’(s) = M(s) - F( s, t) 4 F( t, s) for every place s. A sequence 

of transitions u = 11 t2 . . t,, is an occurrence sequence if there exist markings Mi, M2, 

. . ., M,, such that 

M,, is the marking reached by the occurrence of g, also denoted by Ma 5 M,. M is 

a reachable marking if there exists an occurrence sequence u such that MO 1 M. 

A marking M of a net is l-safe if M(s) < 1 for every place s. We identify l-safe 

markings with the set of places s such that M(s) = 1. A net system 2 is l-safe if all 

its reachable markings are l-safe. 

This definition of l-safe systems corresponds to the one given in [ 31. However, it is 

convenient to exclude from our considerations some l-safe systems, for instance those 

containing isolated nodes, i.e., places or transitions which are not connected to any other 

node. In the sequel, we call 1 -safe systems those satisfying the following four properties: 

l The number of places and transitions is finite. 

l Every place has a nonempty preset or a nonempty postset. 

l Every transition of T has a nonempty preset and a nonempty postset. 

l The system is l-safe in the sense of the definition above. 
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Fig. 3 shows a l-safe system in this restricted sense. According to our convention, 

the initial marking is {sr,sq}. Elementary Net Systems and Condition/Event Systems 

[3] are other net models in which places contain at most one unstructured token. Our 

results are valid for all these models. 

2.2. Branching processes 

Branching processes are unfoldings of net systems containing information about both 

concurrency and conflicts. Engelfriet developed in [ 161 a theory of branching processes 

similar to the theory of processes (see [6,36]). Branching processes are based on the 

notion of net unfoldings introduced by Nielsen et al. in [ 3 I]. 

In this section, we quickly review the main definitions and results of [ 161. Notice 

that these definitions are given for net systems which are not necessarily l-safe. 

Let (S, T, F) be a net and let xi, x2 E S U T. The nodes x1 and x2 are in conjlict, 

denoted by XI ##x2, if there exist distinct transitions tt, t2 E T such that l tl rl l t2 # 0, 

and (tl , x1 ), (t2, x2) belong to the reflexive and transitive closure of F. In other words, 

XI and x2 are in conflict if there exist two paths leading to xi and x2 which start at the 

same place and immediately diverge (although later on they can converge again). For 

x E S U T, x is in self-conflict if x #x. 

An occurrence net is a net N = (B, E, F) such that: 

l for every b E B, I*b\ < 1, 

l the (irreflexive) transitive closure of F is acyclic, 

l N is finitely preceded, i.e., for every x E B U E, the set of elements y E B U E such 

that ( y, x) belongs to the transitive closure of F is finite, and 

l no event e E E is in self-conflict. 

The elements of B and E are called conditions and events, respectively. Min( N) denotes 

the set of minimal elements of B U E with respect to the transitive closure of F. A causal 
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net is an occurrence net which also satisfies (6’1 < 1 for every condition b.4 Observe 

that no two nodes of a causal net are in conflict. 

We now define homomorphisms of nets. 5 Let Nt = (Sl,T,, F,) and N2 = (S2,T2, F2) 

be two nets. A homomorphism from Nt to N2 is a mapping h: Sl U Tl --f S2 U TZ such 

that: 

l h(S1) G S2 and h(T1) C T2, and 

l for every t E Tl, the restriction of h to l t is a bijection between l t (in Nt ) and ‘h(t) 

(in N2), and similarly for t* and h(t)‘. 

In other words, a homomorphism is a mapping that preserves the nature of nodes and 

the environment of events. 

A branching process of a net system 2 = (N, Me) is a pair /3 = (N’,p) where 

N’ = (B, E, F) is an occurrence net, and p is a homomorphism from N’ to N such that 

(i) The restriction of p to Min( N’) is a bijection between Min( N’) and Me, 

(ii) for every et,e2 E E, if *et =*e~ andp(et) =p(e2> then et =e2. 

If N’ is a causal net, then p is a process of 2. 

Fig. 4 shows a branching process of the l-safe system of Fig. 3, which will be used 

throughout this paper to illustrate definitions and algorithms. The name of a condition 

is written inside its corresponding circle. Beside the circle is the name of the place 

assigned to the condition by the homomorphism of the branching process. The same 

graphical convention is used for events. We say that the names of the places and 

transitions label the conditions and events. Accordingly, a homomorphism is also called 

a labelling). There exists a natural relation between branching processes of a system, 

called the approximation relation, which corresponds to the idea “being an initial part 

of”. For instance, the branching process of Fig. 4 having {bl, . . . , bs} as conditions and 

{et,. . . , e3) as events is an initial part of the whole branching process shown in the 

figure. We now formalise this relation. 

Let pi = (Nt ,pt ) and p2 = (N2,pz) be two branching processes of a net system. A 

homomorphism from pt to p2 is a homomorphism p from Nt to N2 such that 

l the restriction of p to Min( Nt ) is a bijection between Min( Nt ) and Min( Nz), and 

l p2 o p = PI, where o denotes function composition. 

/?I and p2 are isomorphic if there exists a bijective homomorphism from pt to fl2. We 

say that pi approximates p2 if there exists an injective homomorphism from /3t to &. 

In particular, if (N, p) and (N’, p’) are branching processes such that N’ is a subnet of 

N and p’ is the restriction of p to N’, then (N’,p’) approximates (N,p); the required 

injective homomorphism is just the identity. 

It is shown in [ 161 that the set of isomorphism classes of branching processes of a 

net system is a complete lattice with respect to the approximation relation. In particular, 

a system has a unique maximal branching process up to isomorphism. The maximal 

branching process (up to isomorphism) of the l-safe system of Fig. 3 is infinite. 

4 Causal nets are called occurrence nets in [ 61. We follow here the terminology of [ 161. 
’ In [ 161, homomorphisms are defined between net systems, instead of between nets, but this is only a small 

technical difference without any severe consequence. 
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Fig. 4. A branching process of the I-safe system of Fig. 3. 

Loosely speaking, it consists of a periodic repetition of the part of the branching process 

of Fig. 4 obtained by horizontally “cutting” the net just below the event e4. 

2.3. Configurations and cuts 

In an occurrence net (B, E, F), the transitive closure of the flow relation F is acyclic, 

and therefore a partial order. We call it the causal relation, and denote it by 3. The 

symbol 5 denotes the reflexive and transitive closure of F. We generalise the causal 

relation to sets of nodes in the following way: given x E B U E and X 2 B U E, we say 

x + X (x + X) if there exists y E X such that x 4 y (x >- y) . 

A conjiguration C of an occurrence net is a set of events satisfying the following two 

conditions: 

l e E C + Ye’ 5 e: e’ E C (C is causally closed). 

0 Ve,e’ E C:l(e#e’) (C is conflict-free). 
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A finite configuration can be seen as the set of events that have occurred up to a 

certain moment in a run of the system. More formally, if C is a configuration of the 

maximal branching process and ei e:! . . . e, is a linearisation of the events of C (a 

total order on C which is compatible with the causal relation), then the corresponding 

sequence of labels ti t2.. . t,, is an occurrence sequence. The converse also holds (see 

[61). 
The set of configurations of an occurrence net is partially ordered with respect to 

set inclusion, and closed under intersection. In the case of causal nets, it is also closed 

under union, and therefore a complete lattice. For arbitrary occurrence nets this latter 

property does not hold. We only have that, given a set of configurations C, if the union 

of every two configurations of C is a configuration, then the union of all the elements 

of C is a configuration. 

A set B’ of conditions of an occurrence net is a co-set if 

‘db, 6’ E B’: l(b 4 b’) A T(b’ < b) A -(b# b’) 

A maximal co-set B’ with respect to set inclusion is called a cut. Every co-set can be 

extended to a cut. 

Intuitively, cuts correspond to the markings reached after the execution of the events 

contained in a finite configuration. Formally, we have that a set of places M is a reachable 

marking of a l-safe system 25 iff there exists a cut c of the maximal branching process 

(N,p) of 2 such that p(c) = M and /p(c)1 = IMJ. A n easy consequence of this result 

is that any two conditions of a process carrying the same label are causally ordered. 

Finite configurations and cuts are tightly related via the following mapping. 

Definition 2.1 (The mapping Cut). Let C be a finite configuration of a branching pro- 

cess p with underlying net N. We associate to C a set of conditions Cut(C) in the 

following way: 

Cut(C) = (Min( N) U C’) \ ‘C 

For the configuration (e2) of Fig. 4, we have 

cut({ez}) = ({h,bz} u {h)) \ {h) = {hth) 

Cut is a bijective mapping from the set of finite configurations of an occurrence net 

onto its set of cuts. Therefore, it induces a relation L on the set of cuts corresponding to 

set inclusion in the set of finite configurations, and two operators U and n corresponding 

to set union and set intersection. The following characterisations are easy to prove. For 

every two cuts cl, ~2: 

cl C c2 iff Vbl E cl 362 E ~2: bl 5 b2 (or 361 E cl Vb2 E ~2: 61 3 b2) 

ci L. ~2 = (CI u ~2) \({h E CI 1 61 + ~2) u (b2 E c2 I b2 4 CI}) 

CI nc2 = (CI ‘.Jc2)\t{h E CI 1 bl + c2 v bl # c2) u (b2 E c2 ) b2 + CI V bz #cl}) 

where b # c if there exists b’ E c such that b # b’. 
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The cuts of an occurrence net are partially order with respect to L, and closed under 

fl. In the case of causal nets, they are also closed under U, and therefore the set of 

configurations is a lattice (not necessarily complete). 

Given a finite configuration C of a branching process p = (N, p), the set of places 

p( Cut( C) ) is a reachable marking. Since this composition of the mappings p and Cut 

will be frequently used, we give it a name. 

Notation 2.2 (The mapping Mark). Let /3 = (N, p) be a branching process of a l-safe 

system 2, and let C be a finite configuration of /?. The reachable marking p( Cut( C) ) 

is denoted by Mark(C). 

We use cuts in order to define the satisfaction relations of the logics we shall consider. 

However, we develop the theory in terms of configurations, mainly because we can use 

standard set theory to handle them (instead of special operators such as LJ and n) . 

3. A model checker for a branching time logic 

We define a simple branching time logic for l-safe systems (i.e., a temporal logic 

in which every time instant may have several different successors which correspond 

to different possible futures) and design a model checker for it based on branching 

processes. 

In the first section, we define the logic and briefly discuss its expressive power; 

also, we give some results about the complexity of the model checking problem, which 

impose limits upon the efficiency that can be expected from our model checker. The 

second section introduces the finite approximation of the maximal branching process on 

which the model checker is based. Sections 3-5 reduce the model checking problem 

to two simpler problems, and Section 6 provides algorithms to solve them. In the final 

section we give a global description of the model checker. 

3.1. A branching time logic for l-safe net systems 

In this section, we define the syntax and semantics of a modal logic L tailored for 

l-safe systems. We fix for the rest of the section a l-safe system 2 = (S,T, F, MO). 2 

has a unique maximal branching process up to isomorphism. We fix a representative of 

the isomorphism class, denoted by 

Pm = (Nn, pm) Nm = (Bm, Em, Fm) 

where the subscript m stands for “maximal”. 

The logic L extends propositional logic with a possibility operator. Its atomic sentences 

are places of a net. 
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Definition 3.1 (Syrztax of 15). The formulas of the logic L over .X are those generated 

by the following grammar: 

#J ::= true (Truth) 

s where s E S (Place assertion) 

-4 (Negation) 

6 A 42 (Conjunction) 

04 (Possibly 4). 

The other boolean connectives are derived as usual, as well as the “box” operator 

0 = -101 (read 04 as “always 4”). 

Modal logics are interpreted over a set of worlds on which a binary relation is defined. 

In our case, the worlds are the finite configurations of the maximal branching process 

P rn? and the binary relation is set inclusion (see [ 23,341 for another logic interpreted 

on net unfoldings). 

Definition 3.2 (Semantics of L). Let C be a finite configuration of &. We define in- 

ductively when C satisfies a formula q5 over 2. 

cl=s ifs E Mark(C). 

C +=+ if not C k 4. 

C /= #JI A $2 if C /= 41 and C /= 9%. 

Cl=O$ if C’ /= 4 for some configuration C’ > C. 

We say that -E satisfies 4, also denoted by 2 b qb, if 0 /= 4. 

Informally speaking, C /= s if after the occurrence of the events of C a marking is 

reached in which the place s contains a token. 

The logic L can express properties such as: 

l Reachability of a marking. For instance, the net system of Fig. 3 satisfies the formula 

0( 7~1 A s2 A 7.~3 A s4 A 1,~ A 1.~6) iff the marking (~2, sd} is reachable. 

l Mutual exclusion between places. The net system satisfies tl( -s~VWS) iff no marking 

puts tokens simultaneously on ss and ss. 

l Concurrency of transitions. The net system satisfies O(s4 A sg) iff the transitions t3 

and t5 are concurrently enabled at some reachable marking. 

l Liveness of a transition. The net system satisfies 00~ iff the transition t5 is live. 

l Cyclicity. The initial marking of the system can always be reached again iff the net 

system satisfies q O( st A 7.~2 A 7.~3 A s4 A 1s~ A 7.76). 

These properties are among the most studied in net theory. Notice, however, that L 

cannot express progress properties. 

The logic L has the same expressive power as its interleaving version interpreted on 

the reachable markings of the reachability graph. In this interpretation, we define 
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M j=’ s iff s E M 

M b’ O$ iff there exists M’ reachable from M such that M’ k 4 

The semantics of the boolean connectives is defined as before, and now ,Z satisfies 4 if 

MO k’ 4. It follows from the definitions and theorems of Section 2 that _Z + $J if and 

only if _Z k’ 4. 

This interleaving logic is equivalent to the fragment of the logic CJB [2] containing 

only the operator EF and its dual AG. 

The model checking problem for L is defined as the problem of deciding for a l-safe 

system 2 and a formula 4 whether 2 /= 4 or not. 

Formulas without O-symbols can be checked using the definition of k directly, 

because in order to decide if they hold it suffices to examine the initial marking of the 

system (for instance, 2 k sr A 7.~2 if the initial marking of z1 puts one mark in st and 

no mark in ~2). Therefore, the model checking problem reduces to the subproblem in 

which the formula is of the form 04. 

We assign to a formula the set of finite configurations that satisfy it. 

Notation 3.3 (Denotation of a formula). Sat( 4) denotes the set of finite configurations 

of pm that satisfy 4. 

Using this notion, we can denotationally formulate the model checking problem as 

the problem of deciding, given a formula 04, if Sat(+) is empty. 

Proposition 3.4 (Denotational formulation of the model checking problem). Let 4 be 

a formula over 2:. 2 b 04 i# Sat( 4) # 0. 

Proof. By the definition of k, 2 /= 04 iff some configuration C _> 0 satisfies 4. This 

is the case iff Sat(4) # 0. q 

The size of an instance of the model checking problem is given by the sum of the 

sizes of (encodings of) both 2 and 4. Model checkers based on interleaving are usually 

exponential in the size of the system and polynomial in the size of the formula [ 11,131. 

Let us examine which are the bounds that complexity theory imposes on the complexity 

of a model checker based on partial orders. 

It is easy to show that our model checker cannot be polynomial in the size of the 

system unless P = PSPACE. The reachability problem for l-safe systems (i.e., the 

problem of deciding, given a l-safe system 2 = (N, Ma) and a marking M of N, if M 

is reachable from MO) is known to be PSPACE-complete [ IO]. This problem remains 

PSPACE-complete even if the marking to be tested only marks one place. To prove it, 

add a new transition having M as preset and the set {s} as postset, where s is a new 

place. The marking M is reachable in the old system if and only if the marking {s} is 

reachable in the new one (we use here that no transition has an empty postset). In turn, 

{s} is reachable if and only if C satisfies OS. If our model checker were polynomial 

in the size of the system, then the reachability problem would be polynomial as well, 



J. E.yarz,a/Science of Compuer Programming 23 (1994) 151-195 163 

because the length of the formula is constant. Therefore, polynomiality in the size of 

the system implies P = PSPACE. 

Let us now consider the complexity in the length of the formula. Our model checker 

should be polynomial in the size of the system for the first class of systems we consider 

in the introduction (Fig. I). We show that it cannot be polynomial in the length of 

the formula unless P = NP by reducing SAT (satisfiability of formulas of propositional 

logic) to the model checking problem for this class of systems. Take a formula 4 

of propositional logic with variables XI,. . . ,n,. Take the net system of Fig. 1, and 

rename the places 31,. . . , sn as XI,. . . ,x,. Let &, be the resulting system. & can be 

constructed in linear time in the length of 4, and so can the formula 04 of the logic L 

over _Z,,. It is immediate to see that & /= 04 if and only if 4 is satisfiable. Therefore, 

a polynomial algorithm in both the size of the system and the length of the formula can 

be transformed into a polynomial algorithm for SAT. 

These results show that it does not make much sense to compare interleaving and 

partial order model checkers on arbitrary systems or arbitrary formulas; on such a general 

problem we cannot expect to observe any interesting differences in the performance. It 

only makes sense to compare them on restricted classes of systems and restricted classes 

of formulas. We shall do so in the last chapter. 

3.2. A jinite branching process adequate for model checking 

The maximal branching process ,&, may be infinite, and therefore unsuitable as basis 

of a model checker. We define in this section a finite prefix of it. Then, we show how 

to solve the model checking problem on this finite prefix. Let us first make precise the 

notion of a prefix. 

Definition 3.5 (Prefixes of the maximal branching process Pm). A branching process 

p = (B, E, F;p) is a prefix of P,,, if /3 is an approximation of & satisfying B C B, 

and E 2 E,,,. 

Notice that a prefix is determined by its set of events or its set of conditions, because 

any of them characterises the occurrence net of the process (the labelling of the prefix 

is just the restriction of P,,, to the nodes of this occurrence net). We do not distinguish 

between the Mark mappings of the maximal branching process and the finite prefix. 

The finite prefix must contain enough information to decide, for every property of the 

logic, if it holds or not. In particular, every reachable marking of the system must be 

represented in thejnite prefix (more precisely, for every reachable marking M there must 

exist a configuration C of the finite prefix such that Mark(C) = M). This is necessary, 

because our logic can express the reachability of a marking; if some reachable marking 

M were not represented in the finite prefix, then we would not be able to decide whether 

the formula expressing the reachability of M holds. 

The existence of a finite prefix satisfying this property is an immediate consequence of 

two facts: every reachable marking is represented by some cut of the maximal branching 
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process, and the set of reachable markings of a l-safe system is finite. It is more difficult 

to give a reasonably efficient algorithm for its construction. McMillan provided in [ 291 

an elegant solution for this problem. In order to describe it we need to introduce two 

notions: the set of causes of an event and the cut-off events of a branching process. 

Definition 3.6 (Set of cau.ses of an event). Let (B, E, F) be an occurrence net, and let 

e E E be an event. The set [e] = {e’ E E ( e’ 5 e} is the set of causes of e. 

It is immediate to see that the set [e] is a finite configuration for every event e. 6 

Moreover, for every configuration C, either C does not contain e or it includes [e] . 

The definition of a cut-off event is more compact if we introduce a new “event” 

symbol I and define [I] as the empty configuration. The reader may think of J_ as a 

“virtual” event added to Pm, having no input conditions and the set of minimal elements 

of fl,,, as output conditions. Formally, the nature of -L is irrelevant, because we shall 

only use [I]. 

Definition 3.7 (Cut-ojf event). An event e E Em is a cut-off event if there exists a set 

ofcauses [e’] suchthat I[e’]l <j[e]J andMark([e’])=Murlz([e]). 

If Mark( [e] ) = Ma (the initial marking of 2) for some event e, then e is a cut-off 

event, because Mark( [I] > = MO, and 0 = ) [I] ) < 1 [e] 1. This is the reason for the 

introduction of 1. 

In the branching process of Fig. 4, e6 is a cut-off event, because I[ ez] 1 < 1 [es] 1 and 

The “continuation” of p,,, from the cut Cut( [e] ) describes the future of the sys- 

tem from the marking Mark( [e] ). If e is a cut-off event, then we have Murk( [e] ) = 

Murk( [e’] ) for some event e’ such that / [e’] 1 < j [ e] 1. S ince the possible behaviours of 

the system are completely determined by the initial marking, it is intuitively clear that 

the continuations of Pm from the cuts Cut( [e] ) and Cut( [e’] ) must be isomorphic. It 

is not difficult to formalise this statement. First, we have to make precise the notion of 

continuation. 

Definition 3.8 (The branching process $ c) . Let 1 c = {x E B U E ( c 5 x} where c be 

a cut of Pm. The branching process $c is defined as follows: 

frc= (B,n r0,n T~,&44 

(where we identify Fm and pm with their restriction to the nodes of hc). 

So $c contains the events and conditions “after” c. It is routine to check that fit is a 

branching process of the system (N, pm (c) ) . The following proposition is also easy to 

prove: 

’ In [ 291, sets of causes are called local conjigurations. 
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Proposition 3.9. If Mark(C) = Mark(C’) for two conjigurations C and C’, then 

*Cut(C) is isomorphic to fiCut(C’). 

We are now ready to define McMillan’s finite prefix. 

Definition 3.10 (The jinite prefix ,Bf). Let Ef be the set of events of Pm given by: 

e E Ef iff no event e’ 4 e is a cut-off event 

flf is the (unique) prefix of Pm having Ef as set of events. 

An algorithm for the construction of the finite prefix /3f is described in [29]. The 

algorithm starts with the branching process containing no events, and adds events one 

at a time, in order increasing size of their sets of causes. For every new event e, the 

marking Mark( [e] ) is compared with the marking Mark( [e’] ) of each event e’ which 

was added before e. If they are equal, then e is identified as a cut-off event, and its 

successor events are not explored (they are not part of the finite prefix). The algorithm 

terminates when no new event can be added. 

The termination of the algorithm follows from the finiteness of the set of reachable 

markings of l-safe systems. Let II be the number of reachable markings of 2. Since cuts 

correspond to reachable markings, every event e such that / [e] 1 > n must be a cut-off 

event, because Mark( [e]) = Mark( [e’]) must hold for some set of causes [e’] c [e]. 

We refer the reader to [29] for a more detailed description of the algorithm. Here we 

only illustrate it by constructing the finite prefix for the system of Fig. 3. The events et, 

e2, es, e4 and eg of Fig. 5 are successively added; none of them is a cut-off event. Then, 

the event erj is added; we observe that I[ ez] / < 1 [ef,]) and Mark( [ez]) = {sg, sq} = 

Mark( [ e6]> (the cuts corresponding to [e2] and [ e6] can be seen in the figure). So 

e6 is identified as a cut-off event, and its successors are not considered for inclusion in 

the prefix. After that, the event e7 is added to the prefix (e7 is not a cut-off event). At 

this moment, no other event can be added (the only candidate would be the event es, 

but it is a successor of the cut-off event eg) and therefore the procedure terminates. The 

output is the prefix having {et,. . . , e7) as set of events. 

We informally prove that the finite prefix /If contains every reachable marking (in the 

next section we give a formal proof of a stronger statement, but this proof requires some 

preparation that might hide the simplicity of the main idea). Let M be an arbitrary 

reachable marking. Since every reachable marking is represented in Pm, there exists 

some configuration C of & such that Mark(C) = M. If C is a configuration of /3j, 

then we are done. Otherwise C is not included in Ef. By the definition of Ef, C 

contains some cut-off event e, and therefore C > [e]. By the definition of a cut-off 

event, there exists a set [e’] such that j [e’] [ < 1 [e] ( and Mark( [e’]) = Mark( [e] ). 

Since the branching processes Q Cut( [e] ) and fi Cut( [e’] ) are isomorphic, there exists 

a configuration C’ > [e’] corresponding to the configuration C (in our example, taking 

e = e6 and e’ = e2, the configuration corresponding to (e2, es, e4, es, e6) is {et, e2)). 

Then, we also have Mark(C’) = M; moreover, C’ contains less events than C, because 
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Fig. 5. The finite prefix for the I-safe system of Fig. 3 

[e’] contains less events than [e] (by the definition of a cut-off event). If C’ is 

a configuration of pf, we are done. Otherwise, C’ contains a cut-off event, and the 

procedure can be iterated. Since every iteration produces a smaller configuration, the 

procedure terminates with a configuration of Pf, which finishes the proof. 

We finish the section with some notations related to the finite prefix /3f that are 

frequently used in the sequel. 

Notation 3.11 (Notations related to the $nite prejix pf) . 

Bf and Ef denote the set of conditions and events of Pf, respectively. Nf denotes its 

underlying occurrence net. 

Off denotes the set of cut-off events of /3f (Off is also the set of minimal cut-off 

events with respect to the causal relation). 

Given a cut-off event e, there may exist several (but at least one) sets [e’] such that 

Mark([e]) =Mark([e’]) and \[e’]] < j[e]l. W e assume in the sequel that for each 

cut-off event e one of these sets has been fixed, and denote it by [e’] . 

.F denotes the set of configurations of /3f. 

D denotes the set of maximal configurations of pf with respect to set inclusion. 

In order to verify that the event e is a cut-off event, McMillan’s algorithm has to find 

some set [e’] satisfying Mar& [e] ) = Ma&( [e’] ) and I[ e’l ( < 1 [e I (. In practice, [e’l 
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is taken as this [e’] ; so the computation of [e’] for each cut-off event takes place “on 

the fly” during the construction of the finite prefix. 

3.3. Shifts 

Given a cut-off event e, the branching processes fi Cut( [e’]) and 0 Cut( [e]) are 

isomorphic. In fact, the branching process fi Cut( [e] ) can be thought to be -fi- Cut( [e’] ) 

“shifted forward”. For a configuration C containing [e’] there exists a corresponding 

configuration containing [e], obtained by “shifting C forward’. In the next definition 

we formalise this idea of a shift. 

Definition 3.12 (Shift of a configuration). Let e be a cut-off event of Pm and let Z, be 

the isomorphism from fi Cut( [e”] ) to h_ Cut( [e] ). 

Let C be a configuration of &. The e-shift of C, denoted by S,(C), is the following 

configuration: 

Se(C) = 
i 

C if [e’] g C 

[e] UI,(C \ [e’]) if [e’] C C 

Notice that the isomorphism I, depends on our choice of e”, so it would be more 

correct to write Z(,,,O). We choose not to do it in order to keep the notation simple, and 

because we assume that e” has been fixed for each e. In the example of Fig. 5, we fix 

ez = e2 (in this particular case, this is the only possibility). 

It is immediate to prove that S,(C) is a configuration, and therefore well defined. In 

Fig. 4 we have 

&({eI~e2}) = [e61 u&({el}) = {e27e39e4qe6) u {e5) 

as expected. 

Shifts have the following properties: 

Proposition 3.13. Let e be a cut-off event and let C, Cf be two con&urations of &. 

( 1) S, is injective and monotonic. 

(2) Mark(C) =Mark( S,(C) ) 

(3) IS,(C)l B ICI? and the equality holds only if&(C) = C. 

(4) Zfe E C, then S;‘(C) exists. 

Proof. ( 1) and (2) follow immediately from the fact that 1, is an isomorphism. 

(3) It suffices to show that if [e’] g C, then (S,(C) ( > (Cl. We have 

I&(C) I 

= {Definition of Se} 

IreI UL(C \ leoI> 
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= {lel n&CC\ [e'l) =0) 

Itell+lL(C\[e”l>l 

> { 1 [e] ) > ( [e’] ( by the definition of cut-off event} 

l[eOll + IC \ [e’ll 

= {[e’l 5 C} 

ICI 

(4) If e EC, then [e] C C, and S;‘(C) = [e”] uIy’(C\ [e]). 0 

Consider the set of configurations of the maximal branching process corresponding 

to the same reachable marking M. Such a set can be infinite, as it happens for instance 

in the example of Fig. 4 with the configurations corresponding to the marking {sg, se}. 

By Proposition 3.13(2), the image of a configuration of this set under an e-shift is 

another configuration of the same set. The same holds for e-shift inverses (in case the 

configuration contains the event e) This notion of invariance under shifts is captured in 

the next definition. 

Definition 3.14 (Znvariance under shifts). A set of configurations C is invariant under 

shifts (or just invariant) if for every cut-off event e and every configuration C, C E C 

iff S,(C) E C. 

We show that the set of configurations that satisfy an arbitrary formula of the logic is 

invariant. Since, given a marking M, there exists a formula expressing Mark(C) = M, 
this result generalises the invariance of the set of configurations corresponding to the 

same marking. 

Lemma 3.15 (Invariance of Sat( 4) under shifts). For every formula 4, Sat( 4) is in- 
variant under shifts. 

Proof. Let e and C be a cut-off event and a configuration of &. We show that C k q5 iff 

S,(C) + 4. By Proposition 3.9(2), we have Mark(C) = Ma&(&(C)). So *Cut(C) 
is isomorphic to fi Cut( C’). It follows easily from the semantics of L that whether a 

configuration C satisfies a formula +I or not depends only on 9 Cut(C) . Therefore, C 

and S,(C) satisfy the same formulas of L. 0 

We are now ready to show that Sat( 4) can be generated by the subset of Sat($) 
formed by the configurations contained in the finite prefix. 

Definition 3.16 (The set Satf (4) ) . Let 4 be a formula. Then Satf (4) = Sat( $5) II 3. 
(Recall that F denotes the set of configurations of the finite prefix pf.) 
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Definition 3.17 (The mapping S), Let C be a set of configurations of Pm. The set of 

configurations S,(C) is given by: 

S,(C) = {S,(C) ( c E c> 

The set of configurations S(C) is given by: 

S(C) =cu u S,(C) 
&Of 

(recall that Off denotes the set of cut-off events of p,). 

We define: 

/..&s.c = u GY(C) 
il>O 

Notice that S is defined on sets of configurations. It follows easily from this definition 

that S is a monotonic function on the complete partial order of the sets of configurations 

of Pm, where the order is set inclusion (notice that this partial order is different from 

the partial order of configurations). It is easy to see that @S.C is the least fixpoint of S 

containing C, which explains the notation we have chosen. 

Theorem 3.18. For every formula 4, Sat($) = ,uS.Satf(@). 

Proof. We prove separately both inclusions. 

( C) Let C E Sat( q4), and consider two cases: 

Case 1. If C does not contain any cut-off event, then C is a configuration of pf. So 

C E Satf(4), and we are done. 

Case 2. If C does contain a cut-off event e, then ST’ (C) exists and S;‘(C) E 

Sat(+) by the invariance of Sat(+). Moreover, (S;‘(C)j < (Cl. If S;‘(C) does not 

contain any cut-off event, then S;‘(C) E Satf(q4), which implies C E S(Satf(c$)). 

Else, S;‘(C) contains a cut-off event e’ and Se7’(S;‘(C)) exists. If SeT’(S;‘(C)) 

contains no cut-off event, then we get C E S2 (Satf (4) ). This procedure can be iterated, 

and eventually terminates for some number II, because C is finite and each application 

of one of the inverses SF * decreases the number of events. So C E S” (Satf (4)) for 

some n. 

(2) Since Satf( 4) s Sat( 4) and Sat( 4) is invariant, we have St(Satf( 4) ) C 

Sat( f$> for every IZ 3 0. 0 

An important consequence of Theorem 3.18 is that Sat(+) is empty if and only if 

Satf(qb) is empty. That is, some configuration satisfies 4 iff some configuration of the 

finite prefix satisfies it. Therefore, the model checking problem reduces to the problem 

of deciding if Satf(q5) is empty. 

Our problem is to find an efficient algorithm for emptiness. Since the finite prefix 

contains finitely many configurations, the obvious algorithm is to exhaustively check 

them all. However, this corresponds to checking all the reachable markings of the 
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system, which would cancel any possible advantage of our approach with respect to 

the interleaving-based model checkers. We show that there is a much more efficient 

algorithm to compute the maximal elements of Satf( 4) with respect to set inclusion. 

This is a fundamental idea of our approach: since we wish to avoid the enumeration of 

the states of the system-the finite prefix does not even have an explicit representation 

of global states; they are “embedded” in it-we cannot perform any search of the state 

space. Instead, we develop algorithms to identify particularly important states, namely 

the maximal elements of Satf (4). 

It is convenient to introduce a notation for the set of maximal elements of Satf(+). 

Definition 3.19 (Last sets of conjigurutions). Let mux{C} denote the set of maximal 

elements of a set of configurations C with respect to set inclusion. We define Lust(d) = 

mux(Sutf(4)) (Lust is short for Largest). 

Since Lust( 4) is empty if and only Sutf( 4) is empty, the model checking problem 

reduces to deciding, for an arbitrary formula 4, if Lust( 4) = 0 or not. 

3.4. Compositional equations 

In this section we obtain compositional equations for Lust( 4)) where 4 is a formula 

in a certain normal form. We use a generalization of the conjunctive normal form of 

propositional logic. 

Definition 3.20 (Normal form). A formula 4 is in normal form if it is generated by 

the following grammar: 

In the sequel, as was done in this definition, the symbol y is used to denote conjunc- 

tions of literals. A typical formula which is not in normal form is si V ~2. 

We prove that every formula is equivalent (denoted by E) to a disjunction of formulas 

in normal form. 

Proposition 3.21. Let q5 be a formula. There exist formulas $1,. . , ,& in normal form 

such that 

i=l 

Proof. Push in negations through disjunctions and conjunctions using the DeMorgan 

laws. Then, move out disjunctions through conjunctions (using the distributive law) and 

0 operators (using O(4t V 42) =_ O$I V 04,). 0 
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By this proposition, we have 

Sat(+) =SUt Q4i = ijSut($i) 
( ) i=I i=l 

for a set of formulas (41,. . . , +,,} in normal form. It follows that deciding the emptyness 

of Sut(q4) for an arbitrary formula 4 reduces to the problem of deciding the emptyness 

of Sat( 4) for a formula #J in normal form. 

It must be remarked that the length of the conjunction of formulas in normal form 

equivalent to a given formula 4 may be exponential in the length of 4 (because dis- 

junctions must be moved out through conjunctions). However, this problem does not 

have much relevance. Formulas are usually short (at least compared with the finite pre- 

fix), and many formulas of interest, e.g. those expressing reachability, mutual exclusion, 

liveness and cyclicity, are in normal form. ’ Moreover, as shown before, if P # NP then 

we cannot have a polynomial algorithm in the length of the formula. 

It is easier to give compositional equations for a generalized Last set which has as 

parameters not only a formula 4, but also two sets of configurations. The generalization 

makes use of the following relation: 

Definition 3.22 (The relution <). Let C be a configuration and let C be a set of con- 

figurations. We say C < C (read “C is less than C”) if there exists some configuration 

C’ E C such that C C C’. 

Let Ct, C2 be two sets of configurations. We say Ci < Cz if Ct < Cz for every 

configuration Ct E Ct. 

The relation < has the following fundamental property: 

Lemma 3.23 (Fundamental property of the relation <) . Let C be u conjigurution and 

let q!~ be a formula. Then, C b 04 iff C << Sczt(4). 

Proof. Follows immediately from the definitions. 0 

After these preliminaries, we can define the generalized Sat and Last sets. 

Definition 3.24 (Generalised Sat and Lust sets). Let 4 be a formula and let Ct, Cz be 

two sets of configurations. The set of configurations Sut(C1 , 4, (22) is defined as follows: 

C ESat(Cl,4,CZ) iff C ~~ and C #Cl and C <C2 

Let Cl, C:! C Z= be two sets of configurations. We define: 

Satf(Cl,+,C2) =Sat(CI,4,C2) n.F 

Last(C1,$,C2) =max{S~tf(Cl,~,C2)}. 

’ Once the derived operator 0 is substituted by its definition. 
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In words, Sat(Cr ,d, CZ) is the set of configurations that satisfy 4, are included in 

some configuration of the set CS, and are not included in any of the configurations of 

the set Ct. 

Notice that no configuration is less than the empty set of configurations; on the other 

hand, every configuration is less than the set of maximal configurations of pm. Therefore, 

when Ct is the empty set and C:! the set of maximal configurations, Sut(Cr , 4, C2) is 

just the set of configurations that satisfy 4, i.e., the set Sat( 4). Similarly, we have 

Surf (4) = Surf( 0,4,27), because every configuration of the finite prefix /3f is less than 

its set of maximal configurations, which is the set ‘D. Finally, Last( 4) = Last( 0,+, D) 

Guided by the grammar of the formulas in normal form, our first task consists 

in expressing both Sat( Ct ,+ A O$, C2) and Sut(Ci, 4 A TO@, C2) as a function of 

Sat( Cl, 4, Ci ) and Sut( Ci’, $, Cc) for well chosen sets of configurations Ci , Ci, Cl and 

Cg. For this purpose, we introduce a new operator. 

Definition 3.25 (The operator 0). Let Cr , C2 be two sets of configurations. We define 

Cl v C2 = {Cl fl c2 I Cl E Cl 9 c2 E C2). 

Notice that Cr v CZ is a set of configurations because the set of configurations is 

closed under intersection. Moreover, v is associative and commutative. The following 

property is easy to prove: 

Lemma 3.26 (Fundamental property of 0). Let C be a conjigurution and let Cl, CT be 

two sets of conjgurutions. Then, C << Cl v C2 iff C << Cl and C << C2. 

We also need an operator capturing that a configuration satisfies C < Cr and C << CZ. 

In this case, we do not have to introduce any new operator, because union of sets of 

configurations does the job. 

Lemma 3.27 (Fundamental property of U (on sets of configurations) ) . Let C be a 

configuration and let Cl, C2 be two sets of configurations. Then, C yk Cl U C2 iff 

C Sk: Cl and C & CT. 

Notice the lack of symmetry between both cases (the two operators we need are 

neither union nor intersection, nor v and its dual operator). This is not surprising, 

because the symmetry between conjunction and disjunction was broken in our normal 

form, and our logic is not symmetric with respect to future and past. 

Theorem 3.28 (Compositional equations for Sat). Let Cl, C2 be two sets of conjguru- 

tions of Pm, and let 4, fi be two formulas in normal form. We have: 

Sut(C1,4 A %kC2) =Sat(C1,cb,C2 oSat($)) 

Sut(C1,4 A -o*, Cf) = Sut(C1 u Sat($) 3 4, (-72) 

Proof. We prove the second equation. The first is similar. 
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(5) Let C E Sat(C1, q4 A -O$,&). By Definition 3.24, we have C /= 4 A TO@, 

C & Ct and C < CZ. By the fundamental property of <, C k 4 and C # Sat(+). By 

the fundamental property of U, C # Cz U Sut( $). So C E Sut(C1 U Sut( 9)) 4, C, ) . 

(2): Let C E Sat(Ct U Sat(@), 4, CZ). By Definition 3.24, we have C k 4, C sf= 

Ct USat and C < C2. By the fundamental property of U, C K Ct and C # Sat(#). 

By the fundamental property of <, C k O@. So C E Sut(C1, q4 A ~Oq4, C2). 0 

After an exhaustive application of these two equations, we obtain an expression for 

Sut(C1 , 4, Cz) in which no O-symbol appears. Specialising Ct to the empty set and C2 

to the set of maximal configurations of pm, we get an expression for Sut(c$) with the 

same property. 

We now derive similar compositional equations for Sutf(qb). The equations only use 

sets of configurations of the finite prefix. Notice in particular that, by the definition of 

v, for any set of configurations C the set C v {Ef} only contains configurations of the 

finite prefix. 

Theorem 3.29 (Compositional equations for Sutf). Let Cl, C2 C 3 be two sets of con- 

jigurations of the finite prejix. Let C = ,uS.Satf($) v {Ef}. We have: 

sutf(c1,4 AOqkC2) =sutf(cl,$kc2 00 

sutf(cI, 4 A +k c2 1 = satf(cl u c, 4, c2 ) 

Proof. We prove the first equality. The proof of the second is similar. 

Since C2 is a set of configurations of the finite prefix, all the elements of Sut(Cl, 4 A 

O$,Cf ) are configurations of the finite prefix as well (they are contained in some 

configuration of Cg). Therefore, we have 

sutf(c114 A oq, c2 1 = Sat(C1,4 A w, C2) 

We prove 

S4CI, 4, c2 v Sat((CI) > = ~utf(cl,~, c2 v C) 

which, by the equations for Sat, implies the result. 

Since C2 v Sat($) is a set of configurations of the finite prefix, it suffices to prove 

C2 vSat( @) = C2 gC. By the definition of C, and since ,uS.Sutf ($) = Sut( $) (Theorem 

3.18), this reduces in turn to showing 

To prove it, use C2 v {Ef} = Cz, which holds because C C Ef for every C E C2. q 

The configurations of the set @.Sut,= (9) v {Ef} are contained in Ef by definition, 

and therefore have a bounded size. This would be no advantage if in order to compute 

,uS.Sutf(@) v {Ef} we first had to compute pS.Sutf($). However, as we shall show, 
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this is not the case: /_A.Sutf(rj) v {Ef} can be directly computed on the finite prefix. 

The next section shows how to do it. 

Finally, we obtain equations for Luast( Ct , 4, CZ), the set of maximal configurations 

of Sutf(Ct , ~,CT). The correctness proofs of the equations make use of the following 

elementary properties of the mux operator (the proof is omitted) : 

Lemma 3.30 (Some properties of max). 

(1) muX{mar{c}} = muX{C}. 

(2) max{max(IJ&, Ci}} = max{Ui~/ max{ci}}~ 

(3) m~{max{Vi~:lci)} = m~{ViGmax{G}). 

Observe that mux and union, or max and v, do not commute in general. 

Theorem 3.31 (Compositional equations for Lust). Let CL, C2 C 3 be two sets of con- 

jigurutions of the jinite prejix. 

Let C = ,uS.Lust($) v {Ef). We have: 

Lust(C1 , 4 A O$, C2 > = Last(C1,6 mux(C2 V C>> 

Lust(C1,#J A -0QkC2) = L4Ut(mux{CI UC}>dJ,C2) 

Proof. We prove the first equality. The proof of the second is similar. 

We claim mux{/.d.Sutf( $)} = mux{pS.last( $)}. 

mu+S.Sq(ti)) 

= {definition of @?.C, properties of mux} 

max(Umax{S”(~ut,(~))}} 
fla0 

= {monotonicity of S, for every cut-off event e) 

max{U S”(max{Satf($)))) 
tl)O 

= { definitions of Lust($) and ,uS.C } 

max{fiS.hst($)) 

Now, we have 

L-&Cl, 4 A 04k c2 1 

= {definition of Lust} 

m&Sutf (Cl, 4 A W, C2) ) 

= {equation for Sutf, definition of C, associativity of v} 

m4SatACt 9 4, C2 v ,=S.Satr(ti) v {Ef))) 

= {C < C iff C < mux{C}} 

ma{Sutf(G v 6 ma{& Q cLS.Sat.d$> v {Ef)))) 

= {properties of mux, result above} 
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mar{Satf(CI, 4, mm{ CT v @.L-d@) v {Ef}})} 

= {definition of Last} 
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This is the result we have been aiming at. Let us show that it reduces the problem of 

deciding the emptyness of Lust(+) for a formula in normal form to the following two 

problems: 

(1) Computing +S.C v {Ef} for an arbitrary set C C F. 

(2) Computing Last(C1, y,C2) for arbitrary sets Ci, C2 2 3 and an arbitrary con- 

junction of literals y. 

If q5 is a conjunction of literals, then we are done by (2), because Z.ust(+) = 

L.ust( 8, q5, D). Now, assume we want to compute Last( q5A TO@). By induction hypoth- 

esis, we can compute Lust( $). By ( I ), we can compute the set C = ,uS.Last(@) o{Ef}. 

By the induction hypothesis again, we can compute Lust(C, 4, D). Since ma.x{@ U C} = 

C, we have L.ust(C, qb, ID) = Last(q4 A -Orl/) by the second equation of Theorem 3.31. 

Similar reasoning shows that we can also compute Lust(q4 A O+). 

We formalise this argument in Section 6 by giving a recursive procedure for the 

computation of Lust( 4). Before that, we provide algorithms for (1) and (2). 

3.5. Algorithms 

An algorithm to compute ,xS.C v (Ef) 

We solve this problem in two steps. First, we show how to compute the configuration 

S,(C) n Ef for a configuration C c Ef and a cut-off event e. Using this, it will be 

easy to give an algorithm for the computation of ,uS.C v {Ef}. 

By the definition of e-shift, we have: 

S,(C) n Ef = 
C if [e”] g C 

([e] UZp(C\ [e’])) nEf otherwise 

where I, is the isomorphism from $ Cut( [e’]) onto fi Cut( [ e]). The configurations 

[e] and [e’] are obtained “on the fly” during the construction of the finite prefix. 

Therefore, our problem consists in computing I,( C \ [e’] ) n Es, which is easy once 

the pairs (x, I,(x) ) such that Ie ( X) is a node of the finite prefix are known. 

Algorithm 3.32. 

Input: The set PO = {(b,b’) ( b E Cut([e’]> A b’ E Cut([e]) A p,(b) =p,,,(b’)}. 

Output: The set P of pairs (x, Z,(X)) such that Ie(x) E Bf U Ef. 

begin 

P := PO; Q := PO; 

while Q # 0 do 
choose (x, x’) E Q; 

for every y’ E x’. do 
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if Vz’ E ‘y’ 3z (z, z’) E Q then 
let y be the unique node of X’ such that p,(y) = p,( y’); 

P := P U {(y,y’>}; e := e u {(Y?Y’,} 

endif 

endfor 

Q:=Q\{<w’,> 
endwhile 

end 

The algorithm terminates because, (x, x’) is eventually a pair such that X’ is a 

maximal node of the finite prefix, and therefore X” is empty. In this case, the algorithm 

just removes (x, x’) from Q without adding any new element. 

Let us use the algorithm to compute the pairs (x, I,, (x)) in the example of Fig. 5. 

In this case, [eg] = [ez], Cut([ez]) = {bz,bJ}, and Cur([&j]) = {bT,bg}. 

We have PO = {(bz,bT),(bJ,bg)} = Q. We choose (b2,bT) out of Q and consider 

the output events of b7, which are e7 and es. The algorithm looks for appropriate output 

events of bz matching these two, in this case et and es, adds (et, es), (es, e7) as 

new pairs to P and (2 and removes (62, b7) from Q. The algorithm continues until all 

elements of pf after Cut( [es] ) have been matched. 

We now define the following finite version of the mapping S. 

Definition 3.33 (Finite version S, of the mapping S). Let C be a set of configurations 

of the finite prefix pf. We define: 

Sf(C) = C lJ u (S,(C) V {Ef)) 
@X?ff 

Also, we define 

#L6,.c = u s;(c) 
PI>0 

Notice that S,(C) v {Ef} = {S,(C) n Ef 1 C E C}, and that Sf is a monotonic 

mapping. Since Sy (C) is a set of configurations of the finite prefix for every n, and 

the finite prefix contains finitely many configurations, there exists an integer k such that 

2$(C) = SF’(C). We then have ,G!?~.C = S;(C). 

Let us calculate &Yf.{{e2}} in the example of Fig. 5. In this case, e6 is the only 

cut-off event. 

SF({ea)) = (Ie2)) 

Q(e2)) ={{e2),&,({e21) nEf}={{e2},{e2,e3,e4}} 

S;({e2)) = {{e2).{e2,e3,e4)) 

So k = 1, and @f.{{ez}} = {{ez}, {ez,e3,e4}}. 
Finally, the following theorem shows that @f.C is all we need, because it is equal 

to the set ,uS.C v {Ef}. 
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Theorem 3.34. For every set C 2 3 and every n 3 0, S’(C) v {Ef} = Sj(C). In 

particular; we have ,uS.C v {Ef} = &T,-.C. 

Proof. We proceed by induction on n. 

Base. n = 0. We have to prove C v {Ef} = C. This follows easily from C & .7=‘, which 

implies C G Ef for every C E C. 

Step. n ---f n + 1. We have S,(C) n Ef = S,( C n Ef) n Ef for every cut-off event e 

and every configuration C (because the events of C not contained in Ef are shifted out 

of Ef). So for every set of configurations C 

S(C) v {Ef) = S(C v {Ef)) v {&I (*) 

Therefore 

S”+‘(C) u {Es) 
= {definition} 

S(S”(C)) v {Ef} 

= {equation (*)} 

S(S”(‘3 v {&I) v 6%) 

= {induction hypothesis} 

Q%+(C)) v {Ef) 

= {v distributes over union} 

s:+‘(c) q 

An algorithm to compute Last(CI , y, C2) 

We provide an algorithm to compute Last(C1, y,Cz), where y is a conjunction of 

literals and Ct, Cz are two sets of configurations of the finite prefix. We first obtain 

some preliminary results. Let us examine Last(C1 , y, CT) in more detail. 

Last(C1, y, c2 1 

= {definition of Last and Satf} 

max{C(C/=yAC&C~AC<C2} 

= {definition of C < C2, properties of max} 

mu{ U max{CIC+yAC~CjACCC2}} 

C2EC2 

= {definition of Last and sat} 

ma4 U ~st(cl,r,{C2})} 

C2EC2 

Therefore, it suffices to provide an algorithm for the particular instances of the problem 

having the form Last(CI, y, {Cz}). Furthermore, we have the following equivalence: 

C E fust(CI ,y, {CZ}) iff C E I.ust(@, y, {CZ}) and C & Ct. 
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Since C # Ci can be checked using the definition (it suffices to see whether C is 

contained in some configuration of the set Cl), we consider in the sequel the problem 

of computing Last( 0, y, { Cz}). 

We prove that the set Last(0, y, (C2)) contains at most one configuration (i.e., it is 

either the empty set or a singleton). This result is an immediate corollary of the next 

theorem, which shows a closure property of Sat(y). The theorem is due to Eike Best 

and the author. 

Lemma 3.35. Let N be an occurrence net and let cl, c2 be two co-sets of N. Then: 

cl n c2 c_ (cl n ~2) n (cl u c2) 

Cl u c2 > (Cl n c2) u (Cl u c2) 

Proof. We prove the first inclusion. The second is analogous. Let b E cl n ~2. We have 

that b is not in conflict with cl or ~2, because cl and c:! are co-sets. Since b E ~2, b # ~2. 

Since b E cl, b fi cl. By the definition of ct n c2 and cl !-I ~2, we have b E cl n cp and 

b E CI u c2. 0 

Theorem 3.36 (Closure property of Sat(y) ) . Let y be a conjunction of literals, and let 

C, C’ be hvo elements of Sat( y). if C U C’ is a configuration, then C U C’ E Sut( y). 

Proof. Let c = Cut(C) and c’ = Cut(C’). The proof is by induction on the structure 

of y. 

(i) y = true. Obvious. 

(ii) y = s. By the definition of satisfaction, we have to show s E pm (c U c’) . Since 

C, C’ E Sat(s), we have: 

gbEcp,(b)=s and 3b’gc’p,(b’)=s 

If b = b’ then b E c fl c’. By Lemma 3.35, b E c U c’. So s E p,(c U c’). If b f b’ then, 

since pm (6) = pm( b’) and b, b’ cannot be in conflict (otherwise their input events are 

in conflict, which contradicts the fact that C U C’ is a configuration), either b -i b’ or 

b’ -i b. By the definition of c U c’, in the former case b’ E c U c’. In the latter case, 

bEcUc’.HenceinbothcasessEp,(cUc’). 

(iii) y = 7s. Let c = Cut(C) and c’ = Cut( C’) . By the definition of satisfaction, we 

have to show s +! pm(c LI c’). Since C b 1s and C’ + -G, we have s $! p,(c) and 

s $ pm(c’). Since c U c’ 5 c U c’ by Lemma 3.35, we have s $ pm(c U c’). 

(iv) y = yt A ~2. Then, C E Sat( yl ) and C E Sut( y2), and the same holds for C’. 

By induction hypothesis, C U C’ E Sat( y1) and C U C’ E Sat( y2). So C U C’ E 

SMYr AY2). 0 

Corollary 3.37. Let C2 E F and y a conjunction of literals. Then, L.ast(@, y, ((22)) 

contains at most one configuration. 
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Proof. Let C, C’ be two configurations of L.ust(B, y, {Cz}). Then C and C’ belong 

to Sat(y). Since C C CZ and C’ C C2, C U C’ is a configuration. By Theorem 3.36, 

C U C’ /= y. Since C U C’ C Cz, we have C U C’ E Sut( 8, y, { CZ}), which implies 

C = C U C’ = C’, because both C and C’ are maximal. 0 

The problem of computing L&k?, y, {CZ}) was studied in [ 191 by Bernhard von 

Stengel and the author. We just adapt the solution of [ 191 to our notations. 

Let y+ be the set of places s of 2 such that s is a literal of y, and let y- be the set 

of places s such that 1s is a literal of y. The idea of the algorithm is the following. 

We start with C2. If C:! satisfies y, then we are done because Zmt(fl, y, {CT}) = {CZ}. 

Otherwise, either Mark(C2) does not contain some place of y+, or it contains some 

place of y-. In both cases, we remove some events from (22, while ensuring that the 

result is a configuration lying in the future of the Last configuration (loosely speaking, 

we take care of not removing too many events). This procedure is iterated until a 

solution is found. 

Algorithm 3.38. 

Input: The configuration C2, the sets yf and y-. 

output: L.ust( 0, y. {CT}). 

begin 

c := c2; 

{invariant: C is a configuration, and Lust(0,y, (C2)) < {C}} 

while C /$ y do 

choose s E (yf \Murk(C)) u (y- n&z&(C)); 

if s E y+ \ Mark(C) then 

if ‘C contains no s-labelled condition then return 0 

else b := maximal s-labelled condition of ‘C; 

C:=C\{eEC(b+e} 

endif 

elseif s E y- n Murk(C) then 

b := unique s-labelled condition of Cut(C) ; 

if b has no input events then return 0 

else e := unique input event of b; 

C := C \ {e’ E C j e 5 e’} 

endif 

endif 

endwhile 

{C k Y and hst(0, Y, {G}) -K {C}} 
return {C} 

end 

Let us apply the algorithm to compute Lust(P), 7~3 A s6, {e2,e3,e4,es,e6}) for the 

finite prefix of Fig. 5. In this case, y+ = ($6) and y- = (~3). 
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C is initialised to {Q, e3, e4, es, e6}. So Mark(C) = (~3, ~2). Since C does not satisfy 

7~3 A s& we enter the loop. We have y+ \Murk(C) = {sg} and y- flMurk(C) = (~3). 
We choose s = 36. The maximal ss-labelled condition is b5. So the variable b is assigned 

bs. We have {e’ E C 1 b5 < e} = {eq,eg,eg}. Therefore, C is assigned the set {ez,es}, 

which finishes the first iteration of the loop. 

Now Murk(C) = (~3, se}, and so C does not satisfy ~3 A se. So we enter the loop 

again. We have y+ \ Mark(C) = 8 and y- fl Mark(C) = {s3}, so we choose s = sg. 

The variable e is assigned the event e2. Since we have {e’ E C 1 e2 ri: e’} = {e*}, C is 

set to {es}, which finishes the second iteration of the loop. 

Now Mark(C) = { SI, se}, and so C does satisfy ~3 A sg. { {e3}} is returned as 

result. 

The correctness proof can be found in [ 191. We summarize the main points. No- 

tice first that the invariant holds before the loop, and that the postcondition implies 

Ust(@, y, (Cz}) = (C}. Moreover, the loop terminates because every iteration step 

decreases C . 

If s E ys \ Mark(C) and the algorithm returns the empty set, then no configuration 

contained in C satisfies s, because otherwise some condition of ‘C would be s-labelled. 

Therefore, no configuration contained in C satisfies y. Together with the invariant, this 

implies that no configuration at all satisfies y, and thus tast(@,r, {CZ}) = 0. Similarly, 

if s E y- n Murk(C) and the algorithm returns the empty set, then no configuration 

contained in C satisfies 7s because, since b has no input events, for every configuration 

contained in C, b belongs to Cut(C). Again, together with the invariant, this implies 

that no configuration at all satisfies y, and thus Last(0, y, (C2)) = 8. 

If the algorithm terminates and returns a singleton, then the loop has terminated 

properly, which implies that both the invariant and the negation of the loop condition 

hold; the conjunction of both implies Last(0, y, {Cz}) = {C}. 

It remains to show that the loop preserves the invariant. For the first alternative, notice 

that C \ {e E C 1 b + e} is the largest configuration contained in C that satisfies 1s. 

For the second, notice that every configuration between C \ {e’ E C 1 e i e’} and C 

satisfies s. 

To evaluate the complexity of the algorithm, we first observe that the loop is executed 

at most ICI\ times. The complexity of computing the sets C \ {e E C ( b 4 e} and 

C \ {e’ E C ( e 3 e’} depends on the implementation of the causal relation 4. Let 

N = (B, C2, F) be the causal net having C2 as set of events. An optimal implementation 

in which each node x has pointers to all the nodes of X. allows to compute both sets in 

0( IBl) time. However, with such an implementation the construction of the finite prefix 

becomes more complicated. An easier implementation of < is as a list of pairs (x,x’) 

for each node x E B U C2. In this case, the time is 0( 1B12). Since ]C2( 6 [BI, the total 

running time is O( )B12) or 0( ) BI”), depending on the implementation. 



J. Espurzdkience cjf Compufer Programming 23 (1994) 151-195 181 

3.4. The model checker 

In the previous sections we have gradually reduced the model checking problem to 

simpler problems, for which finally we were able to provide algorithms. It is time to 

recapitulate and describe the global structure of the model checker. 

As input of the model checker we need the finite prefix pf of the system 2, together 

with its set D of maximal configurations, and a formula 4. flf and 2) can be computed 

using McMillan’s algorithm (actually, the algorithm of 1291 computes only ,Bf, but it 

is not difficult to modify it so that it returns 2) as well). The model checker makes use 

of the following three functions: 

l normalf orm( 4). Accepts a formula 4 of the logic. Returns a set ($1,. . . $n} of 

formulas in normal form such that 4 5 VL, 4i. 

l ,u&. (C) . Accepts a set C C F. Returns the set ,&?,.C. 

l basic-Last(Ci, y, Cz). Accepts two sets of configurations Ct ,Cz G F and a con- 

junction of literals y. Returns the set Last(Ct , y, C2). 

These functions can be computed using the results of Sections 4, 6 and 7 respectively. 

We define the function Last (Cl, 4, C2 ), which accepts two sets of configurations Cl, 

C2 C F and a formula 4 in normal form and returns the set Last(Ct , qb, C2). We write 

Last(4) for Last(0,+,D). 

function Last (Ct , 4, C2 ) 

begin 

if ~+4 = y then return basic-Last(Ct,y,&) 

elseif 4 = Cc, A Op then return Last(Ci , I++, max(C2 v ,&.Last( p)}) 

elseif 4 = (CI A 10~ then return Last(mau{Ci U ,@.Last(p)},$,C2) 

endif 

end 

Finally, the model checker looks as follows (actually, the model checker only accepts 

formulas of the form 04, but formulas without modalities can be easily checked). 

Algorithm 3.39 (The model checker). 

Input: Pf, v, 4 

Output: The truth value of 2 /= 04 

begin 

@ := normalf orm( 4) ; 

result := false; 

while result = false and @ f 8 do 

choose $ E @5; 

if Last ($) # 0 then result := true endif 

endwhile 
return result 

end 
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Observe that we may have Last($) = {O}, which means that the largest configuration 

satisfying Q!J is the empty one. In this case, Last($) # 8 

Let us apply this model checker to the l-safe system of Fig. 3 (whose finite prefix is 

shown in Fig. 5) and the formula 00~2. In this case, the set V contains three elements: 

The formula is equivalent to 7010~2. We apply the model checker to the formula 

070s~. Hence, 4 = 10~2 and @ := {true A 70s~). We have to compute Last(true A 

10s~). According to the definition of the function Last, the first step is the computation 

of basic-Last( ~2). We get 

basic-Last(s2) = {{ el,e2},{e2,es,e4,es,e6}} 

and 

PUS*. (basic-Last( s2) ) = V 

Therefore 

Last(trueA7OS2) =Last(max{DUD},true,D) =Last(V,true,V) 

Since no configuration C of pf satisfies C # V we have Last(V, true,‘D) = 0. Then, 

_E /+ 010~ and, finally, 2 b 10-0~. 

The complexity of the algorithm in the size of the system depends on two parameters: 

the number of maximal configurations of the finite prefix /?I-- that is, the cardinality 

of the set V - and the largest size of the configurations of V. Consider a formula with 

one O-symbol. In this case, the model checker has to solve a Lust problem for each 

element of V, and the size of these problems is essentially bounded by the size of the 

largest maximal configuration. 

Of these two parameters, the first is much more critical than the second. If, at some 

reachable marking, many different conflicts can be concurrently solved, then the finite 

prefix “splits” at this point into a number of processes proportional to the product of the 

possible solutions of the conflict. In the next chapter we show that, if the set V contains 

one single element, then the model checker performs very well, and for conflict-free 

systems can solve problems in polynomial time for which the known algorithms require 

exponential time. 

4. Persistent and conflict-free systems 

The interplay of concurrency and conflicts greatly complicates the analysis of a 

system. Concurrency theory has therefore studied with particular interest systems in 

which two simultaneously enabled actions can always be concurrently executed (i.e., 

it is never the case that the system can only execute one out of two actions). The 

persistent systems of [ 271, the marked graphs or synchronisation graphs of [ 14,201, 
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the conflict-free systems of [ 25,271 or the confluent processes of [ 301 are all examples 

of models defined to exploit the possibilities of this restriction. 

We study the complexity of the model checker for the class of l-safe persistent 

systems. The model checker is shown to be polynomial in the size of the finite prefix, 

and linear in the length of formulas in normal form. We then study the class of conflict- 

free systems [27]. For this class, the model checker is shown to be polynomial in 

the size of the system itself, not of its finite prefix, and linear in the size of formulas 

in normal form. To the best of our knowledge, all verification methods described in 

the literature require exponential time in the size of the system for the logic L and 

conflict-free systems. 

4.1. Persistent systems 

Persistent systems play an important role in the verification of asynchronous circuits 

[35,37]. As pointed out in [37], the transition systems of the nets of this class are 

semimodular Muller-diagrams, the classical formal tool for the description of self-timed 

circuits. This makes the class a suitable modelling tool for these circuits. 

Persistent systems are defined with a notion of concurrency in mind that is slightly 

more liberal than ours. The consequence is that not always two enabled actions of a 

persistent system are concurrent in our more restrictive sense. Therefore, we define and 

study the smaller class of strongly persistent systems. However, we show later in this 

section that every persistent system can be easily simulated by a strongly persistent one, 

which allows us to extend our results to persistent systems. 

Definition 4.1 (Concurrent transitions). Let N be a net, M a marking of N and tl , t2 

two different transitions enabled at M. The transitions tl and t2 are concurrent at A4 if 

for every s E l tj n l tZ: M(s) 2 2. 

The following characterisation of concurrency in l-safe systems is well known: 

Proposition 4.2 (Concurrent transitions in l-safe systems). Let 2 be a I-safe system, 

M a reachable marking of 2 and tl, t2 two diflerent transitions enabled at MQ. The 

transitions tl and t2 are concurrent at M if ( l tl U ti) r‘l ( l t2 U t;) = 8. 

Proof. (+>: Since every place contains a;,post one token at M, we have l t, rl .tz = 8. 

Also, ti n tz = 0, because otherwise M - M’ is an occurrence sequence and M’ a 

marking that puts two tokens in the places of t; n t;, which contradicts the l-safeness 

of the system. The rest of the statement is proved similarly. 

(+=): Trivial. q 

Definition 4.3 (Strongly persistent systems). A system Z is strongly persistent if for 

every reachable marking M and every pair tl, t2 of different transitions of N enabled at 

M, the transitions 11, t2 are concurrent at M. 
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We can now characterise strongly persistent systems in terms of their maximal branch- 

ing processes. 

Theorem 4.4 (Characterisation of strongly persistent systems). Let 2 be a I-safe sys- 

tem. 2 is strongly persistent iff its maximal branching process is a process. 

Proof. (+): Assume 2 = (S, T, l? MO) is not strongly persistent. Then, there exists a 

reachable marking M, two different transitions tl, t2 E T enabled at M and a place 

s E ‘ti net2 such that M(s) = 1. 

Let c be a cut of &, such that p,,,(c) = M and [p,,,(c) ( = (Ml. In particular, c contains 

a unique condition b such that p(b) = s. Since M enables tl and t2 and 2 is l-safe, 

there exist two subsets cl, c2 C c such that p,( cl) = l tl and p,( cz) = l t2. 

Let (N, pm) be the prefix of &,, having as nodes the predecessors of the conditions 

of c. By the definition of Pm, (N, p,) can be extended to another prefix (N’, pm) in 

the following way: 

l Add two new events ei, e2 to N satisfying l ei = ci and p,(ei) = ti for i = 1,2. 

l For every place s E t:, i = 1,2, add a new condition b to N satisfying ‘b = (ei} and 

p,(b) = s. 
By the definition of N’, b E l el n l e2. So el, e2 are in conflict in N’. 

Since (N’,p,) is a prefix of pm, ,& contains these two events in conflict as well. 

Therefore, the net N, underlying P,,, is not a causal net, which implies that Pm is not 

a process. 

(+): We show that every finite prefix p of pm is a process. Since every condition of 

P m is finitely preceded, this proves that no node of Pm has more than one output event, 

which implies the result. 

The proof is by induction on the set of events E of /3 (notice that a prefix of Pm is 

characterised by its set of events). 

Base. E = 8. Obvious. 

Step. p is a process, prefix of Pm, with E as set of events. 

Let j3’ be a prefix of Pm having E U {e’} (e’ $! E) as set of events, and assume 

that p’ is not a process. Then e # e’ for some event e E E. Moreover, we can assume 

l e n l e’ f 0 (where the presets refer to /3’). 

We claim that Bo = ‘e n l e’ is a nonempty co-set. Notice that, since Be is a set of 

conditions of /?, and p is a process, no two conditions of Bo are in conflict. Therefore, 

it suffices to prove that for every b, b’ E Bo: -(b 4 b’). Assume b 4 b’ for some b, 

b’ E Bo. If 6, b’ E l e’ then e’ is in self-conflict, contradicting the hypothesis that p’ 

is a branching process. Symmetrically, if b, b’ E l e then e is in self-conflict. If b E ‘e 

and b’ E l e’, then -since e and e’ are in conflict-e and b’ are in conflict. Since both 

e and b’ are nodes of p, this contradicts the hypothesis that p is a process. Since we 

reach a contradiction in all cases, the claim is proved. 

Now, let c be a cut of p’ containing Bo. Then, p,,,(c) is a reachable marking of Z. By 

the definition of Bo, ‘pm(e) U l p, (e’) C pm(c) . So both pm(e) and Pm (e’) are enabled 

at pm(c). Since _.X is l-safe, p,(e) # p,( e’). Finally, since there exists b E l e n l e’, 
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we have p,(b) E ‘p,(e) fl *I,,,. So p,(e) and p,(e’) are both enabled but not 

concurrent at p,(c), which contradicts the hypothesis that 2 is strongly persistent. q 

The main property of strongly persistent systems in connection with our model 

checker, which we are going to prove now, is that for every formula 4, the set Lust( 4) 

always contains at most one configuration. 

The result is obtained using as lemma a much stronger version of the closure property 

for Sat sets that we obtained in Section 3 (Theorem 3.36). We showed there that for 

every conjunction of literals y and every two configurations C, C’ of Sut( 4)) if C UC’ 

is a configuration then C U C’ also belongs to Sat(y). We strengthen this result in two 

ways: 

l Since the maximal branching process is a process, its set of finite configurations is 

a complete lattice; therefore, for every two configurations C, C’, the set C U C’ is a 

configuration as well, which implies that the condition on C U C’ can be suppressed. 

l The result is generalised from conjunctions of literals to all formulas in normal form. 

Theorem 4.5 (Closure property of Sut( 4) for strongly persistent systems). Let 2 be a 

strongly persistent l-safe system and let q5 be a formula in normal form. Let C, C’ be 

two$nite conjigurutions of the muximul branching process of 2 that belong in Sut( 4). 

Then C U C’ E Sat(4). 

Proof. By Theorem 4.4, the maximal branching process of 2 is a process. Therefore, 

its set of configurations is a complete lattice, with union as least upper bound, which 

implies that C U C’ is a finite configuration. 

The proof is by induction on the structure of 4. 

(i) 4 = y. Follows from Theorem 3.36. 

(ii) qb =r/ A Op. We have: 

l C, C’ E Sat( @), and 

l there exist Ct 2 C, Cl 2 C’ such that Cl, C( E Sat(p). 

Since both CUC’ and Ci UC; are finite configurations, by induction hypothesis CUC’ E 

Sat(+) and Ct U Cl E Sat(p). Since Cl U Cl 2 C UC’, we get C UC’ E Sat($ A Op). 

(iii) q5 = ti A 10~. We have: 

l C, C’ E Sat($), and 

l for every Ct 2 C and Cl 2 C’, Ct $! Sat(p) and C( $ Sat(p). 

By induction hypothesis, C UC’ E Sut( $). Clearly, for every configuration C” _> CUC’, 
C” $ Sat(p). So C U C’ E Sat(@ A 70~). q 

It is easy to see that the theorem is not true for arbitrary formulas. Consider the process 

of Fig. 6 and the formula st V ~2, which is not in normal form. The configurations {et} 

and {ez} satisfy st V ~2; however, the configuration {et, e2) does not. 

For a formula q5, define I(4) as the number of O-operators of q!~ plus 1. The problem 

of computing Lust( 0, y, {C}) f or a configuration C and a conjunction of literals y is 

called a Lust-problem. 
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Fig. 6. A process 

Theorem 4.6 (Complexity of the model checker for strongly persistent systems). Let 

4 be a formula in normal form. 

(1) Lust( 4) has at most one element, and 

(2) Last(q6) can be computed solving l(4) Last-problems. 

Proof. (1) Assume Lat(qb) contains two different elements Ct, C2. By Theorem 4.5, 

Ct U C2 E Sat( qb), which contradicts the maximality of Ct, Cl. 

(2) We prove a more general result by induction on the structure of 4. If Cl, C2 

contain at most one element, then Last(C1,+,C:!) can be computed by solving Z(4) 

Lust-problems. 

(i) e5 = y. Then Z( I$) = 1, and the result follows. 

(ii) 4 = $ A Op. By the compositional equations for Last, we have 

ht(C1, CcI A OP, C2) = ht(C1, @, max(C2 v C}) 

where C = gTf.Last(p). We claim that ma.x{C} contains at most one element. 

= {definitions of ,LLS~ and Lust} 

ma+S.max{Satf(p) > D {Ef}} 

= {monotonicity of S,, properties of max} 

max{M.Satf(p) v {Ef}> 

={ Theorem 3.18) 

ma{Sar(p) 1 B {Ef) 

Since Sat(p) is closed under union by Theorem 4.5, max{Sat(p)} has at most one 

element. So mar{Sat(p)} v {Ef} has at most one element, and the claim is proved. 

By induction hypothesis, Lust(p) and fast(C,, I++, max(C2 v C}) can be computed by 

solving Z(p) and I( $) Lust-problems, respectively. By the claim, Z_ust(C1,$ A Op, C2) 
can be computed by solving Z($) + Z(p) problems. Since the number of O-operators 

in I++ A Op is (Z(e) - 1) + (Z(p) - 1) + 1, we have Z(@ A Op) = Z(@) + Z(p), which 

proves the result. 

(iii) 4 = fl A ‘Op. Similar to (ii). q 
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Recall that Last-problems can be solved in polynomial time in the size of the finite 

prefix using the second algorithm presented in Section 3.7. Therefore, for strongly 

persistent systems our model checker has linear complexity in the length of the formula 

(in normal form) and polynomial complexity in the size of the finite prefix. To finish 

our study, we relate the size of the finite prefix to the size of the system. We need the 

following lemma, which is valid for all l-safe systems and relates the number of nodes 

of a process to the length of its longest line. A line of a branching process is a maximal 

set of nodes which are pairwise ordered by the causal relation. 

Lemma 4.7 (Number of nodes of a process). Let rr = (B, E, F: p) be a process of a 

1 -safe system Z = (S, T, F; MO) such that no line of 7~ has length greater than k. Then 

IB u E( < k. ISI. 

The lemma has an intuitive proof: a process can be depicted within a rectangle, whose 

longest side corresponds to the direction of the unfolding. The number of nodes of the 

process is proportional to the area of this rectangle. The width of the rectangle is the 

maximal number of conditions of a cut; in a l-safe system, this number is at most the 

cardinality of IS/, because no two conditions of a cut may have the same label. The 

length of the rectangle is the maximal number of nodes of a line. So the area is the 

product of both. 

Proof. In this proof, a “chain of 8’ is a chain of nodes of 7r with respect to the causal 

relation. 

Define the mapping d: B U E + N as follows: 

Vx E B U E: d(x) = maximal length of the chains of QT having x as last node 

Clearly, d(x) < k for every x E B U E. It follows that 

,BUE, Ck,{ x~BUE(d(x)=i}/ 
i=l 

We show that for every i, 1 ,< i < k, ({x E B U E 1 d(x) = i}] < ISI, which proves the 

result. Let X, x’ be two different nodes of B U E such that d(x) = d(x’). We claim that 

x and x’ are not causally ordered. Assume without loss of generality x 5 x’. Let h be 

a chain of rr having x as last node and length d(x). Since x j x’, the chain h can be 

extended to a longer chain having x’ as last node, which contradicts d(x’) = d(x) and 

proves the claim. Replace every event of the set {x E B U E I d(x) = i} by one of its 

output conditions. Clearly, the new set so constructed contains only pairwise unordered 

conditions. So it is a co-set and has the same cardinality than {X E B U E I d(x) = i). 

By the l-safeness of 2, the cardinality of the new set is less or equal to (S(, and we are 

done. 0 
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s4 S8 s4” 

Fig. 7. A family of l-safe strongly persistent systems with large finite prefix. 

Lemma 4.8 (Size of the finite prefix of a strongly persistent system). Let _Z be a l- 

safe strongly persistent system, and let S be the set of places of Z: The number of 

nodes of its jinite prejix is bounded by 21’1 . /S(. 

Proof. We show that a line of the finite prefix can contain at most as many events 

as the number of reachable markings of 2. Assume there exist a line containing at 

least n events, where n is the number of reachable markings of .X Let e be the nth 

event of the line. Then, there exist two events et 4 e2 5 e of the line such that 

Ma&( et ) = Ma&( e;?), which implies that e2 is a cut-off event. By the definition of the 

finite prefix, e2 is the last event of the line, and therefore e2 = e. So the line contains 

exactly n events. Since 2 is l-safe, the number of reachable markings of ,Z is bounded 

by 21’1. The result follows from Lemma 4.7. 0 

In order to show that this upper bound cannot be substantially improved, we consider 

the family of net systems of Fig. 7 [ 151. The members of the family are l-safe and 

strongly persistent; moreover, their finite prefixes contain R( 21’1) nodes. To convince 

ourselves of this, we observe that the marking 

is reachable, and that it can only be reached from the initial marking after the occurrence 

of an exponential number of transitions. The reason is that the transition tzn-l must 

occur at least one, and for every 1 < i < n, the number of occurrences of tzi-1 in 

any occurrence sequence is at least twice the number of occurrences of tzi+l. Since 

the marking is represented in the finite prefix, all the events corresponding to these 

occurrences must be contained in the finite prefix. 

As mentioned at the beginning of the section, strongly persistent net systems are 

a subclass of the slightly larger and well known class of persistent systems [27]. In 

persistent systems, if two transitions are enabled at a marking then they can occur in 

any order, but not always concurrently. 

Definition 4.9 (Persistent systems). A net system is persistent if whenever a marking 

enables two transitions tl and t2, it enables the sequences tl t2 and t2 tl. 



.I. E.spnrza/Science of Computer Programming 23 (1994) 151-195 189 

. . . 

% 

0 
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Fig. 8. Transforming a persistent net system into a strongly persistent one. 

Strong persistence implies persistence, but the contrary does not hold. Persistent 

but not strongly persistent l-safe systems always contain a place s and two different 

transitions tt, t:! such that {t] , t2) s ‘S fl s*. At some reachable marking M, both tl 

and t2 are enabled, but cannot happen concurrently because of the place s. s is called a 

multiple self-loop place. 

Persistent systems can be simulated by strongly persistent systems. The simulating 

strongly persistent system can be obtained from the persistent one by means of a 

simple transformation which removes multiple self-loop places. The transformation is 

graphically illustrated in Fig. 8. Loosely speaking, every multiple self-loop place is split 

into several places, as shown in the figure. 

It is routine to prove the following: a persistent l-safe system .E satisfies a formula 

#I if and only if the strongly persistent system that simulates 2 satisfies a formula 4, 

where 4 is obtained by substituting every occurrence in 4 of a self-loop place s by any 

of the places into which it is split. 

4.2. Conflict-free systems 

As we have seen, the model checker for strongly persistent systems may require 

exponential time because the finite prefix may be exponential in the size of the system. 

In this section we study the l-safe systems in which every place has at most one output 

transition, which we call l-out systems. It follows easily from the definition that l-out 

systems are strongly persistent. We prove that, for this particular subclass, the finite 

prefix is cubic in the size of the system -the proof is a slight generalisation of a result 

of [41]. It is easy to prove by inspection of McMillan’s algorithm that for these systems 

not only the finite prefix has cubic size but can also be constructed in cubic time in 

the size of the system. Finally, we show that the results for l-out systems can be easily 

extended to the class of conflict-free systems. 

Definition 4.10 ( 1 -out systems). A net system is l-out if every place has at most one 

output transition. 

Fig. 9 displays again the family of systems we considered in the introduction to this 

paper as models of concurrent buffers. We now observe that it is a family of l-out l-safe 

systems. 
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’ 2n-3 

: buffer of capacity II - 1. 

The polynomiality of the finite prefix is proved in two steps. First, we show using 

results of [ 15,411 that every occurrence sequence of a l-salt l-out system of length 

greater than 

(where T is the set of transitions of the system) can be reorganised into another 

occurrence sequence that visits twice the same marking (Theorem 4.13). Then, we use 

this result to obtain an upper bound on the maximal length of the lines of the finite 

prefix; finally, using the lemma that relates this parameter to the size of the finite prefix 

we obtain a bound on the size of the finite prefix (Theorem 4.14). 

Notation 4.11 (Alphabet and Parikh mapping of a sequence of transitions). Let 2 be 

a system and let CT be a sequence of transitions of SC. The alphabet of u is the set of 

transitions that occur in it; we denote it by ‘I. For a transition t, P(m)(t) denotes 

the number of occurrences of t in g. ‘P(C) is called the Parikh mapping of (T. 

The following lemma is a reformulation of Lemma 3.4 in [ 151. It shows that an 

occurrence sequence u can be reorganised as a concatenation of sequences; the first one 

contains one single occurrence of all the transitions that occur at least once in cr; the 

second one contains one single occurrence of all the transitions that occur at least twice 

in U, and so on. 

Lemma 4.12 ([ 151). Let 2 = (S, T, E MO) be a l-safe l-out system, and let u be an 

occurrence sequence. Then, there exists an occurrence sequence ~1~72. . , ck such that: 

(1) otuz... uk is a permutation of o. 

(2) For every transition t, for every i, 1 < i < k: P(oi) (t) < 1, and 

(3) For every i, 1 f i 6 (k - 1): (Y(Ui) 2 cU(Ci+l). 

We can now prove the following theorem (slightly stronger than Theorem 4.3 in 

[151). 

Theorem 4.13. Let 2 = (S, T, E MO) be a l-safe l-out system, and let u be an occur- 

rence sequence such that Iu.( > (ITI . ( (TI + 1)) /2. Then, there exists an occurrence 

sequence (~1 u2 ~3, which is a permutation of u, where u2 is nonempty and 
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Proof. By Lemma 4.12, there exists an occurrence sequence ?-t . . . Tk satisfying condi- 

tions (l)-(3). By (2), [rt/ < (T(. By (2) and (3), )TJ 3 (ri+tl for every i, 1 < i < 

n- 1. 

Assume that /Ti( > (ri+t/ for every i, 1 6 i < II - 1. Then k < ITI and we have 

Therefore, by our hypothesis, there exists an i such that (ri] = [ri+t/. We show that 

taking gt = rt . , T;-1, CT~ = Ti and ~3 = ri+t . . .Tk the result follows. 
r I... 7,--1 

Let MO --A Ml 2 M2 x M3. Since )riJ = lri+t\, we have by (3) P(ri) = 

P( ri+t ) . By the occurrence rule Ml - M2 = M2 - Ms. Since Ml, M2 and M3 are l-safe 

markings, MI = M2 = Ms. So Ml -% MI, which proves the result. Cl 

Theorem 4.14 (Bound on the size of the finite prefix of a l-out system). Let 2 = 

(S, T, E MO) be a l-safe I-out system. The number of nodes of the $nite prefix of 

c is O((Sl . (7y). 

Proof. By Lemma 4.7, it suffices to show that all lines of the finite prefix have length 

O(jT)2). Let h be a chain of the finite prefix of .Y containing i(ITI . (ITI + 1)) -t 1 

events. We show that h is a line. 

Let e be the maximal event of h. Then, all events of h belong to [e], which implies 

I[ell > i<ITI. (ITI + 1)). L e CT be the image under P,,, of a linearisation of [e]. a t 
is an occurrence sequence of 2:. Then, there exists an occurrence sequence u~cT~_u~, 

which is a permutation of LT, satisfying the conditions of Theorem 4.13. There exist two 

configurations Ct, C2 C [e] such that crt and ~1~2 are linearisations of Ct and C2, 

respectively. So Ct c C2 and Mark( Cl ) = Mark(C2). Since Ct and C2 correspond to 

the same reachable marking, $Cut(Ct ) is isomorphic to fiCut(C2). 

Let I be an isomorphism from $ Cut( Cl ) to fi Cut( CT). Consider the event I-’ (e). 

We have p,,,(1-l(e)) = p,(e) and, by the l-safeness of 2, I-‘(e) 4 e. Moreover, we 

have [Z-‘(e)] = Ct U I-‘([e] \ C2), which implies Mark([e]) = Mark( [I-‘(e) I). 

So e is a cut-off event, and therefore no successor of e is contained in the finite prefix. 

It follows that h is a line of the finite prefix. So every line of the finite prefix contains 

at most i(ITI. (ITI + 1)) + 1 events, and therefore every line of the finite prefix has at 

most length (IT]. (JTI + 1)) + 3. 0 

If we take n = (S( . jT( as the size of the system (S, T, F, MO), and further assume 

ISI E 0( Jr(), which is a reasonable assumption, we get that the size of the finite prefix 

is O(n312). Since a Last-problem requires polynomial time in the size of finite prefix, 

by Theorem 4.6 our model checker is polynomial in the size of the system and linear 

in the length of a formula in normal form. 
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In [ 151, a result similar to the one of Theorem 4.13 has been obtained for live and 

safe free choice nets. We conjecture that it can be used to give a tight bound on the size 

of the processes of the finite prefix for the systems of this class. 

l-out systems are a subclass of conflict-free systems. 

Definition 4.15 (Conjict-free systems). A net system 2 is conflict-free if for every 

place s of 2, I?( < I V so C l S. 

The name “conflict-free” is somewhat unfortunate in our context, because the branch- 

ing processes of conflict-free systems can contain events in conflict. 

The complexity of various verification problems for conflict-free systems has been 

studied by Howell, Rosier and Yen in several papers [ 25,26,41]. For general conflict- 

free systems (not necessarily 1 -safe), the model checking problem for a temporal logic 

defined in [25] is undecidable, whereas the reachability problem is NP-complete. For 

l-safe conflict-free systems, the coverability problem and the concurrency problem (the 

problem of deciding if two given transitions can be simultaneously enabled) were known 

to be polynomial [ 17,411. 

We can easily extend our results on l-safe l-out systems to l-safe conflict-free 

systems. It suffices to observe that l-out systems can simulate conflict-free systems in 

the same way that strongly persistent systems simulate persistent ones. In particular, 

both the reachability and the concurrency problems are instances of the model checking 

problem for our logic, and the formulas that express them are in normal form. Therefore, 

the quoted results of [ 17,411 follow as corollaries of our more general theory. 

5. Conclusions 

We have presented a model checker for the logic L that works on a net unfolding, a 

partial order semantics of Petri nets developed by Best, Devillers, Engelfriet, Nielsen, 

Starke, Winskel and others. The model checker belongs to what can be called the 

classical model checking paradigm: the system is assigned a semantical object, and all 

the properties of a logic are tested on it (as opposed to the approach based on “on 

the fly” verification, where a semantical object is computed for each property). While 

“on the fly” verification may be very efficient for some problems, it does not produce 

a reusable object which can be stored to check new properties. In this sense, this paper 

complements the work of Godefroid, Wolper, and others 121,221. 

The transition system or Kripke structure which is at the basis of interleaving model 

checkers is replaced in our approach by the finite prefix of the maximal branching 

process defined by McMillan [ 291. Only local states are directly represented in the 

prefix; the global states are encoded or embedded in it. In this sense, net unfoldings 

are related to BDD’s (binary decision diagrams). Their main advantage with respect to 

BDD’s is the existence of a mature theory of net unfoldings as partial order semantics of 

concurrent systems. This theory has lead us to an efficient algorithm for the retrieval of 
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information from the unfolding. The algorithm computes certain maximal configurations 

of the processes of the finite prefix which, essentially, can be seen as least upper bounds 

in lattices. The combination “unfolding + lattice algorithms” seems to be an interesting 

alternative to the usual combination “state space + traversing algorithms”, and we think 

that it deserves to be further studied. 

The verification algorithm for L can check several interesting safety properties, such 

as the reachability of a marking, coverability problems and liveness of transitions. It 

has been shown that the algorithm is polynomial in the size of the system for the 

class of (l-safe) conflict-free systems. This improves previous results, since the known 

algorithms are either not applicable to the properties expressible in our logic or require 

exponential time. It also extends the class of properties of conflict-free systems decidable 

in polynomial time. Conflict-free systems allow (admittedly restrictive) communication 

between subsystems via merging of transitions. This gives our polynomiality result 

an special flavour, because such results are usually claimed for systems composed of 

independent, non-communicating subsystems (as, for instance, in the decomposition 

result of Groote and Moller [ 241) . 

The extension of our technique to a more expressive logic containing next operators or 

until operators is an open problem. In particular, our approach depends on the existence 

of adequate normal forms which do not seem to exist for these logics. Another open 

problem is the extension of our technique to linear temporal logics. We have obtained 

some preliminary results using another definition of unfolding, in which we construct a 

transition system whose nodes are reachable markings and whose transitions are labeled 

with processes [ 181. Further open problems are the extension of the model checker to 

n-safe systems, and the investigation of the size of the finite prefix for different classes 

of nets. 
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