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Alterations of the Wnt/b-catenin pathway and its target genes
for the N- and C-terminal domains of parathyroid hormone-related protein
in bone from diabetic mice
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a b s t r a c t

Type 1 diabetes mellitus (T1D) is associated with bone loss. Given that the Wnt/b-catenin pathway is
a major regulator of bone accrual, we assessed this pathway in mice with streptozotozin-induced
T1D. In diabetic mouse long bones, we found alterations favouring the suppression of this pathway
by using PCR arrays and b-catenin immunostaining. Downregulation of sclerostin, an inhibitor of
this pathway, also occurred, and related to increased osteocyte apoptosis. Our data show that both
N- and C-terminal parathyroid hormone-related peptide fragments might exert osteogenic effects in
this setting by targeting several genes of this pathway and increasing b-catenin in osteoblastic cells.
� 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

Type 1 diabetes mellitus (T1D) is usually associated with a de-
creased bone mass and a higher risk of bone fractures, but the
underlying mechanisms remain ill defined [1,2].

The Wnt/b-catenin pathway (Wnt-pahway) is an important
modulator of bone formation and repair [3,4]. It is activated upon
binding of different Wnt glycoproteins to Frizzled receptors and
with low density receptor-like proteins (LRP) 5 and 6 as corecep-
tors [5]. This is followed by glycogen synthase kinase-3b inactiva-
tion by phosphorylation, allowing the stabilization of b-catenin,
which then binds to transcription factor 4/lymphoid enhancer-
binding factor 1 complex inducing transcription of key osteoblastic
genes, namely Runx2 and osteoprotegerin [6,7]. In humans, loss or
gain of function mutations in LRP5 leads, respectively, to osteopo-
rosis-pseudoglioma syndrome or high bone mass phenotype;
whereas downregulation of Sost/sclerostin, an endogenous inhibi-
tor of the Wnt-pathway, produces sclereostosis and Van Bunchem
disease [8].
chemical Societies. Published by E
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Parathyroid hormone (PTH) related protein (PTHrP) is an impor-
tant regulator of osteoblast function [9]. Its N-terminal fragment,
sharing homology with PTH, can induce bone anabolic actions
through the PTH receptor 1. In addition, the C-terminal 107-139
domain of PTHrP has been shown to display antiresorptive and
osteogenic features [10–12]. Recently, both PTHrP domains have
been shown to improve bone regeneration after marrow ablation
in mice with streptozotocin (STZ)-induced T1D [13,14].

In the present study, we investigated the alterations in the Wnt-
pathway induced by T1D, and the putative modulation by the N-
and C-terminal PTHrP domains in mice.

2. Materials and methods

2.1. T1D mouse model and treatments

Male CD-1 mice (39 ± 2 g body weight) were treated with STZ
(45 lg/g body weight in 50 mM citrate buffer, pH 4.5) or buffer
alone (controls) for 5 d. Mice were considered diabetic when blood
glucose were P300 mg/dl. Two weeks later, diabetic mice were
treated with PTHrP (1–36) or PTHrP (107–139) (100 ng/g/every
other day, s.c.) or vehicle (50 mM KCl, pH 4.5) for two weeks.
One day after the last injection the animals were sacrificed and fe-
murs and tibiae were collected and assigned to total RNA extrac-
tion and histological processing, respectively. The number of
lsevier B.V. All rights reserved.
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mice per group was 5. No changes in the activity of mice in the dif-
ferent experimental groups was observed during the study. Animal
protocols followed ethical guidelines approved by Institutional
Animal Care and Use Board at Fundación Jiménez Díaz.

2.2. Dual-energy X-ray absorptiometry (DXA)

Bone mineral density (BMD), bone mineral content (BMC) and
fat content of the intact femur were measured in anesthetized con-
trol and diabetic mice at the beginning of the study and at the end
of treatments by DXA using PIXImus (GE Lunar Corp., Madison, WI)
[13].

2.3. PCR array and real time PCR

Total RNA was extracted from the intact femurs with Trizol
(Invitrogen, Groningen, The Netherlands). A PCR array comprising
up to 82 genes related to the Wnt-pathway (SAbioscience, Freder-
ick, MD) was then carried out. Total RNA from five different mice
in each experimental group was pooled (3 lg total) before
performing retrotranscription with RT2 First strand kit (SAbio-
sciences) followed by PCR array according to manufacturer’s
instructions. Results were normalized with the less variable house
keeping gene available in the array (among 5 possible), ribosomal
protein L13a, and a significant (P < 0.05) 1.5-fold change over con-
trol was the selected criteria for an experimental gene expression
change, similarly to other studies of this kind [15]. Results were
analyzed with the SAbioscience PCR array tool (http://www.sabio-
sciences.com/pcr/arrayanalysis.php). To validate the PCR array,
real time PCR was done with the same cDNA from the total
RNA pool described above, and was repeated three times for each
gene, using Sybr premix ex Taq (Takara, Otsu, Japan) and the fol-
lowing primers: 50-CTTCGGCAAGATCGTCAACC-30, 50-GCGAAGAT
GAACGCTGTTTCT-30 (Wnt1); 50-TGGTATGGGCAAGAAAAAGA-30,
Table 1
Bone mass and fat content in the femur from control and diabetic mice, treated or not wi

Control T1D

BMD (g/cm2) 0.087 ± 0.0008 0.079 ± 0.000
BMC (g) 0.055 ± 0.0012 0.041 ± 0.000
% Fat 13.54 ± 0.11 15.22 ± 0.15*

BMD, bone mineral density; BMC, bone mineral content. Values are mean ± S.E.M. of 5 m

Table 2
Expression of Wnt-Pathway genes by PCR array in the mouse intact femur of every exper

Group Gene

T1D vs control Wif1
Wisp1
Wnt1

T1D vs T1D + PTHrP(1–36) Ccnd1
Csnk1a1
Fosl1
Jun
Myc
Tle2
Wisp1
Wnt1

T1D vs T1D + PTHrP (107–139) Csnk1a1
Cxxc4
Foxn1
Fshb
Wnt11

Total RNA from 5 femurs was pooled for cDNA synthesis. Three independent measureme
group.
50-GTGACGCCCAATACCCATTA-30 [casein kinase 1a1 (Csnk1a1)];
50-ATGCTCTTAGCTGAGGTGCCCG-30, 50-ATTCCTAGCTGCGGTATCC
AGG-30 [18S rRNA(housekeeping gene)]. These genes were chosen
as their expression was altered in at least two experimental
groups tested in the PCR array. Gene expression was normalized
with that of the housekeeping gene 18S. Sost was not included
in the PCR array, but it was analyzed by real time PCR, using unla-
beled mouse specific primers and TaqMan MGB probes (Assay-by-
DesignSM, Applied Biosystems, Foster City, CA) in an ABI PRISM
7500 system (Applied Biosystems). Results were expressed in
mRNA copy numbers, calculated for each sample using the cycle
threshold (Ct) value, and normalized against 18S rRNA as de-
scribed [10,13].

2.4. Sclerostin and b-catenin immunostaining

Mouse tibiae were fixed in neutral formaldehyde, and subse-
quently were decalcified with Osteosoft� (Merck, Darmstadt, Ger-
many), dehydrated, and embedded in paraffin. Sclerostin and b-
catenin immunostaining were carried out on three different sagg-
ital 4-lm sections from each mouse per experimental group. For
the former, a goat polyclonal anti-sclerostin antibody (R&D, Min-
neapolis, MN), at 1:100 dilution, was used following a recently de-
scribed procedure [12]. For b-catenin immunohistochemistry,
antigen retrieval was done by incubation with 1% trypsin (Lonza,
Verviers, Belgium) for 30 min at 37 �C. Then, the tissue samples
were incubated with blocking solution (4% bovine serum albumin,
6% goat serum) for 1 h, following by incubation with a rabbit poly-
clonal anti-b-catenin antibody (Abcam, Cambridge, UK), at 1/200
dilution, overnight at 4 �C. Sections were subsequently incubated
with Envission-Flex� (Dako, Glostrup, Denmark) and 3,30-diam-
inobenzidine as chromogen. Sections were counterstained with
haematoxylin (Sigma–Aldrich, St. Louis, MO). Some tissue samples
were incubated without the primary antibody as negative controls.
th PTHrP (1–36) or PTHrP (107–139).

T1D + PTHrP
(1–36)

T1D + PTHrP
(107–139)

2* 0.084 ± 0.0002** 0.088 ± 0.0006**
8* 0.054 ± 0.001** 0.056 ± 0.003**

13.53 ± 0.19** 13.11 ± 0.24**

ice per group. *P < 0.05 vs control; **P < 0.05 vs T1D.

imental group.

Function PCR array Value

Wnt-pathway inhibition �1.8
Regulation of growth �4.8
Wnt-pathway activation �2.9

Regulation of cell cycle �1.9
Protein kinase activity �3.8
Transcription regulation �1.8
Transcription factor �3.0
Transcription factor �1.8
Transcription regulation 1.9
Regulation of growth 4.0
Wnt-pathway activation �7.1

Protein kinase activity �1.7
Wnt-pathway inhibition 2.2
Transcription factor 2.0
Hormone 2.0
Wnt-pathway activation 2.7

nts were performed with the same cDNA to obtain the mean in each experimental
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Fig. 1. Changes in Wnt-1 and CsnK1a1 gene expression by real time PCR in the
mouse femur of every experimental group as indicated. The numbers above bars
represent fold. Results are mean ± S.E.M. (n = 3). *P < 0.05 vs control or T1D in each
case.

S. Portal-Núñez et al. / FEBS Letters 584 (2010) 3095–3100 3097
Total and sclerostin or b-catenin positive osteocytes were counted
in 4 to 10 random high power (�200–400) fields per sample in a
cortical bone segment between the growth plate and the mid-
diaphysis. Osteoblasts positive for b-catenin were counted in 4-6
random �200-fields per sample in an area subjacent to the growth
plate. Stainings were evaluated by three independent observers in
a blinded fashion.

2.5. Terminal deoxynucleotidyl transferase dUTP nick end labeling
(TUNEL) assay

Apoptotic osteocytes were also evaluated on 4-lm sections in
the same cortical area of the tibia described above by highly sensi-
tive TUNEL staining using the Klenow fragment of the DNA poly-
merase I (FragELTM DNA Fragmentation Detection Kit, Calbiochem,
Gibbstown, NJ) [16], following the manufactureŕs instructions.
Sections were counterstained with methyl green. Apoptotic and
non-apoptotic osteocytes were counted in 4 different bone samples
from each mouse per group.

2.6. Statistics

Results are mean ± S.E.M. Statistical analysis was performed by
t-test. P < 0.05 was considered significant.

3. Results

3.1. Bone parameters in T1D mice

First, we aimed to confirm that diabetic mice had a decreased
bone mass at the time of study. As described in Table 1, femoral
BMD was decreased in diabetic mice by regards to controls, consis-
tent with our recent findings in this model [13]. Fat content was
significantly increased in the femur of the diabetic mice. Treatment
of the latter mice with either N- or C-terminal PTHrP peptides nor-
malized these T1D-related alterations.

3.2. T1D affects expression of Wnt-pathway genes in the mouse femur

We next examined whether diabetic mice would have any alter-
ations in the Wnt-pathway gene expression. We found a significant
downregulation of Wif1, Wisp1 and Wnt1 in the femur of these
mice (Table 2). PTHrP (1–36) treatment in these mice was shown
to significantly reduce the expression of the following genes: the
cell cycle regulator cyclin kinase 1; the transcription factors c-Jun
and c-Myc; the transcription regulator Fosl1; the serine/threonine
kinase Csnk1a1; the cytoskeleton formation protein Dishevelled;
and the Wnt-pathway activator Wnt1. On the other hand, this
PTHrP peptide upregulated the transcription regulator Tle2 and
the member of the CNN familiy of growth factors Wisp1. Treatment
with PTHrP (107–139), similarly to the N-terminal PTHrP fragment,
downregulated Csnk1a1, but in contrast to the latter fragment,
upregulated folicule stimulation hormone (Fshb), the transcription
factor Foxn1, the Wnt-pathway inhibitor Cxxc4, and the Wnt-path-
way activator Wnt11. These changes in Wnt1 and Csnk1a1 were
confirmed by real time PCR as described in Section 2 (Fig. 1).

3.3. T1D downregulates Sost/sclerostin in the mouse tibia

One of the major regulators of Wnt-pathway is the product of
Sost gene, sclerostin, which is only expressed in osteocytes [17].
We found that Sost expression, as well as the number of total
and sclerostin-positive osteocytes, were decreased in the diabetic
mouse tibia; and administration of either PTHrP peptide reversed
this T1D-related effect (Fig. 2A and B).
3.4. Osteocyte apoptosis is increased in T1D mice

A diminished number of functional osteoblasts occurs associ-
ated with diabetes-related osteopenia [13,18,19]. Given that the
number of total osteocytes was decreased in the diabetic mice,
we wanted to explore whether this decrease was paralleled with
an increased osteocyte apoptosis estimated by TUNEL assay. T1D
was associated with an increased number of apoptotic osteocytes
in the mouse tibia, but it was significantly lower in the diabetic
mice treated with either N- or C-terminal PTHrP peptide (Fig. 3).

3.5. b-catenin is downregulated in the diabetic mouse tibia

We also carried out inmunohistochemistry for b-catenin, the
canonical Wnt-pathway final effector, in the diabetic mouse tibia.



Fig. 2. (A) Changes in Sost gene expression by real time PCR in the mouse tibia from diabetic mice, treated or not with each PTHrP peptide. (B) Total and sclerostin-positive
osteocytes in the cortical mouse tibia in every experimental group. Representative images are shown. All of the images have equal magnification. Results are mean ± S.E.M. of
4 mice per experimental group. *P < 0.05 vs control; **P < 0.05 vs T1D.

Fig. 3. Osteocyte apoptosis by TUNEL assay in the cortical mouse tibia in every
experimental group. Results are mean ± S.E.M. of 4 mice per experimental group.
*P < 0.05; **P < 0.01 vs corresponding control. #P < 0.05; ##P < 0.01 vs corresponding
T1D.
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As shown in Fig. 4, b-catenin immunostaining was decreased in
both trabecular osteoblasts and osteocytes in the diabetic mice.
Interestingly, the decrease in b-catenin positivity in the latter cells
was higher than that in the total osteocyte number, indicating that
it cannot be accounted for by decreased cell viability (Figs. 2B and
4A). Moreover, the number of osteoblasts showing b-catenin stain-
ing in the nucleus was significantly lower in the diabetic mice than
in controls. Administration of each N- or C-terminal PTHrP frag-
ment reversed these changes in b-catenin staining levels (Fig. 4B).

4. Discussion

Poorly controlled T1D has been related to the development of
bone mass loss [2]. Although we have a poor knowledge about the
underlying mechanism of this feature, high glucose has been shown
to affect osteoblast viability and function [13]. Our aim here was to
provide further insights into the deleterious effects of T1D in bone.

The Wnt-pathway is a major regulator of bone accrual [8]. Ana-
lyzing the PCR array results, we found only three altered genes of
this pathway in the diabetic mouse femur. Although Wif1, an
inhibitor of this pathway [20], was downregulated, the concomi-
tant suppression of Wisp1, a final product of the pathway
implicated in growth regulation [21], and of the activator Wnt1,
suggests that inactivation of Wnt-pathway might predominate, re-
lated to bone loss in diabetic mice.



Fig. 4. b-catening staining in osteocytes and osteoblasts. (A) The number of b-catening positive osteocytes per field in the cortical mouse tibia is shown. **P < 0.01 vs control;
##P < 0.01 vs T1D. (B) The number of b-catening positive osteoblasts per field (solid bars) and those presenting nuclear staining (clear bars) in an area subjacent to growth
plate in the mouse tibia are shown. Each set of images has equal magnification. Black arrow heads point to osteoblasts with b-catenin nuclear positive staining. *P < 0.05 vs
control; #P < 0.05 vs T1D. Representative images are shown. Results are mean ± S.E.M. of 4 mice per experimental group.
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Both PTHrP peptides tested downregulated Csnk1a1, that to-
gether with GSK-3b can phosphorylate b-catenin leading to its deg-
radation [22], in diabetic mice; suggesting that their similar
osteogenic effect in these animals might be mediated through
downregulation of this enzyme. It is also noteworthy that PTHrP
(1–36) administration reversed the observed decrease of Wisp1
expression in the diabetic mice, whereas PTHrP (107–139) in-
creased the expression of another activator of the Wnt-pathway,
Wnt11. This PTHrP peptide, also upregulated the levels of final tar-
gets of this pathway such as the transcription factor implicated in
development Foxn1 [23] and Fshb [24]. However, these PTHrP pep-
tides induced other changes in the femur of diabetic mice that are
apparently contradictory with a putative activation of this path-
way. Thus, PTHrP (1–36) upregulated the inhibitor Tle2 [25], and
donwregulated cyclin 1 as well as Wnt1, and final targets such as
Fosl1 [26], c-Myc [27] and c-Jun [28]. Meanwhile, PTHrP (107–
139) treatment upregulated Cxxc4, an inhibitor of Wnt-pathway
[29].

We found a downregulation of sclerostin, an inhibitor of the
Wnt-pathway, in the T1D mouse tibia, in contrast to what we would
have expected. It is unlikely that this might be a consequence of
lethargy and decreased activity in these mice, but instead it can be
accounted for by a reduction in osteocyte viability. On the other
hand, administration of each PTHrP peptide counteracts these
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effects of T1D on both Sost/sclerostin expression and osteocyte
death. This supports the notion that one mechanism whereby these
PTHrP peptides might affect bone turnover would involve the oste-
ocyte as a cell target in these mice.

A deleterious effect of T1D on the Wnt-pathway was supported
by the finding that total and nuclear b-catenin staining was lower
in osteocytes and osteoblasts in the diabetic mouse tibia. Since b-
catenin is the major transcription factor involved in the canonical
Wnt-pathway, this strongly suggests its inactivation by T1D. More-
over, treatment with either PTHrP peptide induced b-catenin
stabilization in the diabetic mice, further supporting their
osteogenic action in this setting.

Collectively, these findings show complex effects of both T1D
and the PTHrP peptides tested on the Wnt-pathway in the mouse
femur. Our data suggest that an inhibition of this pathway occurs
associated with T1D-related osteopenia. We identified some
Wnt-pathway components which are unaffected by T1D but can
be targets for both PTHrP peptides to activate this pathway and
thus improve bone formation.
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