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1. INTRODUCTION 

It is well known [ 1 ] that normal linear homogeneous systems of 
differential equations with infinitely smooth coefficients have no solutions in 
the space of generalized functions other than the classical solutions. In 
contrast to this case, for equations with singularities in the coefficients there 
may appear new solutions in generalized functions and in addition some 
classical solutions may disappear. Research in this direction, still developed 
insufficiently, discovers new aspects and properties in the theory of 
differential and functional differential equations. We note, in particular, 
papers [2-5 ], which contain references to previous work. Thus, in [3] the 
author proved that the system 

x’(r) = Ax(t) + rBx(ilt), -l<L<l, (1.1) 

has a solution in the class of distributions-an impossible phenomenon for 
ordinary differential equations without singularities. A more general result 
was obtained in [4], where it was shown that, under certain conditions, the 
system 

x’(r) = f A,(l) x@,t) 
j=O 

has a solution 

x(t) = 5 c,P’(t) 
It=0 

(1.2) 

in the generalized function space (St)’ with arbitrary j3 > 1. 
In this paper we study solutions to functional differential systems in the 

form of finite linear combinations of the delta distribution and its derivatives. 
Two new theorems are established also for solutions in the space (St)‘. The 
results are applied to some important second order ordinary differential 
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equations of mathematical physics. The basic ideas in the method of proof 
are employed to investigate a special class of integral equations. 

2. FUXCTIONAL DIFFERENTIAL EQUATIONS 

The number m is called the order of the distribution 

x= f! Ckak’(t), 
k-TO 

c, # 0. (2.1) 

In the sequel C” denotes the space of m times continuously differentiable 
functions of the real variable t and (A S) is the value of the functional f on 
the test function q(t). The norm of a matrix is defined to be 

IJA Jj = max 1 laijl 

' .i 

and E is the identity matrix. 

THEOREM 2.1. The criterion for the existence of solutions (2.1) to the 
system 

t-Y’(t) = + A,(f) x(i,t) 
,z 

(2.2) 

with matrices A,(t) E Cm in a neighborhood oft = 0 and constants ;lj # 0 is 
that some roots ,u of the equation 

(2.3) 

be nonpositiue integers. If m is the smallest of their absolute values there 
exists a solution of order m. 

Proof In the Taylor expansions 

A,(t) = f Ajktk + Rim(t) 
k=O 

the remainders and all their derivatives up to the order m vanish at t = 0. 
Therefore 
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for any distribution of the form (2.1), and the sets of solutions of order not 
exceeding m to (2.2) and to the system 

are coincident. The Fourier transformation of Eq. (2.4) yields 

-(SF(S))’ = + -T lijl-’ (i/lj)-kAjkF(kys/;lj). 
,ro kE0 

(2.4) 

(2.5) 

The necessary and sufficient condition for the distribution x(t) to have the 
order m is that its transform F(s) be a polynomial of degree m. Differen- 
tiating relation (2.5 j n times and putting s = 0, we obtain 

+ Y T (4)” IsI~-l L,:~--A~~F,+~ = 0 
.,% k=, 

(n = 0, l,... ), (2.6) 

where F, = F’“‘(0). The requirement F, = 0, n > m, reduces (2.6) to a finite 
system of matrix equations, the last of which, 

possesses a nontrivial solution F,. Its substitution into the foregoing 
equations allows one to find F, (n < m) successively since the matrices 

:v 
v IAjl-’ Aj”‘nAj, + (n + l)E< A 
j=O 

are nondegenerate. 

n < m. 

COROLLARY 2.1. The system 

lx’(t) = A(t) X(t) f x A,(t) X(J-jl) 
j-1 

(2.7) 

has a solution of order m with support t = 0, if A,(O) = 0 (j > 1) and m + 1 
is the smallest modulus of the negative integer eigenvalues of the matrix 
A(O). 
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THEOREM 2.2. The system 

:v 
tx’(t) = 1 Aj(t) X(#j(t))? (2.8) 

j=O 

in which A,(t) E C”, #j(t) E C’, has a solution (2.1) of order m, if the 
following hypotheses are satisfied: ( 1) the real zeroes tjn of the functions @j(t) 
are simple and form aflnite or countable set; (2) Atk’(tj,) = 0 (k = O,..., m), 
for till f 0; (3) m is the smallest modulus of the nonpositive integer roots of 
equation (2.3) with Lj = #i(O). 

Proof: From the representation #j(t) = (t - tj,) S(t) it follows that 
~j(tjn) = #j(tj,) # 0. In some neighborhood Djn of the point tin that does not 
contain other points of {tj,), 

s’“y~j(t)(t - tin)) = P(Aj(tjn)(t - tin)) = 0, t # tjn * 

But, for t = tin, Aj(t)(t - tj,) = Aj(tj,)(t - tj,). Therefore 

6("'(#j(t)) = dck'($j(tjn)(f - tj,)), t E Djn. (2.9) 

Since for the distribution (2.1) supp x(qhj(t)) = {tj, 1 there will be, by virtue of 
W), 

X(dj(t) = 1 X(4j(tjn)(t - tjn))* (2.10) 
n 

It is easy to show that 

Hence 

X(fjj(f)) = -v ;I- -- CkS’k)(t - tjn)/($j(tjn))k' ' w &('jn)* 
n k=O 

Owing to 

A,(t) rJ’k’(t - tj,) = 0, t,in # 0, k = 0 . . . . . m, 

we make the conclusion that 

A,(t) X(#j(t)) = 0, O 5 ifjnt 

and the problem of existence of a solution (2.1) to system (2.8) is brought to 
the same question for (2.2), where A,j = #j(O). 

Now we shall study solutions of the form (1.2) of some functional 
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differential equations in the space (Si)’ with arbitrary p > 1. To ensure the 
convergence of the series in (1.2) it is sufficient to require that for n -+ co the 
vectors c, satisfy the inequalities 

IIc,\I < ac”n-“0, p> 1. (2.11) 

In fact. since the test functions Q(t) E St are subject to restrictions [6, p. 
1751 

1 $‘“‘(f)l Q bd”fP, 

then 

/I 2 (cdwf), qqt)) n=O I/ 
= 5 (-1)” f#(“‘(O)c, 

I/ n=O I/ 

< 5 1p(0)1)(c,(l<ab F (Cd?+-)” < 00, 
n=O n=o 

for /3 < p. If series (1.2) converges, its sum is the general form of a linear 
functional in the space (St)’ concentrated on the point c = 0 [7]. 

THEOREM 1.4. The system 

lx’(t) = Ax(t) + tBx(At) (A = const) (2.12) 

with constant matrices A and B has a solution in the space (St)’ concen- 
trated on t = 0, f B is nonsingular and -1 < 1 < 1, A # 0. 

Proof: The Fourier transformation changes (2.12) to the equation 

-@F(s)) = AF(s) - & BF’(s/l), 

from which there follow relations 

F n+1= -iAnt ]A1 B-‘(A + (n + l)E) F,, 

F, = F’“‘(O), n = 0, l,... 

and inequalities 

ltF,+,ll G IV’+* (n + q+ 1) IIB-‘II IlF,Il 
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that imply estimates 

(2.13) 

where q is some fixed natural number such that I/A 1) <q. Since for the coef- 
ficients c, of series (1.2), 

the bounds (2.13) prove the theorem, as the condition (11 < 1 makes them 
more restrictive than (2.11). 

Relation (2.12) provides an interesting example of a system that may have 
two essentially different solutions in the space (St)’ with support t = 0. 
According to the previous results (2.12) has a solution of finite order if the 
matrix A assumes negative integer eigenvalues. At the same time there exists 
an infinite order solution (1.2) if A # -nE, for all n > 1. 

The particular importance of the system 

f  2 (Ajk + tBjk)X(k)(lbjt)= tX(lJ) 

j=O k=O 

(2.14) 

is that depending on the coefficients it combines either equation with a 
singular or regular point at t = 0 and in both cases there exists, under certain 
conditions, a solution of the form (1.2). 

THEOREM 1.5. Let system (2.14) in which x(t) is an r-dimensional vector 
and Ajk, Bjk are constant matrices of order (r X r), satisfy the following 
hypotheses : 

(i) Aj and ic. are real numbers such that 

0 < (11 < 1, ISI> l, j>O; 

(ii) the series C,To jAjjl-‘Au’ and C,to ISI-‘B”’ where 

are convergent. 

(iii) ‘? ,I,:’ I(Bj,(( < A-*. 
jr0 

Then in the space of generalized functions (St)’ with arbitrary p > 1 there 
exists a solution x(t), concentrated on t = 0. 
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Proof: Substituting the unknown solution (1.2) into (2.14) we obtain, by 
virtue of 

the equality 

f 5 f I,$-’ a,,~n-k(AjkC,gcn+k)(f) - (n + k)Bjj$,6(“+k-‘)(f)) 
.i=O k=O n-0 

= -5 n JAI-' a-"C,P')(t), 

n=l 

from which it follows that 

(n + I)(al-‘a-“-‘c,+, = f r’ (n + 1) (aj(-’ a,‘n-‘Bjkcn+ 1-k 
j=O kyo 

- jz kfo I~jI-’ ‘ynAjkCn-k, n > 0, (2.15) 

and, hence, 

( E-(L(I n+’ f &- 
j=O 

* A,:“-‘B,o 
1 

c,+, 

= (III”+’ 5 2 ISI-’ Ajn-‘BjkC,,+ 1-k 
j=O k=l 

-A $ T l~jl-‘J~“AjkC,-k). 
j-0 k'r, 

Inequalities (i) and (iii) ensure the existence of inverse matrices to the coef- 
ficients of c,+ , for all n: 

E - (11 A”+’ -f IAjl-’ A,:“-‘Bjo 
-1 

j=O 1 

= 2 l~li~(n+l)i a2 

( 
c Iaj)-'a;n--BjO 

i=O j=O 

E-ILJk PI+’ 2 (JjJ-‘&y”-‘Bjo 
j=O 

-1 

1 -,I* 2 A;‘~~Bjo~) . 
j=O 
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Therefore formulas (2.15) determine the values c, uniquely with the 
exactness to an arbitrary factor c, and because of conditions (i) and the 
convergence of series (ii) provide the bounds 

~IC,.lll GM” f il c, k 4 o<q< 1, (2.16) 
k=O 

@ is some constant. We set 

Then from (2.16), 

II c,+,~I,<#m+ l)q”M,. 

For large values of 12, 

p(m f I)q” < 1. 

Hence (Ic,+,l(<M, and M,,, = M,. Thus, we arrive at the conclusion that, 
starting with some N, 

M, = M,v: n > Iv. 

The application of (2.18) to (2.16) successively yields 

(2.18) 

Therefore 

Ilc.s+*l! <Am + l)qSf’Mv7 . . . . . . . . . . . . 
iICtt-+,+~Il<P(~+ l>s”+mMtm 

l/c .t+k+ld <dm+ l)q’vM,Vv O<k<m. (2.19) 

Putting n = N + m + l,..., IV + 2m + 1 in (2.16) and using (2.19), we obtain 

t~C.v+l+(m+l)+k~~ <drn + 1)28q"+mM.%q O<k<m. (2.20) 

By employing (2.20) we can establish that 

k~+l+2,m+ll+k ,, .@yrn + 1)’ q-vqv+mq.l f?rnM,,, O<kQm. 

and continuation of the iteration process allows to assume that, for all n and 
O,<k,<m, 

iiC.V+l+n(m+I,+k 
,( ,<$l+'(m + I)"+1 qrrcrrtrhn 2. (2.21) 
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Replacing n in (2.16) by N + 1 + n(m + 1) + m,..., N + 1 + n(m + 1) + 2m 
we find that (2.21) holds for IIc.~,+,,,+(,+,)(~+,)+~JI; i.e., these inequalities 
have been established by induction. Inequalities (2.21) prove the theorem 
since the condition 0 < q < 1 makes them more stringent than (2.11). It 
remains to observe that equations (1.1) and (2.12) are special cases of 
(2.14). 

3. ORDINARY DIFFERENTIAL EQUATIONS 

The results of the previous section are applied to investigate 
solutions of some important equations of mathematical physics. 

THEOREM 3.1. The equation 

finite order 

+ PUj(f) y"'(t) = 0 

jZ0 

has a solution of order m concentrated on t = 0 if+(t) E Cm, a,(O) # 0 and 
m is the smallest nonnegative integer root of the relation 

+ (- 1 y’ aj(0)(m +j)! = 0. 
j=O 

Proof. We define the vector x with components 

xj = tj- lyU), j = l,..., n 

and use Corollary 2.1. 

COROLLARY 3.1. The Bessel equation 

t2y” + ty’ + (t’ -p2)y = 0 

has a solution of order. m with the support t = 0 zr 

p’=(m+ 1)2 

and it is given by the formula 

Irn”’ (m -U 
’ = ’ kZo 4kk!(m - 2&)! 

B~m-2k~~t~ 
, C = const. 

THEOREM 3.2. The criterion for the existence of an m order solution 
(2.1) of the equation 

Lx” + p(t) x’ + q(t)x = 0 
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with p(t) E cm + ’ and q(t) E C” in some neighborhood of I = 0 is the 
implementation of the following conditions : 

(i) p(0) = m + 2, 

(ii) the system of equations 

m+l 

n(p,-n-1)x,-,+ 1 (-l)k(pk(n+k)-q,-,)x,+,-,=O 
k= 1 

n = O,..., P’k’w 
m+ lip,= k! Yqk= 

has a nonzero solution (x,,,..., x,). 

COROLLARY 3.2. The degenerate hypergeometric equation 

rx” + (b - t) x’ - ax = 0 (3.1) 

has a finite order solution tr a and b are positive integers and b > a + 1. 
This solution is given by the formula 

x= Cda-‘/dt’-‘(d/dt - l)*+’ d(t) 

and its order is m = b - 2. 

Proof. Relations (i), (ii) of the previous theorem will be as follows for 
Eq. (3.1): 

b=m+2, 

n(b-n-1)x,-,+(n+l-a)x,=O, n = O,..., m + 1, 

whence b > 2 is an integer and if a is not a positive integer \<b - 1, all 
x, = 0. On the contrary, when the hypotheses are observed then xk = 0, 
k ( a - 2, and taking any x, # 0 we find 

X,-k = (-l)k (“-:- ‘1 (m - k)!C, C # 0, O<k<b-a-l. 

COROLLARY 3.3. The equation [8] 

tx” + ax’ + btx = 0, b it 0, (3.2) 

has a finite order solution ifs the coeflcient a is a positive even integer. This 
solution is given by the formula 

x = C(d’/dt’ + b)@ - *)’ ’ s(t) 

and its order is m = a - 2. 
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Proof: For Eq. (3.2) conditions (i), (ii) of Theorem 3.2 become as 

a=m+2, 

n(a-n- 1)X,-,=bx,, n = O,..., m + 1, 

from which it follows that xZk-, = 0, k > 1, and the order m is even. 
Choosing any x, # 0 we determine 

X m-2k 
= bk (m - 2k)! x,, 0 Q k < m/2. 

COROLLARY 3.4. The equation [8] 

fx” + (t + a + b) x’ + ax = 0 

has a finite order solution 13 a and b are positive integers. This solution is 
given by the formula 

x = Cd”-‘/dt”-‘(d/dt + l)b-’ s(t) 

and its order is m = a + b - 2, 

4. AN INTEGRAL EQUATION IN THE SPACE 
OF TEMPERED DISTRIBUTIONS 

Recently Kreinovic suggested the following query [9]. Is black-body 3°K 
radiation really of cosmological origin or is it a mixture of radiation of many 
bodies as some physicists suggest? Of course, since the particular law is 
currently known only approximately, we cannot answer for sure. But in case 
we know precisely that the spectrum is subject to Plan&s law, will it mean 
that the second case is disproved? In mathematical terms: 

(1) IfVw>O([~A@)(e4”-l)-‘dp=(eDO”-1))’)andA@)>O,is 
A@) equal to S(JI - PO)? A positive answer to this question will follow, if one 
can prove that 

(2) If Vo > 0 (jr A(/?)(eDw - 1))’ db = 0) then A(P) E 0. Denoting 
B = In /3, W = In w and turning to Fourier transforms, this can be reduced to 
the question 

(3) Is the Fourier transform of (exp(exp z) -I)-’ everywhere different 
from O? 

As it appeared from the replies presented to [lo] the conjecture in 
statements (2) and (3) had been discussed and proved in [ 11, p. 4 1 ] under 
certain assumptions on A, e.g., if eecBA(P) is integrable on (0, co) for some 
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c > 0. However, since the solution of (1) is not an ordinary function, it seems 
appropriate to consider the problem from the standpoint of the distribution 
theory. Our purpose is to establish a general theorem which includes the 
foregoing results as a particular case. Throughout the exposition we employ 
distributions of slow growth arising naturally in the generalized Fourier and 
Laplace transformations. Let t E E’ be one-dimensional real variable; S is 
the linear space of all functions C(t) that are infinitely smooth and are such 
that, for any m > 0, k > 0, 

lim t”#(k’(t) = 0. (4.1.) 
1+*x. 

The elements of S are called testing functions of rapid descent. If 4 is in S, 
every one of its derivatives is again in S. A sequence of functions 4, E S is 
said to converge in S, if for each set of nonnegative integers m and k the 
sequence (1 t Im #Y)(t)} converges uniformly over all of E,. A distribution f is 
said to be of slow growth if it is a linear functional on the space S. Such 
generalized functions are also called tempered distributions. The space of all 
distributions of slow growth is denoted by S’ and (f, 4) is the value of the 
functional f applied to d E S. The support of a testing function 4(t) is the 
closure of all points where )(t) is different from zero. Two distributions f 
and g are said to be equal over an open set G if 

(f, 0 = (g- s>9 

for every testing function d(t) whose support is contained in G. The support 
of a distribution f is the smallest set outside of which f equals zero. If a set 
X contains the support of a distributionf, it is said that f is concentrated on 
X. We denote by S, the space of all functions defined on t E (0, co) which 
are infinitely differentiable and satisfy (4. I), for t -+ +co, and S\ is the space 
of all tempered distributions concentrated on (0, co). Now we introduce the 

DEFINITION. Let 4 E S, , fE S’+ . Then 

for 

fA=J; A,<f<oo, 

fA = 0, t <A. 

THEOREM 4.1. The equation 

(f (09 WV WI = e?J 9 0) (0 < OJ < co, f, > 0) (4.3) 
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has a unique solution 

f(t) = &t - to) 

if the following conditions are satisfied: 

#(t, w) = fJ a,e-“*.“*, 
!I=1 

t > 0, (4.4) 

with positive parameters a,, , ,I,, such that 

(ii) e-‘y(t) E S: , for some c > 0; 

(iii) the Laplace transform F(p) = (f(t), e-“‘) is nonnegative on the 
real half-axis c < p =C 00. 

Proof. Equation (4.3) can be written as 

and, by virtue of hypothesis (i), series (4.4) converges on any interval 
0 < A < t < 00 in the sense of S. Hence 

lim (f4, $) = El+ 23 a,&(t), ebw-lnr) = #(to, 0). 
A++ PI=1 (4.5) 

Considering the series in (4.5) and taking into account (iii), one concludes 
that, for A suffkiently small and o > c/AI, all its terms are nonnegative and 
continuous with respect to w. Since the sum (f,, /) is also continuous this 
series converges uniformly and 

The function F(p) of the complex variable p is analytic in the half-plane 
Rep > c as the Laplace transform of the distribution f(t) and, in view of 
uniform convergence, the left side of (4.6) is analytic for cu > c/k,. Since 
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#(to, o) is analytic for all w > 0 Eq. (4.6) is continued analytically onto 
(0, co). Moreover, inasmuch as the right side of 

5 a,(F(d,) - f?-) = 0 
II=’ 

exists also for w = 0 and the convergence in this relation is uniform, one 
may differentiate it and approach o to zero: 

.f a,l:(Ffk’(O+) - (-f,)k) = 0, 
II=, 

k = 0, I,... . 

Therefore 

F’k’(O+) = ( - qk, F(p)=,- ““, Re p > 0, 

and 

(f(f), e-pf) = (d(t - t,), eepf), 

where s(t - to) is the delta functional. Finally, 

f(f) = d(t - f,) 

and the uniqueness of this solution follows from the fact that if the Laplace 
transforms of two distributions f, g E S+ coincide on some vertical line in 
their regions of convergence, then f = g [ 12. p. 225 1. This concludes the 
proof. 

For the homogeneous equation (f(f), @(t, w)) = 0, we obtain, under the 
previous assumptions, 

and hence Pk)(O+) = 0, k > 0. The result F(p) = 0 implies f(t) = 0. 
Obviously, series (4.4) transforms into (e-l - l)-’ when a, = 1, An = n and 
1, w > 0. 
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