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Abstract 
We report on a study of a viscoelastic polymer stamp-based mechanical exfoliation technique capable 
of yielding large area (~square centimeters or larger) graphene layers from a highly ordered pyrolytic 
graphite (HOPG) substrate by manipulating the adhesion properties of a Polydimethylsiloxane 
(PDMS) stamp and other key process parameters. In particular, the effects of stamp adhesion, normal 
contact force, and dwell time on the exfoliation force, layer thickness, and graphene surface 
morphology are studied. Experiments show that the process is capable of exfoliating relatively large 
(up to 12x 12 mm2) graphene layers under certain conditions. The exfoliated layers, albeit of varying 
thickness, have regions that are tens of nanometer thick and contain various topographical features 
such as bubbles, wrinkles, and compressed regions. This work serves as the first step toward 
developing a scalable production method for large area graphene and other layered materials of 
interest. 
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1 Introduction 
Scalable production of large area, defect-free, layered materials such as graphene, which is a two-

dimensional 0.3 nm thick single layer of carbon atoms, is a much sought-after goal today due to their 
attractive optical, thermal, mechanical, and electronic properties. Till recently it was debated if it is 
thermodynamically possible for such single layer materials to exist (Novoselov et al., 2005). The 
groundbreaking work of Novoselov et al, (Novoselov et al., 2004) who were able to separate a single 
layer of graphene from graphite through micromechanical cleavage showed that these mono-layers can 
indeed exist (Novoselov et al., 2004). Graphene displays remarkable properties that are useful in many 
applications such as transparent conductive coatings,  energy-storage devices, drug delivery, 
composite material, tissue engineering, regenerative medicine, etc. (Geim and Novoselov, 2007, 
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Novoselov et al., 2012, Nair et al., 2008, Jang and Zhamu, 2008, Chang et al., 2010, Ruoff, 2008, 
Berman et al., 2014, Alberts et al., 2009). Many of these applications require large area, continuous 
graphene sheets that are flat and possess high purity continuous structure with no mechanical and 
chemical imperfections. Therefore, cost-effective production of mono- and/or few-layer graphene with 
minimal defects is an urgent challenge requiring the attention of manufacturing researchers. The 
application of this remarkable material largely depends on the reliable and scalable production of high 
quality large area sheets of graphene while preserving its unique physical and mechanical properties 
(Stankovich et al., 2006). The properties of graphene are known to be strongly influenced by the 
synthesis method (Allen et al., 2009).  

Current graphene synthesis methods can be broadly classified into the following three groups: 
epitaxial growth, unconventional methods, and exfoliation techniques (Jayasena, 2014). In the 
epitaxial growth method, graphene is grown on top of a substrate using chemical or physical vapor 
deposition (CVD or PVD). While these chemically assisted methods are capable of producing large 
area graphene layers, they tend to have lower charge carrier mobility, which is a key factor in 
electronic applications, compared to mechanically exfoliated graphene (Novoselov et al., 2012). In 
addition, in these methods, single and multi-layers often overlap (Novoselov et al., 2012, de Heer et 
al., 2007). Unconventional methods include techniques such as unzipping Carbon Nanotubes (CNTs), 
arc discharge, and detonation of chemicals. The unzipping of CNTs is an attractive technique in which 
CNT is exposed to oxygen plasma or microwaves (Janowska et al., 2009, Humberto et al., 2012). The 
arc discharge technique involves the use of high current between a graphite anode and cathode in a 
hydrogen and helium atmosphere (Wu et al., 2009). In the chemical detonation method, a mixture of 
natural graphite, nitric acid, and CH3NO2 is exploded in a vessel and graphene sheets are harvested 
from the resulting soot (Sun et al., 2008). All of these methods suffer from limitations such as poor 
yield, use of hazardous chemicals, and contamination of graphene with impurities and functional 
groups, and long processing times. 

Exfoliation process routes consist of chemical, thermal, and mechanical methods. In chemical and 
thermal exfoliation methods, colloidal suspension and intercalation techniques are used to produce 
mono and few-layer graphene (Stankovich et al., 2006, Goler et al., 2011). These techniques too suffer 
from some of the limitations described earlier (Meihua et al., 2010). The adhesive-tape (or Scotch 
tape) based mechanical exfoliation process is reported to be the best process for producing high 
quality graphene sheets, but suffers from low yield and small size of sheets (~ ten to hundred microns 
square) (Novoselov et al., 2012). At present, micromechanical cleavage techniques are predominantly 
restricted to laboratory-scale research activities. Another mechanical exfoliation method that uses an 
atomic force microscope (AFM) tip to scratch Highly Ordered Pyrolytic Graphite (HOPG) mesas has 
been reported (Xuekun et al., 1999, Zhang et al., 2005). Apart from these, a wedge based mechanical 
exfoliation technique was investigated in an attempt to address the large-scale production problem 
(Jayasena and Subbiah, 2011, Jayasena et al., 2013, B. Jayasena, 2014). 

The “transfer printing” technique uses elastomeric stamps to transfer patterned micro or nano 
features from a donor substrate to a recipient substrate (Meitl, 2007). This technique is often referred 
to as “soft lithography” (Xia and Whitesides, 1998, Whitesides et al., 2001, Huang et al., 2005) and is 
used in a wide variety of applications including fabrication and assembly of micro sensors, micro-
electromechanical systems (MEMS), micro-analytical systems, and micro-optical systems (Hua et al., 
2004). Polydimethylsiloxane (PMDS) is the most common material used for mold/stamp making and 
its unique properties such as low stiffness, chemical stability, and conformal contact make it very 
versatile. Several attempts to transfer chemically grown graphene using a sacrificial polymer layer 
between the graphene layer and a polymer substrate (typically PDMS) have been reported (Matthew et 
al., 2005, Carlson et al., 2012, Kymissis and Cox, 2013, Chun-Hu et al., 2012). Several transfer-
printing techniques have been reported to demonstrate the transfer of graphene and other materials by 
controlling the adhesion strength between the PDMS stamp and the material to be transferred or the 
receiving substrate. These techniques include a kinetically controlled method that relies on control of 
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the lift-off and printing speed (Matthew et al., 2005), a relief surface assisted method that uses relief 
structures on the stamp surface (Kim et al., 2010), a shear assisted method to control the delamination 
crack via shear loading (Carlson et al., 2011), a laser driven method that controls the detachment 
mechanism via laser pulse-induced thermal expansion of the stamp (Chang and Bard, 1991), and a 
pneumatically driven method that controls stamp-substrate adhesion through pressurized micro 
channel features built into the stamp (Carlson et al., 2012). Small stamp sizes (100 x 100 μm2) are 
used in all of these studies. Although these studies speculate on the use of such PDMS stamp-based 
“transfer printing” methods to separate few layers of graphene, the lack of detailed knowledge of the 
specific process conditions necessary to realize this goal is a significant hurdle to establish it as a 
reliable and truly scalable graphene manufacturing process. In particular, detailed knowledge of the 
effects of PDMS elasticity and process variables such as the normal contact force, contact dwell time, 
and exfoliation speed on the exfoliation force, layer thickness and quality of the exfoliated layers is 
lacking. Although a limited attempt to manipulate the adhesion property of the PDMS stamp to 
separate graphene layers has been reported (Kwanghyun et al., 2013), it uses very small (400 x 400 
μm2) pre-fabricated chemically grown CVD mesas.  

It is clear from the review that while some very good work on polymer stamp-based transfer 
printing has been reported, there is limited understanding of the effects of various process parameters 
on the exfoliation characteristics, which is essential for reliable and repeatable mechanical exfoliation 
of minimally-defective large area mono- and few-layer graphene from bulk graphite. This paper 
presents the results of an experimental investigation of the effects of PDMS stamp elasticity (and 
adhesion) and other process conditions such as the normal contact force, dwell time, and exfoliation 
speed on the exfoliation force, graphene layer thickness, and surface morphology.  

 

 
Figure 1: Experimental setup 

2 Materials and Methods 

2.1 Experimental Set-Up 
A desktop-sized experimental setup (see Figure 1) was used to investigate the proposed 

exfoliation process. In its current form, the setup permits controlled study of the effects of normal 
contact force between the PDMS stamp and HOPG substrate, the dwell time prior to exfoliation, and 
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the exfoliation speed in the vertical direction. The instantaneous exfoliation forces in the X, Y, and Z 
directions were measured using a three-axis piezoelectric force dynamometer (Kistler 9256) mounted 
on stacked XYZ stages that have a few nanometer positioning resolution, a travel range of 25 mm in 
the X and Y directions, and 5 mm in the Z direction. Measured forces directed into the dynamometer 
surface are positive. An HOPG sample (12 x 12 x 2 mm3, SPI-ZYA) was mounted on the 
dynamometer surface while the PDMS stamp was affixed to a glass slide that is attached to the 
stationary vertical section of the setup as shown in Figure 1. The stamp was fixed to the glass plate by 
natural adhesion of the PDMS. Preliminary testing showed that the chemical bond between the PDMS 
stamp and glass-slide is stronger than between the stamp and the HOPG sample. Therefore, no 
delamination occurred at the stamp-glass slide interface during the experiments. 

2.2 Stamp Preparation 
PDMS stamps were prepared using a Sylgard 184 monomer-curing agent kit. Specifically, mixing 

ratios (by weight) of 10:1 and 20:1 were used to vary the stamp elastic modulus and its corresponding 
adhesion properties. The two monomer-curing agent mixtures were stirred for 3 and 5 minutes, 
respectively, and degassed in a vacuum desiccator for 20 minutes under -0.8 KPa pressure. The 
mixtures were then poured into a 50 x 50 x 6.25 mm3 glass container and cured for different time 
durations (20 to 80 minutes) in a furnace at 700 C. After completion of the cure cycle, the sample was 
removed from the furnace and placed in a freezer for 1 hour to arrest the rapid thermal softening 
normally observed after furnace curing.  A 15 x 15 mm2 PDMS stamp was cut from each cured sample 
and its elastic modulus and adhesiveness (measured qualitatively and quantitatively) were determined. 

2.3 Stability of PDMS Stamp 
The initial evaluation of stamp properties focused on two aspects: (i) understanding the variation in 

stamp elastic modulus (and therefore its conformability), and (ii) general adhesion characteristics 
(measured qualitatively by its stickiness ascertained by human touch) as a function of the furnace 
curing time and the post-furnace curing time. The effect of post-furnace curing time was evaluated to 
determine the mechanical stability of the stamp and its adhesion characteristics over an extended time 
period. The elastic modulus of each sample was measured using a tensile test at 5% strain in a 
Dynamic Mechanical Analyzer (DMA Q800). Figure 2a shows the variation in the stamp elastic 
modulus and its corresponding adhesiveness as a function of furnace curing time. In general, the 
adhesiveness of the stamps prepared using the 20:1 mixing ratio was found to be much greater than the 
10:1 ratio, albeit its handleability was much worse. Stamp handleability improved with increase in its 
elastic modulus which increased with furnace curing time as seen in Figure 2a. It is also seen that there 
is an optimal furnace curing time for each mixing ratio in order to obtain sufficient stamp adhesion 
while permitting ease of handling. Based on this study, a 25 min furnace curing time was selected for 
the 10:1 mixing ratio and a 40 min curing time was selected for the 20:1 mixing ratio in order to 
achieve a good combination of stickiness (adhesion) and handleability. Figure 2b shows the post-
curing ambient stability of the stamp elastic modulus for the two mixing ratios. This room temperature 
stability is important since any change in the adhesion characteristics during stamp use will impact the 
repeatability of the exfoliation process. Till now, these aspects are not explicitly discussed in the 
literature but are important from a standpoint of process scalability. It is seen from Figure 2b that after 
an initial decrease in the elastic modulus, there is a very stable operating region for both stamp 
compositions evaluated. The motivation for this investigation comes from the fact that the PDMS 
stamp elastic modulus, handleability, and its adhesion characteristics are closely linked and change 
with curing conditions. In order to tailor the adhesion property for exfoliating layered materials in a 
controlled manner, this understanding is crucial. The stickiness of the cured PDMS samples was also 
assessed quantitatively in terms of the adhesive strength as discussed next. 
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Figure 2: (a) Variation of the PDMS elastic modulus and corresponding adhesion characteristics with furnace 
curing time, (b) room temperature stability of the 10:1 and 20:1 mixing ratio cured PDMS samples. 

 
Figure 3: Stamp adhesion strength after post curing and freezing. 
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2.4 Adhesive strength of PDMS stamp 
The adhesion strength of the PDMS stamps was quantified through a symbolic exfoliation process 

similar to the preliminary exfoliation work discussed earlier. Instead of using HOPG, a flat glass slide 
was rigidly fixed to the dynamometer surface. The normal contact force exerted by the stamp on the 
glass slide and the dwell time were kept constant at 15 N and 1 min, respectively, after which the 
stamp was withdrawn in the normal direction at 10 mm/s. The adhesion force per unit area during 
stamp withdrawal was measured and used as a quantitative measure of the adhesiveness of a given 
stamp composition and size. Figure 3 shows the variation of adhesive strength with post-curing time. 
While there is some variability in the adhesion strength over time, it remains fairly stable after 
approximately 60 mins. The repeatability of the adhesive strength at a given time was excellent 
(values varied by no more than 0.6 N/cm2). 

2.5 Exfoliation Experiments 
A few exploratory tests were conducted on a mid-range quality HOPG substrate (SPI-ZYH) to 

ascertain the stamp performance and to understand the exfoliation force signature. In these tests, the 
normal contact force and the initial dwell time between the stamp and the HOPG substrate were kept 
constant at 15 N and 1 minute, respectively, and the exfoliation speed (in the vertical direction) was 
varied between 1 and 5 mm/s. Stamps made from the 10:1 mixing ratio were used in these tests. The 
tests showed that yield was maximum at 5 mm/s. Following the exploratory tests, a full-factorial 
experiment was executed using the higher quality HOPG substrate (SPI-ZYA), the same PDMS 
mixing ratio, and the factors and levels listed in Table 1. Each test condition was repeated three times. 
The exfoliation speed was constant at 5 mm/s. In these experiments, the effects of normal contact 
force and dwell time on the morphology and thickness of graphene layers and the exfoliation force 
were analyzed. 

 
Figure 4: (a) Experimentally measured exfoliation force profile (Note: force is measured positive into 
the HOPG sample), (b) corresponding exfoliated surface morphology (Test 10) with ZYA grade 

3 Results and Discussion 
The preliminary tests with the 10:1 PDMS stamp and varying exfoliation speed indicated that, in 

general, the area of the exfoliated layer increases with exfoliation speed and the largest area (on the 
order of a few square millimeters) is obtained at a speed of 5 mm/s. A representative exfoliation force 
signature is shown in Figure 4. Note that the force is positive when directed into the HOPG sample. 
Hence, the exfoliation force is negative. As the stamp is retracted from the HOPG substrate, the force 
in the normal (Z) direction first decreases rapidly before increasing and leveling off after exfoliation is 
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complete. Note that the separation of graphite layers (adhered to PDMS stamp) from the HOPG 
substrate starts when the force signature starts to increase (bottom portion of the force profile in Figure 
4a). The weak van der Waals bonds between the graphite layers allow decoupling of adjacent layers 
under an external stress. The strong adhesion forces between the surface of the PDMS stamp and the 
HOPG surface cause the weak secondary bonds between the graphite layers to be overcome. Figure 4b 
shows the morphology of a large exfoliated sheet. A number of wrinkles and folds in the sheet are 
clearly visible. Some of these defects are due to the average quality of the HOPG substrate used while 
the rest are attributed to the exfoliation process. These defects are discussed in more detail later in the 
paper. 

 
Test No Normal contact  force (N) Dwell time (mins) 

1 5 1 
2 5 5 
3 5 10 
4 5 1 
5 5 5 
6 5 10 
7 5 1 
8 5 5 
9 5 10 

10 10 1 
11 10 5 
12 10 10 
13 10 1 
14 10 5 
15 10 10 
16 10 1 
17 10 5 
18 10 10 
19 15 1 
20 15 5 
21 15 10 
22 15 1 
23 15 5 
24 15 10 
25 15 1 
26 15 5 
27 15 10 

 
Table 1: Process parameters and their levels 

3.1 Surface Morphology of Exfoliated Layers 
The surface morphologies of the exfoliated layers were characterized using confocal microscopy. 

In general, the dimensions of the exfoliated layers are significantly larger than those obtained in other 
exfoliation techniques reported in the literature (Novoselov et al., 2012). Specifically, under certain 
process conditions, exfoliated layers as large as 12 x 12 mm2 were obtained (see Figure 4b). Due to the 
large sizes and a limited field of view of the confocal microscope, only selected portions of the 
measured surface morphologies are shown in Figure 5. A variety of surface features including large 
flat patches, compressed regions, wrinkles, torn edges, folds, and bubbles are observed in the layers 
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under different exfoliation conditions. Figure 5a highlights (circled) a crumpled region. Wrinkles, seen 
in Figure 5b and 5c, and step folds, seen in Figure 5f, are frequently observed on the surface as 
reported elsewhere in the literature (Zang et al., 2013). Straight, torn, and folded edges are seen in 
Figure 5e and Figure 5f (see circled regions). Figure 5d indicates bi-axially compressed (or crumpled) 
features that span a larger area, analogous to those reported in (Kymissis and Cox, 2013). It is crucial 
to understand how to control such defects or structures in order to exfoliate much cleaner few layers of 
graphene. The defects in the observed surface morphologies are attributed to several causes including 
uneven force distribution between the PDMS stamp and the HOPG, stretching of the graphite surface 
due to PDMS elasticity during initial contact followed by relaxation of the strains during exfoliation, 
and pre-existing defect structures in the as-received mid-quality HOPG material. Under certain 
conditions, fragmented and partially exfoliated layers were observed on the PDMS stamp surface. 

 

 
Figure 5 : Morphologies of exfoliated layers under various conditions. (a) crumpled region, (b) bubbles and torn 
edges, (c) wrinkles and bubbles, (d) large areas of uni and bi-axially compressed regions, (e) straight edges, and 
(e) layers with folds in them. 

3.2 Thickness of Exfoliated Layers 
The thickness of the exfoliated layers was measured using confocal microscopy. A defect free 

edge in a relatively flat portion of the exfoliated layer produced in each experiment was selected for 
thickness measurement. It should be noted that several experiments yielded layers with areas of sub-
micrometer thickness. Figure 6a shows a sample section of exfoliated graphene layers and the 
corresponding thickness measurement locations. Some of the sub-micrometer thickness regions were 
further characterized using an Atomic Force Microscope (AFM).  Note that the scanning area of the 
AFM is 40 x 40 μm2, which is much less than the area measured in the confocal microscope. Figure 7 
shows a representative AFM measurement of the edge of an exfoliated layer. It is seen that the 
thickness of the selected region in the AFM measurement is around 70 nm.  Regions with thickness in 
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excess of 1 μm were also found indicating the need for further process optimization to achieve thinner 
(mono- or few-) layers of graphene. 

 

 
Figure 6: Selected confocal microscope measurement (Test 11); (a) 15 thickness measurements taken along 

the visible edge, (b) cross-sectional view. 

 
Figure 7: AFM measurement of layer thickness; cross-section and 3-D view (Test 11). 

3.3 Correlation of Exfoliation Force and Layer Thickness 
The measured exfoliation forces and the corresponding minimum layer average thicknesses are 

plotted in Figure 8. Figure 8a represents the exfoliation force trend corresponding to the 5 N normal 
contact force tests. It appears from this figure that the exfoliation force and the corresponding 
minimum layer thickness are roughly correlated since they tend to exhibit similar trends. The circled 
data points represent tests where the exfoliated surface area was almost equal to the entire contact area 
of the PDMS stamp. Figure 8b and 8c show the exfoliation force vs. average layer thickness trends for 
the 10N and 15N normal force cases, respectively.  However, there does not appear to be a direct 
correlation between the exfoliation force and average layer thickness for these two cases. In general, 
the exfoliation force is between 3 and 6 N in almost all cases.  

The main effect plots for the factorial experiment are shown in Figure 9. These plots suggest the 
existence of an optimum combination of normal contact force, and dwell time to obtain the thinnest 
layer of graphene. The mean effect of dwell time is consistent in that the increase in dwell time 
appears to increase the layer thickness. 
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Figure 8: Comparison of exfoliation force and exfoliated layer thickness for different normal contact force 
values: - (a) 5 N, (b) 10 N, (c) 15 N. The circled test conditions yield the largest size (12 x 12 mm2) graphene 
layers. 

 
Figure 9 : Main effects plot 
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Based on the above results, a dwell time of 1 minute and speed of 5 mm/s were selected and the 
normal contact force varied to test the repeatability of the observed exfoliation force and layer 
thickness trends. Figure 10 shows a comparison of the exfoliation force obtained in the repetitions and 
those obtained earlier in the full-factorial experiment. It is seen that the exfoliation force is quite 
repeatable and tends to be in the range of 3.5-5.5 N, irrespective of the normal contact force 
magnitude. Similarly, AFM thickness measurements indicate that the layer thickness is also quite 
repeatable (see Figure 10). While these results are preliminary, they do show the ability of the PDMS 
stamp based mechanical exfoliation process to produce large area graphene layers, albeit of much 
higher thickness than eventually desired. Further process optimization is clearly required to achieve 
thinner exfoliated layers and will be pursued in future work. 

 

 
Figure 10: Repeatability of exfoliation force 

 
Figure 11: (a) Thickness measurement in DOE and (b) repeated experiment (Test 22) 
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4 Conclusions 
The results of an investigation of a PDMS stamp assisted mechanical exfoliation process for 

producing large area graphene sheets from a HOPG substrate was presented in the paper. It was found 
that the process is capable of yielding large area (up to 12 x 12 mm2) multi-layer graphene with 
thickness ranging from tens of nanometers to a few microns. A number of surface defects such as 
wrinkles, folds, compressed regions, and tears are observed in the exfoliated layers. The results also 
suggest a possible correlation between the exfoliation force and exfoliated layer thickness for a low 
normal contact force. Further investigations are underway to achieve exfoliation of few-layer large 
area graphene sheets of uniform thickness by fine-tuning the process conditions.  
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