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SUMMARY

Early endosomes give rise to multivesicular interme-
diates during transport toward late endosomes.
Much progress has been made in understanding the
sorting of receptors into these intermediates, but
the mechanisms responsible for their biogenesis
remain unclear. Here, we report that F-actin is neces-
sary for transport beyond early endosomes and
endosome formation. We found that endosomes
captured by actin cables were essentially stationary,
but early endosomes also exhibited patches of
F-actin and facilitated selective F-actin nucleation
and polymerization. Our data show that nucleation
of actin patches by early endosomes is strictly
dependent on annexin A2, a protein involved in
early-to-late endosome transport. It also requires
the actin nucleation factor Spire1 and involves
Arp2/3, which is needed for filament branching. We
conclude that actin patches are nucleated on early
endosomes via annexin A2 and Spire1, and that these
patches control endosome biogenesis, presumably
by driving the membrane remodeling process.

INTRODUCTION

Cell surface proteins and lipids, as well as solutes and ligands,

can be internalized into animal cells by several pathways, which

converge in a common early endosome, where they are sorted to

various cellular destinations (Gruenberg, 2001; Mayor and

Pagano, 2007). Some molecules, e.g., housekeeping receptors,

are recycled to the plasma membrane directly or indirectly via re-

cycling endosomes, or transported to the trans-Golgi network,

whereas others, particularly downregulated signaling receptors,

are targeted to late endosomes and lysosomes to be degraded.

These receptors are sorted into invaginations that form into the

early endosome lumen, eventually leading to the formation of

multivesicular endosomes, herein referred to as endosomal

carrier vesicles/multivesicular bodies (ECVs/MVBs) (Gruenberg

and Stenmark, 2004), which then detach—or mature—from early

endosomes. Eventually, intralumenal vesicles are delivered to

late endosomes and lysosomes, where degradation occurs, or

to the extracellular medium as exosomes (Trajkovic et al.,

2008). Alternatively, they can release their content into the
Develo
cytoplasm by undergoing back-fusion with the endosome

limiting membrane (van der Goot and Gruenberg, 2006).

Major membrane remodeling occurs during ECV/MVB biogen-

esis, but the process is poorly understood. The mechanism that

controls the invagination process itself is not clear, and it may

depend on PtdIns3P, ESCRT I, ESCRT II, and ESCRT III

complexes and their associated proteins, which sort signaling

receptors into intralumenal vesicles (Williams and Urbe, 2007).

However, transport from early to late endosomes continues

when the invagination process is prevented by PtdIns3-kinase

inhibition (Futter et al., 2001; Petiot et al., 2003), Snx3 knock-

down (Pons et al., 2008), or Hrs knockout in Drosophila (Lloyd

et al., 2002). Under these conditions, early-to-late endosome

transport apparently occurs via endosomes that are no longer

multivesicular (‘‘empty’’ endosomes), indicating that the biogen-

esis of such intermediates can be uncoupled from the invagina-

tion process.

Conversely, we previously found that annexin A2 (AnxA2)

depletion with siRNAs inhibits transport beyond early endo-

somes without interfering with the membrane invagination

process (Mayran et al., 2003), suggesting that AnxA2 is involved

in endosome biogenesis. AnxA2 is a member of the annexin

family of calcium- and phospholipid-binding proteins, and it is

present on early endosomes (Emans et al., 1993). In contrast

to other annexins, however, AnxA2 binding to early endosomes

is calcium independent, but cholesterol dependent, and this

unique binding property requires the AnxA2 hypervariable

N terminus (Harder et al., 1997; Jost et al., 1997). In addition,

AnxA2 interacts with actin (Gerke and Weber, 1984; Hayes

et al., 2004b), and it may play a role in actin-based macropino-

cytic rocketing (Merrifield et al., 2001) as well as in actin filament

dynamics via monomer sequestration and barbed-end capping

activities (Hayes et al., 2006) or, alternatively, via actin nucleation

(Hayes et al., 2008). Evidence is in fact accumulating that, in

addition to the well-established role of microtubules, actin is

involved in membrane trafficking, including in the endocytic

pathway (Kaksonen et al., 2006; Soldati and Schliwa, 2006).

Actin was shown to play a role in transport toward lysosomes

(Durrbach et al., 1996; Taunton et al., 2000) together with myosin

1B, which is involved in the sorting of the protein cargo Pmel17

into multivesicular endosomes (Salas-Cortes et al., 2005).

The precise role of actin in endosome dynamics is not clear,

and several not mutually exclusive scenarios can be evoked.

They include regulated endosome anchoring onto the actin

network at the cell periphery, remodeling of the actin network

by endocytic vesicles along their trajectory, endosome motility
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along existing actin filaments, and possibly rocketing via de novo

F-actin formation. Alternatively, actin may play an active role in

membrane remodeling during endosome biogenesis. Little is

also known about the mechanisms that control physical interac-

tions between actin and endosomal membranes. Here, we have

studied the role of actin in early-to-late endosome transport. We

find that patches of F-actin are nucleated by early endosomes

and are required for transport beyond early endosomes. Our

data show that AnxA2 regulates actin nucleation in a process

that depends on the actin nucleation factor Spire1 and the

branching factor Arp2/3. We conclude that AnxA2 and Spire1

nucleate and stabilize F-actin, which, in turn, facilitates the

necessary membrane remodeling that accompanies endosome

biogenesis.

RESULTS

Actin Polymerization Is Required for Early-to-Late
Endosome Transport In Vivo
It is now widely accepted that actin filaments are involved in

internalization from the plasma membrane, including in the

formation of at least some populations of clathrin-coated vesi-

cles (Kaksonen et al., 2006; Mayor and Pagano, 2007; Soldati

and Schliwa, 2006). However, much less is known about the

possible role of F-actin at the next step of the pathway, during

transport from early to late endosomes. To monitor endocytosis,

we used rhodamin-dextran as a fluid-phase tracer. After a 10 min

incubation at 37�C, the tracer reached early endosomes contain-

ing the Rab5 effector EEA1 (see Figures S1A and S1B available

online). When actin polymerization was prevented by preincuba-

tion with latrunculin B (LatB) for 30 min, dextran internalization

into EEA1-positive endosomes continued, albeit less efficiently

(Figures S1A and S1B) as expected (Mayor and Pagano, 2007;

Soldati and Schliwa, 2006).

When control cells were further incubated for 40 min at 37�C in

fresh medium after the dextran pulse, the tracer no longer colo-

calized with EEA1 (Figure 1A, quantification in Figure 1B) and

reached late endosomes containing Lamp1 (not shown) (Petiot

et al., 2003). In marked contrast, however, dextran remained in

early endosomes containing EEA1 in LatB-treated cells

(Figure 1A, quantification in Figure 1B), failing to reach late endo-

somes. The actin-depolymerization agent cytochalasin D also

inhibited early-to-late endosome transport, albeit to a lesser

extent, whereas the F-actin-stabilizing agent jasplakinolide had

no effect (Figures S1C and S1D). Individual endosomes could

easily be detected after each treatment, including LatB

(Figure S2B): the number of endosomes per unit surface area

was similar in all cases (Figure S2C). Similarly, after EGF stimu-

lation of LatB-treated cells, the EGF receptor remained in early

endosomes and did not reach late endosomes, in contrast to

controls (Figure S3), and, consistently, its degradation was

delayed (Figure 1C). This delay did not result from LatB toxicity,

since the effects were fully reversible (Figure S2A) and cell

viability was not affected after drug washout (not shown).

Ultrastructure of Endosomes after Actin
Depolymerization
To gain further insights into the precise role of actin, we analyzed

the ultrastructure of endosomes after HRP endocytosis for
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10 min at 37�C followed by a 40 min chase. In control cells,

HRP distributed mainly within isolated vesicles with the charac-

teristic appearance of ECV/MVBs (Figure 1D, quantification in

Figure 1E), as previously observed (Gruenberg et al., 1989;

Mayran et al., 2003; Pons et al., 2008). In LatB-treated cells, far

fewer characteristic ECVs were observed, and HRP was mostly

present within structures with the typical tubulovesicular and

cisternal appearance of early endosomes (Figure 1D, quantifica-

tion in Figure 1E). However, intralumenal vesicles could still

be observed in the vesicular regions of LatB-treated early endo-

somes, despite the inhibition of ECV/MVB biogenesis. Actin thus

seems to control ECV/MVB formation from early endosomes,

but not intralumenal membrane invagination.

The Formation of an Endosomal Transport Intermediate
Requires Actin Polymerization
Since actin polymerization seemed to be required for transport

beyond early endosomes, we investigated whether polymerized

actin plays a direct role in ECV/MVB formation—or maturation.

We used an in vitro assay that reconstitutes ECV/MVB formation

from donor early endosomes (Aniento et al., 1993; Mayran et al.,

2003; Petiot et al., 2003). Cells were incubated with the bulk

phase marker horseradish peroxidase (HRP) for 5 min at 37�C

to label early endosomes. These were subsequently purified by

subcellular fractionation and were incubated with cytosol and

ATP at 37�C. ECV/MVBs that may have formed in vitro were

then separated from donor membranes by floatation in step

sucrose gradients. Strikingly, ECV/MVB formation was reduced

when actin polymerization was prevented by LatB during the

in vitro reaction (Figure 1F). Actin polymerization thus seems to

be required for early-to-late endosome transport, and it may

play a direct role in the formation of transport intermediates

from early endosomes.

Dynamic Actin Patches Can Be Observed
on Early Endosomes
Next, we investigated the relationships that may exist between

actin and early endosome dynamics in vivo. HeLa cells were

fixed 10 min after incubation with rhodamin-dextran to label early

endosomes, and F-actin was labeled with phalloidin. As previ-

ously reported (Nielsen et al., 1999), endosomes containing

dextran were frequently observed along actin cables (Figure S4A,

open arrowheads). To determine the role of these interactions,

we followed the dynamics of early endosomes and F-actin after

cotransfection with Rab5GFP and actinRFP by time-lapse micros-

copy. Consistent with previous studies (Nielsen et al., 1999),

some, but not all, early endosomes labeled with Rab5GFP ex-

hibited long-range movement at the rate (see Figures S4B and

S4C, z0.2 mm/s ± 0.05) expected for microtubule-based motility

(Soldati and Schliwa, 2006). We also found that endosomes

capable of moving over long distances were not associated

with actin cables (motility was not changed by drugs that affect

actin, Figure S4E) and, conversely, that endosomes, which local-

ized to actin cables, remained essentially stationary (Figure S4D,

average rate of z0.015 mm/s ± 0.009). These observations

suggest that early endosomes, which have the capacity to

move along microtubules (Nielsen et al., 1999), can be immobi-

lized by prolonged interactions with actin cables.
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Figure 1. Requirement of Actin Polymerization for Endosomal Transport

(A) HeLa cells were incubated without or with 1 mM LatB for 30 min. Then, rhodamin-dextran was internalized for 10 min at 37�C and chased in the presence of

LatB for 40 min. Cells were fixed and labeled with phalloidin (green channel) and antibodies against EEA1, followed by secondary antibodies (blue channel).

Arrows point to dextran-labeled endosomes that do not contain EEA1 in controls, and arrowheads point to dextran-labeled endosomes that still contain

EEA1 in cells treated with LatB. The scale bar represents 10 mm.

(B) The number of structures containing both dextran and EEA1 after chase in (A) is expressed as a percentage of the total number of dextran vesicles with or

without LatB (n = 5, five cells per condition and ten structures per cell, ± SD).

(C) BHK cells treated or not with LatB for 30 min and then for 1 hr in serum-free medium were stimulated or not with EGF for 1 hr or 3 hr with or without LatB, lysed,

and analyzed by SDS-PAGE and western blot.

(D) BHK cells were treated (LatB) or not (controls, ctrl) with LatB as in (A). HRP was internalized for 5 min at 37�C and then chased for 30 min. Cells were processed

for electron microscopy. The scale bar represents 500 mm.

(E) In (D), ten cell profiles were chosen randomly, and the number of HRP-labeled tubules, cisternae, or multivesicular bodies (MVBs) were counted and expressed

as a percentage of total HRP-labeled structures in each category.

(F) ECV/MVB formation was measured in vitro with or without ATP and LatB. The mean of four experiments ± SD is shown and is expressed as a percentage of

control (+ATP).
In addition to the capture of early endosomes by actin cables,

we also observed small, cloud-like patches of polymerized actin

that protruded from or embedded early endosomes containing

endocytosed dextran (Figure S4A, solid arrowheads). Such small

actinRFP patches were frequently observed on endosomes

labeled with Rab5GFP in vivo. Typically, these actin patches con-

sisted of short filaments and were clearly distinct from large actin

bundles (Figure 2A; also compare the upper and lower panels in

Figure S4A). The presence of actin patches was not due to its
Develo
overexpression. The number of early endosomes decorated

with actin patches was essentially identical when endogenous

actin was visualized with phalloidin (see below), and no signifi-

cant difference in the patch size was observed with actinRFP or

with phalloidin (not shown). Evidence for a specific interaction

came from the observations that actin patches and endosomes

remained associated in time during movement (Figure 2A).

Patches were often observed at sites at which endosome fission

occurred (Figure 2B; Movie S1), or in endosome-endosome
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Figure 2. Actin Structures Associated with Early Endosomes

(A–C) HeLa cells were cotransfected with Rab5GFP and actinRFP. Frames were captured every (B and C) 20 s or (A) 25 s by time-lapse confocal microscopy.

Arrowheads point to actin patches associated with endosomes in time. The scale bars represent 5 mm.
interactions, including perhaps fusion (Figure 2C; Movie S2),

raising the possibility that they play a role in endosomal

membrane dynamics.

Electron Microscopy Analysis of Endosomal
Actin Patches
When analyzed by electron microscopy in MDCK cells (see

Supplemental Data), clearly defined filamentous material was

observed in association with the cytoplasmic surface of early

endosomes, which had been labeled with HRP endocytosed

for 10 min at 37�C (Figure 3A, open arrows). Early endosomes

with this filamentous material also frequently showed a coat

resembling the clathrin-Hrs coat that mediates ubiquitinated

receptor sorting into early endosomes (Figure 3A, arrowheads)

(Williams and Urbe, 2007).

After labeling early endosomes with BSA-gold internalized

for 15 min at 37�C, cells were processed by using a freeze substi-

tution protocol and embedded in Lowicryl resins HM20. Then,

filamentous material was clearly apparent even at very low

magnification (Figure 3C, open arrow) and was more obvious

than in Epon sections (compare with Figure 3A). The electron-

dense material associated with the periphery of the endosomal

vacuole formed a brush-like electron-dense coat of fine fila-

ments radiating out �50–100 nm from the endosome surface.

This filamentous material was found associated to z52% ±

5% of HRP-labeled endosomes—a value in good agreement

with our quantification of endosome-associated actin patches

by light microscopy (not shown)—but not with late endocytic
448 Developmental Cell 16, 445–457, March 17, 2009 ª2009 Elsevie
compartments (Figure 3C) or other cellular membranes (not

shown). Strikingly, filaments were efficiently labeled with anti-

actin antibodies (Figure 3B, small arrowheads); essentially all

filamentous structures associated with endosomes were labeled

with anti-actin antibodies. Presumably, these short actin fila-

ments associated with early endosomal membranes correspond

to the dynamic actin patches observed by light microscopy.

Purified Endosomes Support Actin Polymerization
In Vitro
Next, we used an in vitro approach to investigate whether endo-

somes could drive actin nucleation and polymerization in vitro.

Early endosomes purified from BHK cells expressing Rab5GFP

were incubated with complete BHK cytosol at 37�C. After fixa-

tion, F-actin was labeled with phalloidin, and both endosomes

and actin were analyzed by fluorescence microscopy. Immedi-

ately after mixing, endosomes labeled with Rab5GFP were readily

observed, but they were essentially devoid of F-actin (Figure 4A,

t = 0 min). By contrast, after a 2 min incubation at 37�C, actin fila-

ments were seen growing from early endosomes (Figure 4A,

t = 2 min), indicating that purified endosomes can trigger actin

polymerization. Already after 2 min, R80% Rab5-labeled endo-

somes had triggered actin nucleation/polymerization, and this

value did not change much after longer incubation (Figure 4F).

However, these short filaments rapidly grew in length and some-

times became interconnected or branched, eventually forming

a filamentous network (Figure 4A, t = 15 min and t = 30 min)

that presumably reflected unbalanced actin dynamics in vitro.
r Inc.
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Without endosomes, some de novo, LatB-sensitive actin poly-

merization could be observed (not shown), but the process was

greatly facilitated by the presence of early endosomes

(Figure 4A). Indeed, early endosomes significantly increased

phalloidin fluorescence intensity in randomly selected micro-

scope fields (Figure 4B) when compared to cytosol alone

(Figure 4C), as well as total F-actin polymerization (Figure 4E)

and the length of filaments (Figure 4G). This was not simply due

to the presence of membranes in the reaction mixture. Phalloidin

fluorescence (Figure 4D), total F-actin polymerization (Figure 4E),

and filament length (Figure 4G) were all significantly reduced

when the early endosome fraction was replaced with a heavy

membrane fraction from the same gradient, which contains

primarily early biosynthetic membranes (Aniento et al., 1996).

Finally, the early endosome-dependent nucleation (Figure 4F)

and polymerization (Figure 4G) of actin filaments required ATP

and was inhibited by LatB, as expected, and by EDTA, consistent

with the notion that calcium-binding proteins are required

(Pollard, 2007). Altogether these observations indicate that early

endosomes may have the intrinsic and specific capacity to trigger

the nucleation or polymerization of actin filaments.

AnxA2 Distribution and Actin Patches
Our observations indicate that F-actin is necessary for early-

to-late endosome transport, and that early endosomes stimulate

F-actin polymerization. It is thus tempting to speculate that

transport in the pathway is controlled by actin nucleation and

Figure 3. Electron Microscopic Analysis of Endoso-

mal Actin

(A) MDCK cells grown on filters were incubated with HRP in

apical and basolateral media for 10 min at 37�C and were

processed for electron microscopy. The panel shows a multi-

vesicular early endosome (star) with a filamentous coat (open

arrows) and the characteristic clathrin bilayered coat (arrow-

heads).

(B) Cells were incubated as in (A), but with 5 nm BSA-gold

(arrows), fixed, cryoprotected, freeze substituted, and

embedded in Lowicryl K4M at low temperature. Sections

were labeled with antibodies to actin and 10 nm proteinA

gold (arrowheads).

(C) Cells were processed as in (B), except that they were

embedded in Lowicryl HM20 at low temperature. An early

(solid star), but not a late (L), endosome containing BSA-gold

(arrows) shows the characteristic filamentous coat (open

arrow). N, nucleus.

The scale bars represent 200 nm.

polymerization on the early endosome surface.

When searching for proteins that may play a role

in these interactions, AnxA2 appeared as an inter-

esting candidate, since this protein interacts with

actin (Hayes et al., 2004b) and is found on early en-

dosomes (Emans et al., 1993; Mayran et al., 2003;

Morel and Gruenberg, 2007); 80% of the AnxA2-

positive structures also contained Rab5 and 77%

contained EEA1. Moreover, AnxA2 is involved in en-

docytic membrane transport (Mayran et al., 2003;

Morel and Gruenberg, 2007; Zobiack et al., 2003).

Consistently, AnxA2 was found closely associated

with small F-actin patches that also contained the ERM protein

moesin (Figure S5A), in agreement with our previous observa-

tions that AnxA2, actin, and moesin are part of the same protein

complex (Harder et al., 1997). Moreover, we found that after en-

dosome purification by floatation in gradients, some actin could

be coimmunoprecipitated with endosome-associated, GFP-

tagged AnxA2 (Figure 5A), further supporting the notion that

both proteins are associated on early endosome membranes.

The early endosome is highly pleiomorphic with tubular,

cisternal, and vesicular elements that are frequently connected

to each other (Gruenberg, 2001), and it is difficult to evaluate

this organization by light microscopy. In order to provide higher

spatial resolution, cells were transfected with the mutant Q79L

of Rab5, which causes the formation of enlarged early endo-

somes (Pons et al., 2008; Raiborg et al., 2002; Trajkovic et al.,

2008). F-actin could be observed on these enlarged endosomes

(Figure 5B; Figure S5D). The size of the actin patches was very

similar to that observed after expression of Rab5 (not shown),

and the percentage of endosomes decorated with actin patches

was essentially identical upon expression of Rab5GFP or

Rab5Q79LGFP (not shown). Actin, but not Rab5Q79LGFP itself,

was distributed in a nonhomogeneous manner, within 1–2

patches per endosome (Figure S5D, arrowheads). AnxA2

was also present on the surface of these enlarged early

endosomes (Figure 5B) and, much like actin, seemed to be non-

homogeneously distributed on the vesicle membrane (Figure 5B),

in agreement with our previous analysis by electron microscopy
Developmental Cell 16, 445–457, March 17, 2009 ª2009 Elsevier Inc. 449
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Figure 4. Induction of In Vitro Actin Polymerization by Isolated Early Endosomes

(A) Early endosomes purified from cells expressing rab5GFP were mixed with BHK cytosol and ATP. The mixture was incubated as indicated, fixed, labeled with

phalloidin, and analyzed by fluorescence microscopy. Scale bars represent 10 mm for the 0, 2, and 30 min panels and 5 mm for the 15 min panel.

(B) The panel shows the actin fluorescence intensity of each pixel over a 1024 3 1024 area in (A) after 30 min of incubation and is color coded from blue to red as

intensity increases.

(C and D) The experiments were performed as described in (A) and (B), except that endosomes were (C) omitted or (D) replaced with a heavy membrane fraction

from the same gradient (Aniento et al., 1993).

(E) The frequencies of maximal actin fluorescence intensity were quantified in (B)–(D) (n = 6, ±SD).

(F) Rab5GFP endosomes with associated (A) actin filaments were scored after a 2 min (ctrl 2 min) or 30 min incubation without (ctrl 30 min) or with LatB, EDTA, or

apyrase (to deplete ATP). Values are expressed as a percentage of the total number of endosomes labeled with Rab5GFP (n = 8, ±SD).

(G) The length of actin filaments associated with single Rab5GFP endosomes was measured without (ctrl) or with LatB, EDTA, and apyrase. Alternatively,

endosomes were omitted (w/o EE) or replaced with heavy membranes (HM). The mean values are expressed as percentages of the total number of ctrl

endosomes (n = 10, ±SD).
(Harder et al., 1997). AnxA2 was observed at sites from which

actin patches seem to protrude from the endosome (Figure 5B,

arrowheads). AnxA2 and actin codistributed on z50% of the

total number of endosomes containing AnxA2, which is likely to

be an underestimate, because of the complex three-dimensional

organization of endosomes.

AnxA2 Is Required for Actin Patch Nucleation In Vivo
We had previously reported that AnxA2 knockdown with

synthetic (Mayran et al., 2003) or Dicer-generated (Morel and

Gruenberg, 2007) siRNAs inhibited early-to-late endosome
450 Developmental Cell 16, 445–457, March 17, 2009 ª2009 Elsevie
transport (see Figures S5B and S5C), without affecting earlier

steps of the pathway. Typically, our electron microscopy study

had shown that AnxA2 knockdown prevents ECV/MVB

detachment from early endosomes and thus inhibits transport

beyond early endosomes, without interfering with intralumenal

vesicle formation (Mayran et al., 2003). Strikingly, these effects

of AnxA2 knockdown could be fully recapitulated by actin

depolymerization with LatB (see above; Figures 1D and 1E);

free ECV/MVBs failed to undergo fission—or mature—from

early endosomes. Consistent with the notion that fission was

inhibited, the size of early endosomes was increased upon
r Inc.
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Figure 5. AnxA2 and Endosomal Actin

Patches In Vivo

(A) AnxA2GFP was immunoprecipitated with

(a-GFP) or without (beads) anti-GFP antibodies

from early endosomes (EE as starting materials)

prepared from cells transfected with AnxA2GFP.

Samples were analyzed by SDS-PAGE and

western blot with antibodies against GFP or actin

(the IgG heavy chain is indicated).

(B) HeLa cells transfected with Rab5Q79LGFP were

processed for confocal immunofluorescence after

labeling with phalloidin and anti-AnxA2 antibody.

Arrowheads point to F-actin and AnxA2, on the

endosome surface (dotted lines). The scale bar

represents 1 mm.

(C) HeLa cells were cotransfected with WT

Rab5GFP and actinRFP (Figure 2) and AnxA2 was

(siRNA AnxA2) or was not (mock) depleted. The

number of actin patches on the surface or motile

Rab5GFP endosomes filmed in vivo was measured

per 1000 mm2 area of cell cytoplasm in the confocal

section. Data are expressed as a percentage of the

mock-treated control ± SD. The scale bar repre-

sents 1 mm.

(D) The number of EEA1-positive endosomes

attached to actin cables labeled with phalloidin

was measured per 10 mm cable length after

AnxA2 depletion as in (C). The mean values are

shown ± SD. Scale bar represents 4 mm.

(E and F) (E) AnxA2 was (siRNA AnxA2) or was not

(mock) depleted in HeLa cells, and then cells were

transfected with Rab5Q79LGFP. Single endosomes

present in the boxed areas are cropped and

shown below. The scale bar represents 2 mm. (F)

The number of actin patches on endosomes was

measured per 200 mm2 area of cell cytoplasm in

the confocal section and is expressed as a

percentage of the mock-treated control ± SD.
AnxA2 knockdown (Figure S6E). Altogether, these observa-

tions strongly suggest that AnxA2 and actin are required at

the same step, during ECV/MVB formation from early endo-

somes.

Under our conditions, AnxA2 depletion did not cause major

changes in the organization of the actin cytoskeleton. Total actin

(Figure S6A) and the general organization of actin fibers

(Figure S6C) were not altered. Similarly, cell shape was not

changed, as measured from the cell perimeter (Figure S6B), in

contrast to a previous study with Müller glial cells (Hayes et al.,

2006); this discrepancy may reflect the more dynamic physi-

ology of glial cells (Hayes et al., 2006) when compared to our

HeLa cells. We next quantified the actin patches on motile early

endosomes to ensure that only specific association was being

monitored. Strikingly, the number of patches was significantly

decreased upon AnxA2 knockdown (Figure 5C; Movies S3 and

S4 show mock- and siRNA-treated cells, respectively). By

contrast, the number of immobile endosomes captured by actin

cables (see Figure S4A) was not affected (Figure 5D). Neither

was the motility of early endosomes labeled with Rab5GFP

(Figure S6D). Finally, the formation of actin patches on enlarged

endosomes induced by Rab5Q79LGFP expression was reduced

>4-fold after AnxA2 knockdown (Figure 5E, quantification in
Develo
Figure 5F). Altogether, these observations demonstrate that

AnxA2 is required for the formation of actin patches on dynamic

early endosomes.

Annexin A2 Is Essential for Actin Polymerization
on Endosomes In Vitro
Our experiments unambiguously demonstrate that AnxA2 plays

a role in endosome transport and F-actin nucleation/polymeriza-

tion in vivo. However, siRNAs do not allow acute protein deple-

tion, and it may be difficult to discriminate between direct and

indirect effects of the depletion. We therefore made use of the

property of annexin family members to be efficiently precipitated

by high CaCl2 concentrations (Rescher and Gerke, 2004), to

deplete AnxA2 biochemically. After CaCl2-mediated precipita-

tion, cytosols were prepared that essentially lacked AnxA2, as

well as other annexins, including AnxA1 and AnxA6 (Figure 6A).

By contrast, actin and Rab5 were not affected (Figure 6A).

Neither was p11/S100A10 (Figure 6A), which interacts with

AnxA2 at the plasma membrane (Rescher and Gerke, 2004),

but not on endosomes (Morel and Gruenberg, 2007).

In our in vitro assay (see Figure 4), the capacity of annexin-

depleted cytosols to support F-actin nucleation and polymeriza-

tion was reduced z4- to 5-fold, when compared to control
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Figure 6. AnxA2-Dependent Actin Polymerization on Endosomes and Liposomes

(A) BHK cytosol isolated was treated or not with 1 mM CaCl2 centrifuged at high speed, and the supernatants were analyzed by SDS-PAGE and western blot.

(B) Purified recombinant annexin A2 (AnxA2) and annexin A1 (AnxA1) were analyzed by SDS-PAGE (upper panel, Coomassie staining; lower panels, western

blots).

(C) Endosomes from control (ctrl) or AnxA2-depleted (siRNA AnxA2) cells were analyzed by western blot.

(D) The in vitro assay was as described in Figure 4, in the presence of control cytosol (ctrl) or annexin-depleted cytosol (dep) prepared as described in (A). The

assay was recomplemented with purified recombinant AnxA1 or AnxA2, or with LatB. Quantification as described in Figure 4G is expressed as a percentage of the

control (n = 20, ± SD).

(E) The assay was as described in (D), except that endosomes were prepared from control (ctrl) or AnxA2-depleted (dep) cells, as in (C). Before the assay,

endosomes were preincubated with AnxA2 for 30 min on ice, to allow for membrane reassociation.

(F) Liposomes stained with FM2-10 were mixed with 0.05 mg recombinant rhodamin-actin and 0.5 mg unlabeled actin. The mixture was not (ctrl, control) or was

supplemented with BHK cytosol (+cytosol; 5 mg/ml final concentration) or 5 mg recombinant anxA2 (+rec anxA2), preincubated for 30 min on ice, and then

incubated for 10 min at 37�C. The mixture was fixed immediately and analyzed by fluorescence microscopy.

(G) The assay was performed as described in (F) at the indicated AnxA2 concentrations. Quantification as described in Figure 4G is expressed as a percentage of

the control (n = 3, ±SD).
cytosols (Figure 6D). When the depleted cytosols were recom-

plemented with purified recombinant AnxA2 (Figure 6B), F-actin

nucleation and polymerization could be partially restored

(Figure 6D) in a dose-dependent manner (Figure S6F). By

contrast, purified, recombinant AnxA1 (Figure 6B), which is

related to AnxA2 and shows a similar structural organization

and distribution on early endosomes (Rescher and Gerke,

2004), did not restore F-actin nucleation and polymerization in

our in vitro assay (Figure 6D). Moreover, endosome-free,

cytosolic nucleation events were not affected when purified,

recombinant AnxA2 was added to annexin-depleted cytosol,

demonstrating that AnxA2 modulates actin nucleation solely

from endosomal membranes (Figure S6G).
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Since a significant fraction of AnxA2 is associated with endoso-

mal membranes (Emans et al., 1993; Harder et al., 1997), we

prepared endosomes from cells that had been depleted of

AnxA2 with siRNAs and cotransfected with Rab5GFP

(Figure 6C). The capacity of AnxA2-depleted endosomes to

support F-actin nucleation and polymerization in our assay was

reduced to z1/3 of the controls (Figure 6E; Figure S6H). The

process could be nearly completely restored by the addition of

purified, recombinant AnxA2 (Figure S6H); values were some-

what higher than in Figure 6D, presumably because the assay

mixture had been preincubated for 30 min at 4�C to allow

AnxA2 reassociation to depleted membranes. Finally, AnxA2

depletion from both cytosol and endosome abolished F-actin
r Inc.
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Figure 7. Arp2/3 and Spire1 in Endosomal

Actin Polymerization

(A) HeLa cells transfected with anxA2GFP and

Spire1Myc were labeled with anti-Myc antibody

and rhodamin-phalloidin. Empty arrowheads

show colocalization of anxA2GFP and Spire1Myc,

and white arrowheads (inset) show Spire1Myc/

F-actin clustering on an anxA2GFP endosome.

The scale bar represents 10 mm.

(B) Arp3, Spire1, or MyosinIB was depleted with

siRNAs (see Figure S10) or not (mock), and then

cells were transfected with Rab5Q79LGFP, fixed,

and labeled with rhodamin-phalloidin. The scale

bar represents 1 mm. The number of actin patches

on endosomes was measured per 200 mm2 area of

cell cytoplasm in the confocal section and is

expressed as a percentage of the mock-treated

control (n = 3, ±SD).

(C) Arp3 or Spire1 were depleted from HeLa cells

with siRNA or not (mock), and then rhodamin-

dextran was internalized for 10 min at 37�C and

chased for 40 min at 37�C. Cells were fixed, pro-

cessed for immunofluorescence, and labeled

with anti-Lamp1 antibodies. The number of struc-

tures containing both dextran and Lamp1 is

expressed as a percentage of the total number

of vesicles containing dextran in each condition.

(n = 3, four cells per condition and six structures

per cell, ±SD).

(D) HeLa cells transfected with anxA2GFP and

Spire1Myc were labeled with anti-Myc antibody

and anti-p34-Arc antibody. Insets show clustering

and the close vicinity of p34-Arc and Spire1Myc on

endosomes containing anxA2GFP. The scale bar

represents 20 mm.

(E) AnxA2GFP was immunoprecipitated with

(a-GFP) or without (beads) anti-GFP antibodies

from early endosomes (EE as starting materials)

prepared from cells transfected with AnxA2GFP

and Spire1Myc. Samples were analyzed by SDS-

PAGE and western blot with antibodies against

GFP, Myc, p34-Arc, or Arp3 (IgG heavy and light

chains are indicated).
nucleation and polymerization—to the same extent as did

LatB—and the process could be restored by AnxA2 addition

(Figure 6E). Strikingly, purified recombinant AnxA2 bound to

liposomes (Mayran et al., 2003; Morel and Gruenberg, 2007),

which may recapitulate the biochemical properties of AnxA2 on

endosomes, was sufficient to trigger the polymerization of puri-

fied recombinant actin in a dose-dependent manner (Figure 6F,

quantification in Figure 6G), demonstrating that membrane-

associated AnxA2 has the intrinsic capacity to nucleate or

stabilize actin filaments. However, filament formation was very

inefficient when compared to complete cytosol (Figures 6F and

6G), and individual filaments appeared unbranched (Figure 6F),

strongly suggesting that other factors are involved. Hence,

we conclude that AnxA2 is necessary for the nucleation and the

subsequent polymerization of actin onto early endosomal

membranes, and that other factors are also likely to be involved.

Annexin A2 and Actin Regulators
Actin partners or regulators that may play a role on endosomes

include moesin, which colocalizes (Figure S5A) and interacts
Develo
(Harder et al., 1997) with AnxA2, and myosin IB, which is present

on early endosomes and is involved in endosomal traffic (Salas-

Cortes et al., 2005). In contrast to AnxA2 knockdown (Figure 5E),

myosin1B knockdown (see Figures S8D and S8E) did not signif-

icantly affect the number of actin patches present on endosomes

enlarged by Rab5Q79LGFP (Figure 7B), suggesting that this class I

myosin acts at a more distal step in transport; we were not able

to pursue the study of moesin because siRNAs were lethal.

We reasoned that Arp2/3 might play a role in filament branch-

ing (Pollard, 2007) during patch formation. Indeed, p34-Arc was

found partially associated with AnxA2 on endosomes (Figure 7D),

and Arp3 knockdown (Figures S8B and S8E) reduced the

number of patches on enlarged endosomes (Figure 7B). More-

over, Arp3 depletion caused a small, but significant, reduction

in the transport of a pulse of endocytosed dextran to late

endocytic compartments containing Lamp1 (not shown; quanti-

fication in Figure 7C), suggesting that the Arp2/3 complex

contributes to the formation of the endosomal actin patches.

Interestingly, the actin-nucleating protein Spire1 (Quinlan et al.,

2005) colocalized with vesicular actin (Figure S7A), AnxA2
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(Figure 7A; Figure S8A), and, to some extent, with p34-Arc on en-

dosomal structures (Figure 7D). Moreover, subcellular fraction-

ation experiments showed that Spire1 copurifies with AnxA2 in

early endosomes, whereas Arp2/3 was not significantly enriched

in endosomes, consistent with its broader cellular distribution

(Figures S7B and S7C). Finally, coimmunoprecipitation experi-

ments showed that Spire1 interacts physically with endosomal

AnxA2 (Figure 7E). Silencing of Spire1 (Figures S8C and S8E)

prevented the formation of actin patches on enlarged early endo-

somes (Figure 7B) and inhibited dextran transport to late endo-

somes containing Lamp1 (Figure 7C); the more pronounced

effects of Spire1 depletion as compared to Arp2/3 may reflect

a stronger inhibition of actin patch formation, but they may

also suggest that other mechanisms are at play (Figure 7B).

We conclude that, together with AnxA2, Spire1 and Arp2/3 are

involved in the dynamics of endosomal actin during ECV/MVB

biogenesis.

DISCUSSION

We find that cloud-like patches of F-actin are required for trans-

port beyond early endosomes in a process that depends on

AnxA2. Strikingly, actin depolymerization with LatB fully recapit-

ulates the effects of AnxA2 depletion on endosome transport

and morphology. Free ECV/MVBs then fail to detach or mature

from early endosomes, without interfering with the formation of

intralumenal vesicles, in marked contrast to Hrs or SNX3 deple-

tion (Gruenberg and Stenmark, 2004; Pons et al., 2008). Our data

also show that early endosomes trigger the nucleation and poly-

merization of actin filaments in vitro, and that this process

depends on AnxA2, the nucleating factor Spire1 (Quinlan et al.,

2005), and Arp2/3, which mediates filament branching (Pollard,

2007).

Annexin, Actin, and Endosomes
AnxA2 shares with other members of its protein family the

capacity to bind liposomes containing negatively charged phos-

pholipids in a calcium-dependent manner. These interactions

depend on the unique calcium-binding motif, which is repeated

in the conserved C-terminal core domain (Rescher and Gerke,

2004). Consistently, AnxA2 interactions with the plasma

membrane depend on calcium, but also on PtdIns(4,5)P2 (Hayes

et al., 2004a; Rescher and Gerke, 2004). Similarly, AnxA2 inter-

actions with the actin cytoskeleton are also calcium dependent

(Rescher and Gerke, 2004), presumably accounting for our

observations that actin polymerization on endosomes in vitro is

sensitive to calcium chelation. By contrast, AnxA2 binding to

early endosomes is calcium independent and cholesterol depen-

dent, and this binding property requires the AnxA2 N-terminal

domain (Harder et al., 1997; Jost et al., 1997; Mayran et al.,

2003). Moreover, AnxA2 distributes on early endosomes in

a nonrandom manner (Harder et al., 1997 and this study), consis-

tent with observations that some annexins are endowed with the

intrinsic ability to self-organize at the membrane surface into

bidimensional ordered arrays (Oling et al., 2001), leading to

the notion that AnxA2 forms platforms on early endosomal

membranes (Mayran et al., 2003). It is attractive to propose

that these platforms serve as the nucleation site for the polymer-

ization of the short actin filaments associated with early endoso-
454 Developmental Cell 16, 445–457, March 17, 2009 ª2009 Elsevie
mal membranes, which were observed by electron microscopy.

Alternatively, AnxA2 platforms may also capture, anchor, and

stabilize these short filaments.

F-actin in Early Endosome Dynamics
Although future work will clearly be required to further elucidate

the precise role of actin in early-to-late endosome transport,

some speculations are already possible. Whereas the interaction

of vesicles or compartments with cytoskeletal elements is gener-

ally associated with movement and thus transport, our observa-

tions indicate that actin-based motility does not play a major role

in transport beyond early endosomes, but rather that actin drives

the biogenesis of the transport intermediates. The movement of

endosomes on actin cables and the rocketing of endosomes

caused by de novo F-actin formation are unlikely to account

for the actin- and AnxA2-dependent transport we have

observed. Indeed, stationary and nonmotile endosomes interact

with actin cables, and endosome rocketing on a comet tail of

actin was not observed in our assay. Moreover, we find that

the biogenesis of transport intermediates (ECV/MVBs) destined

for late endosomes is inhibited by actin depolymerization or

AnxA2 depletion. The movement of these intermediates during

early-to-late endosome transport depends on intact microtu-

bules, although how endosomal membranes acquire the

capacity to interact with microtubules is far from clear (Soldati

and Schliwa, 2006). Strikingly, however, F-actin depolymeriza-

tion with LatB (this study) inhibits early-to-late endosome trans-

port, at least to the same extent, if not more efficiently, than

microtubule depolymerization with nocodazole (Gruenberg

et al., 1989). And yet, actin-based endosome motility does not

seem to play a direct role during transport toward late endo-

somes (Soldati and Schliwa, 2006), although actin may coop-

erate with microtubules in long distance transport. Lysosome

motility and directionality are altered by a dominant-negative

mutant of myosin 1B, and myosin 1B overexpression clusters

multivesicular endosomes in the perinuclear region (Salas-

Cortes et al., 2005). It is thus attractive to propose that, whereas

microtubules facilitate endosome movement, F-actin may be

necessary to engage the endosome maturation or transport

process.

During transport beyond early endosomes, large (z0.5 mm

diameter) and multivesicular endosomal intermediates (or ECV/

MVBs) are formed from tubulocisternal early endosomes. This

process involves concomitant deformation of the endosomal

membrane in two opposite directions—toward the cytosol to

generate the endosomal intermediate, and toward the endoso-

mal lumen to form intralumenal vesicles (Gruenberg, 2001).

Although major progress has been made in understanding

protein sorting into ECV/MVBs (Gruenberg and Stenmark,

2004; Williams and Urbe, 2007), the mechanism responsible

for membrane deformation during ECV/MVB biogenesis is

poorly understood.

We wish to propose that short actin filaments nucleated or

stabilized by AnxA2 on early endosomal membranes facilitate

the membrane remodeling and subsequent severing process

that accompanies the biogenesis of endosome intermediates

(see model, Figure S9). We find that the formation of actin

patches on early endosome depends on AnxA2 and Spire1,

which interact with each other, as well as on Arp2/3. Spire1
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may be recruited on early endosomal membranes by binding

early endosomal PI3P via its FYVE-like domain (Kerkhoff et al.,

2001), and may then be stabilized by interacting with AnxA2. In

turn, endosomal Spire1 may stabilize the polymerization of actin

filaments via G-actin monomer binding to its tandem WASP

homology 2 domain (Kerkhoff et al., 2001; Rebowski et al.,

2008). Clearly, AnxA2 may also facilitate the nucleation and poly-

merization reaction directly, in agreement with its known

capacity to interact with actin. Next, Arp2/3 may mediate fila-

ment branching, presumably leading to the patches or plumes

of actin observed by light and electron microscopy. Other

proteins are likely to be involved in stabilizing actin patches on

endosomes, including moesin (Harder et al., 1997 and this

study). Finally, severing of the nascent ECV/MVB from recycling

tubules and cisternae during the detachment or maturation

process may be driven by actin assembly at the membrane

and filament crosslinking or interactions with other actin-binding

proteins, perhaps in a process akin to clathrin-coated vesicle

formation in yeast (Kaksonen et al., 2006). Actin filaments may

contribute to physically deform the ECV/MVB membrane by pull-

ing onto AnxA2-rich domains and also by orchestrating the

involvement of other necessary components in time and space,

including interactions with microtubules. In conclusion, AnxA2

organized in specialized platforms contributes to nucleate,

anchor, and stabilize actin filaments on early endosome

membranes together with Spire1 and Arp2/3. Actin filaments in

turn drive the formation of endosome transport intermediates,

presumably by contributing to the membrane deformation and

maturation process.

EXPERIMENTAL PROCEDURES

Cells, Antibodies, and Reagents

BHK21 and HeLa cell maintenance (Morel and Gruenberg, 2007) and transfec-

tion (Morel and Gruenberg, 2008) were described. The monoclonal antibody

against Rab5 was a gift from R. Jahn (Göttingen, Germany); monoclonal anti-

bodies against AnxA2 (HH7) and p11/S100A10 (H21) and rabbit polyclonal

K419 antibody against AnxA2 were gifts from V. Gerke (Münster, Germany);

and rabbit polyclonal antibody against moesin was a gift from P. Mangeat

(Montpellier, France). The anti-actin antiserum (electron microscopy) was

a gift of J. De Mey. Anti-Rab7 polyclonal antibody and anti-LBPA monoclonal

antibody were described (Pons et al., 2008). Rabbit polyclonal antibodies were

from the following sources: EEA1 from Alexis Biochemical; Lamp1 from Affinity

Bioreagents; Arp3 from Cytoskeleton, Inc.; p34-Arc from Upstate. Monoclonal

antibodies were from the following sources: GFP from Roche Diagnostics;

EGF receptor from BD Biosciences; tubulin and cMyc (9E10) from Sigma; an-

nexinA1, annexinA6, actin, and Myosin IB from Abcam Ltd.; Spire1 and Arp3

from Abnova. Peroxidase-conjugated secondary antibodies were from Bio-

Rad, and Cy2-, Cy3-, and Cy5-conjugated fluorescent antibodies were

purchased from Jackson Immunoresearch. Rhodamin-dextran (10,000 Da)

and rhodamin-transferrin were from Molecular Probes. F-actin was labeled

with Alexa Fluor coupled to phalloidin (Invitrogen). Latrunculin B (LatB) and

cytochalasin D (CytD) were from Sigma, and jasplakinolide (JAS) was from

Calbiochem.

Plasmids, Recombinant Proteins, and RNAi

Plasmids were gifts from the following sources: human AnxA2GFP and porcine

AnxA1, V. Gerke; actinGFP and actinRFP, B. Ihmof (Geneva, Switzerland);

Rab5GFP and Rab5Q79LGFP, M. Zerial (Dresden, Germany); tandem-FYVE,

H. Stenmark (Oslo, Norway); Spire1-myc and Spire1GFP, E. Kerkhoff (Regens-

burg, Germany). Recombinant AnxA2 and AnxA1 (Morel and Gruenberg, 2008)

and AnxA2 downregulation were described (Morel and Gruenberg, 2007). The

target sequences (all primers and sequences are listed in the 50 to 30 direction)
Develo
for Arp3 downregulation are AAGTGGGTGATCAAGCTCAAA for siRNA1

and AAGCTCAAAGGAGGGTGATGA for siRNA2. For downregulation of

Spire1 and myosin IB, we used the following QIAGEN predesigned siRNA:

Hs-SPIRE1-10, CAGAGACGACATTCCATTGAA; Hs-SPIRE1-11, CAGGTGGA

GGGTACGTTCATA; Hs-MYO1B-5, TAGGTGTATCAAACCGAATGA; and

Hs-MYO1B-6, AACGAGCATTCAGTTTCCGAA.

Endocytic Transport In Vivo

Cells preincubated or not with 1 mM LatB, CytD, or JAS in serum-free medium

for 30 min were incubated with 3 mg/ml rhodamin-dextran for 10 min at 37�C in

GMEM containing 10 mM HEPES, or were further chased for 40 min at 37�C,

fixed, and processed for immunofluorescence (Morel and Gruenberg, 2007).

Endocytic transport of the fluid-phase marker horseradish peroxidase (HRP)

(Mayran et al., 2003) and EGF receptor (EGFR) was described (Pons et al.,

2008).

Actin Polymerization In Vitro

Purified Rab5GFP endosomes (final concentration z150 mg/ml) were mixed

with the assay mixture: BHK cytosol (final concentration z5 mg/ml),

125 mM KCl, 20 mM HEPES (pH 7.0), 2.5 mM MgOAc2, 1.6 mM DTT, and

a cocktail of protease inhibitors (Gruenberg et al., 1989). Tubes were placed

at 37�C without shaking, the reaction was stopped with 4% PFA on ice, poly-

merized actin was stained with Alexa Fluor 488 conjugated to phalloidin, and

samples were analyzed by confocal microscopy. For quantification, the fluo-

rescence intensity of each pixel was measured over a 1024 3 1024 pixels

area, as were the length of actin fibers and the frequencies of maximal fluores-

cence intensity. Each parameter was always quantified manually via the Zeiss

LSM software, and the statistical significance was determined with a Student’s

t test. Liposomes containing phosphatidic acid, phosphatidylethanolamine,

and cholesterol (2:2:1) were described (Mayran et al., 2003; Morel and Gruen-

berg, 2007).

Fluorescence Microscopy and Confocal Movies

In immunofluorescence experiments, sample preparation and analysis were

always as described (Morel and Gruenberg, 2007, 2008). In movies, actin

patches were quantified by counting the number of stable (from 2 to 5 min),

small, and dynamic actinRFP-labeled structures at the surface of Rab5GFP

endosomes in 200 mm2 focal planes. Actin patches were counted on the

surface of enlarged endosomes induced by the expression of Rab5Q79LGFP

after F-actin staining with phalloidin. Actin patches were quantified in

200 mm2 sections in the microscope. Each parameter (fiber length, distance,

endosome diameter and number, cell perimeter, cell surface area, and actin

fluorescence intensity) was quantified manually via the Zeiss LSM software.

Electron Microscopy

The ultrastructure of endosomes treated with LatB was analyzed in Epon

(Parton et al., 1992) and were quantified as described (Mayran et al., 2003).

MDCK cells incubated in the apical and basolateral medium with 5 nm BSA-

gold (OD52030) or HRP (Sigma type II, 10 mg/ml) for 15 or 10 min at 37�C,

respectively, were processed for Epon and then for freeze substitution (van

Genderen et al., 1991) (see Supplemental Data). Lowicryl sections were

labeled as described (Parton, 1994). After washing with PBS/BSA, the sections

were treated briefly with 1% glutaraldehyde in PBS, washed with distilled

water, and then stained with uranyl acetate in methanol followed by Reynold’s

lead citrate.

Other Methods

BHK early and late endosomes and heavy membranes were prepared as

described, as was BHK cytosol (±10 mg/ml final concentration) (Aniento et al.,

1993). Total annexin depletion from cytosol with 1 mM CaCl2 (Mayran et al.,

2003) and ECV/MVB formation in vitro with or without 1 mM LatB (Aniento

et al., 1996; Mayran et al., 2003; Petiot et al., 2003) were described. Immuno-

precipitation from total cell lysates or early endosomes was described (Morel

and Gruenberg, 2007, 2008). Western blot was carried out by using the Super-

Signal West Pico chemiluminescent substrate (Pierce Chemical Co.); expo-

sure times were always within the linear range of detection.
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Supplemental Data include Supplemental Experimental Procedures, Supple-

mental References, nine figures and four movies and can be found with
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