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Abstract

Operator or time splitting is often used in the numerical solution of initial boundary value problems for di�erential
equations. It is, for example, standard practice in computational air pollution modelling where we encounter systems of
three-dimensional, time-dependent partial di�erential equations of the advection–di�usion–reaction type. For such systems
little attention has been devoted to the analysis of splitting and to the question why splitting can work so well. From the
theoretical point of view, the success of splitting is primarily determined by the splitting error. This paper presents an
analysis of operator splitting aimed at providing insight into the splitting error. Using the Lie operator formalism, a general
expression is derived for a three-term Strang splitting in the pure initial value case. For a class of advection–di�usion–
reaction problems the splitting error is analyzed in greater detail. A special case is discussed in which the splitting error
can be reduced. Also some attention is paid to the use of operator splitting in initial boundary value problems. c© 1999
Elsevier Science B.V. All rights reserved.
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1. Introduction

Virtually all processes modelled by time-dependent partial di�erential equations (PDEs) split addi-
tively in subprocesses for which simpler PDEs exist. This greater simplicity also carries over to their
numerical counterparts, which already a long time ago has led to the use of operator splitting or time
splitting. Within operator splitting subprocesses are treated on their own in numerical time stepping
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while adopting a certain order of reappearance. An early in
uential paper is Strang [10], where a
symmetrical order of reappearance was proposed, which formally yields 2nd-order consistency.
In this paper we focus on this form of symmetrical Strang splitting for systems of advection–

di�usion–reaction equations

@c
@t
+3 · (uc) =3 · (K3c) + R(c); c = c(x; t); x∈R3: (1)

Although our �ndings do have a wider scope, our motivating application is atmospheric air quality
modelling where PDE systems like (1) lie at the heart of complicated models employed in studies
on the chemical composition of the atmosphere. The societal motivation for these studies concerns
air pollution. Throughout we suppose that the velocity vector u and the di�usion coe�cient matrix
K are given. Hence the problem is linear with respect to advection and di�usion, but nonlinear
in the chemical reaction term R. The dependent variable c represents a vector of chemical species
concentrations, which evolve in time due to advection, di�usion, chemical interactions, emissions,
and depositions, the latter three all contained in R.
To the best of our knowledge, one of the �rst in
uential papers on computational air quality

modelling discussing splitting is McRae et al. [9]. More references speci�cally concerning air quality
modelling can be found in Zlatev [14]. Nowadays operator splitting is standard practice in this �eld.
However, for PDE systems like (1), in the literature very little attention has been devoted to the
analysis of splitting and to the question why splitting can work so well. From the theoretical point
of view, the success of splitting is primarily determined by the splitting error, which is introduced
by solving subproblems one after another in a completely decoupled manner. In general this splitting
error always exists, also when all subproblems are solved exactly. The aim of this paper is to present
an analysis of operator splitting and to provide insight into the splitting error.
In Section 2 we derive an expression for the Strang splitting error for arbitrary autonomous systems

of di�erential equations using the Lie operator formalism, including the notion of commutators for
nonlinear problems, the notion of the modi�ed problem and the celebrated Baker–Campbell–Hausdor�
formula. Here we have made fruitful use of material from Sanz-Serna and Calvo [7] and Sanz-Serna
[8]. Section 3 focuses on the advection–di�usion–reaction problem (1). The body of this section
consists of a theorem, which shows under which circumstances advection, di�usion and reaction
commute with one another, assuming exact integration. This commutativity is of great importance,
because when all processes commute, we have a zero splitting error. In Section 4 the splitting error is
discussed in greater detail for a number of simpli�ed test models. Simpli�cations cannot be avoided
since for the general problem class (1) the error expressions are much too long to handle. Further
we discuss ways to reduce the splitting error and address the subject of inconsistencies, which can
occur if Strang splitting is used in case of initial boundary value problems. The �nal Section 5
summarizes our �ndings and contains a number of general remarks.

2. Strang splitting and the Lie operator formalism

In this section we will derive an expression for the Strang splitting error for the general, nonlinear,
autonomous system of di�erential equations,

ct = f(x; c) ≡ f1(x; c) + f2(x; c) + f3(x; c); t ∈ [t0; T ]; x ∈ Rd; c(x; t0) = c0(x): (2)
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The solution c(x; t) is supposed to be vector valued in Rm and f and its parts f1; f2 and f3 can
represent a nonlinear vector function in Rm or some spatial derivative operator. In our notation we
will mostly, just for convenience, suppress the dependence on the spatial variable x= (x; y; z). The
spatial dimension d is not yet �xed. To derive the splitting error expression, at this stage we merely
consider an abstract initial value problem (2) in the function space S of real, su�ciently often
di�erentiable vector-valued functions c on Rd× [t0; T ]. In addition we assume that all operators en-
countered in our derivations, are su�ciently di�erentiable in all their variables. Our starting problem
(1) provides a particular example for (2).

2.1. Strang splitting

Let S(�) denote the solution (semigroup) operator for (2), that is

c(t + �) = S(�)c(t);

and Sk(�) the solution operator for the subproblem ct=fk(c). Let S̃k(�) denote a consistent, numerical
approximation to Sk(�), for example de�ned by a Runge–Kutta type method. For the abstract initial
value problem (2), we then compactly represent the celebrated Strang splitting scheme [10] by

c̃(t + �) = S̃(�)c̃(t); S̃(�) ≡ S̃1( 12�)S̃2( 12�)S̃3(�)S̃2( 12�)S̃1( 12�): (3)

The solution c̃(t + �) denotes the approximation to c (t + �) resulting from approximately solving
the subproblems ct = fk(c) in the given sequential order. The solution operator S̃ is the resulting
splitting approximation to S. Note that S̃k is still thought to be space continuous, that is without
spatial discretization. In our derivation we will not specify S̃k , but instead we assume that with S̃k
we may associate the modi�ed problem [7,8], 1

ct = Fk(c) ≡ fk(c) + �pkEk(c); (4)

where �pkEk(c) represents the local truncation error of the integration method de�ning S̃k . The integer
pk is the order of consistency. By de�nition, as the local error of integration schemes is normally
an in�nite series expansion in �; Ek itself may still depend on the step size �. The modi�ed problem
concept is very convenient when it is combined with the Lie operator formalism introduced below.
Adopting the modi�ed problem concept means that we act as if we apply Strang splitting to the
modi�ed problem,

ct = F(c) ≡ F1(c) + F2(c) + F3(c); (5)

while solving the subproblems ct = Fk(c) exactly. Trivially, with S̃k one may associate the exact
solution operator Sk , in which case the original subproblems ct = fk(c) are supposed to be solved
exactly, that is without time integration error.

2.2. The Lie operator formalism

Strang splitting always leads to a 2nd-order approximation, at least in a formal sense. We are
interested in the structure of the splitting error. Albeit tedious, local splitting errors can always be

1 Throughout we use c ∈ S to denote the solution of any di�erential equation. From the context it will be clear to
which equation we are referring, for example our original problem (2) or a di�erent problem such as (4). Likewise, c
can denote an arbitrary element ∈ S.
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obtained by straightforward Taylor expansions (see for example [5,10]). This, however, leads to an
expression which does not reveal in a clear way the structure of the error. For its derivation we
therefore adopt the Lie operator formalism. This formalism will enable use of the celebrated Baker–
Campbell–Hausdor� formula. The BCH formula yields a lot of insight in the particular structure of
splitting errors. The authors learned the Lie operator formalism from [7,8]. For self-containedness
we here repeat the material from [7,8] needed for our purpose. We also made fruitful use of a brief
unpublished note of our colleague W. Hundsdorfer, who also refers to [7]. A nice introduction to
Lie operators can also be found in [3].
Consider the general di�erential equation (5). With each given operator F , a Lie operator is

associated, which we denote by F. This Lie operator is a linear operator acting on the space of
operators de�ned on S. F maps each operator G into the new operator FG, such that for any
element c ∈ S,

(FG)(c) = G′(c)F(c): (6)

(′ denotes di�erentiation with respect to c). For the solution c(t) of (5) it easily follows that

(FG)(c(t)) =
@
@t
G(c(t)); (7)

and from induction to k that

@k

@tk
G(c(t)) = (FkG)(c(t)): (8)

The above relations (7) and (8) hold for any G de�ned on S, in particular for the identity I .
Inserting I for G and using the Taylor expansion of the true solution, we can write c(t+�) in terms
of the exponentiated Lie operator form or Lie–Taylor series,

c(t + �) = (e�FI)(c(t)):

The same argument concerning this exponentiated Lie operator applies to each of the subproblems
ct = Fk(c). When we compose the resulting exponentiated Lie operators in the same order as the
solution operators in the splitting procedure, with which they are associated, we can reveal that the
Strang splitting solution (3) can be expressed as

c̃(t + �) = (e(1=2)�F1e(1=2)�F2e�F3e(1=2)�F2e(1=2)�F1I)(c̃(t)): (9)

At this stage the BCH formula proves to be useful. Let X; Y be linear operators. According to
this formula, the product eX eY can then be written as the exponential eZ of

Z = X + Y + 1
2[X; Y ] +

1
12 ([X; X; Y ] + [Y; Y; X ]) +

1
24 [X; Y; Y; X ] + · · ·; (10)

where [X; Y ] is the commutator [X; Y ] =XY − YX and [X; X; Y ] is recursively de�ned by [X; X; Y ] =
[X; [X; Y ]], etc. Note that, if X and Y are Lie operators, Z is also a Lie operator.
We put X = 1

2�F1 etc. and apply (10) four times, or Yoshida’s formula [7] twice, resulting in an
expression for the symmetrical Strang splitting solution (9),

c̃(t + �) = (e�F̃I)(c̃(t)); e�F̃ ≡ e(1=2)�F1e(1=2)�F2e�F3e(1=2)�F2e(1=2)�F1 ;
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where the new Lie operator F̃ is formally de�ned by an in�nite series expansion which is even in
�. Its leading part reads

F̃=F1 +F2 +F3 − 1
24�

2[F1;F1;F2]− 1
24�

2[F1;F1;F3]

+ 1
12�

2[F2;F2;F1]− 1
24�

2[F2;F2;F3] + 1
12�

2[F3;F3;F1]

+ 1
12�

2[F3;F3;F2] + 1
12�

2[F2;F3;F1] + 1
12�

2[F3;F2;F1] + O(�4): (11)

If we are able to recover the operator F̃ corresponding with F̃, we are led to the modi�ed problem,

ct = F̃(c);

associated with the symmetrical Strang splitting scheme.
We �rst derive the operators associated with the commutators (the so-called Lie or Poisson

brackets). Direct application of (6) to the commutator [Fl;Fm] yields for any G and any c ∈ S,
[Fl;Fm]G(c) = (G′(c)Fm(c))′Fl(c)− (G′(c)Fl(c))′Fm(c):

Repeating this for [Fk ;Fl;Fm] and inserting the identity I for G, gives

[Fk ;Fl;Fm]I(c) = (F ′
mFl)

′Fk − (F ′
lFm)

′Fk − (F ′
kFm)

′Fl + (F ′
kFl)

′Fm;

where all operators at the right-hand side are evaluated at c. We rewrite this expression as

[Fk ;Fl;Fm]I(c) = F ′
lmFk − F ′

kFlm; Flm ≡ F ′
mFl − F ′

lFm; (12)

where, naturally, the new operator Flm is called the commutator for Fl and Fm. To �nd F̃ we insert
expression (12) for all commutators occurring in (11), which results in the modi�ed problem for
the Strang splitting (3),

ct = F̃(c) ≡ F(c) + �2EF(c) + O(�4); (13)

where �2EF(c) is the counterpart of the �2-term of (11). Remember here Eq. (7). After rearranging
the terms, to make the contribution of splitting F1 from F2; F1 from F3 and F2 from F3 to the
splitting error more precise, EF is written as

EF ≡− 1
24F

′
12(F1 + 2F2 + 2F3) +

1
24 (F

′
1 + 2F

′
2 + 2F

′
3)F12

− 1
24F

′
13(F1 + 2F2 + 2F3) +

1
24 (F

′
1 + 2F

′
2 + 2F

′
3)F13

− 1
24F

′
23(F2 + 2F3) +

1
24 (F

′
2 + 2F

′
3)F23: (14)

The solution of the modi�ed problem (13), assuming it exists, may be interpreted as the Strang
splitting solution (backward analysis interpretation [8]).
The term �2EF(c(t)) represents the leading term of the local error of the Strang splitting scheme

evaluated at c(t). Note that the global error, c̃(t + �)− c(t + �), can be directly seen to satisfy
c̃(t + �)− c(t + �) = (e�F̃I)(c̃(t)− c(t)) + (e�F̃I − e�FI)(c(t));

where (e�F̃I − e�FI)c(t)) is the complete local splitting error. The local splitting error is even in �
provided that the Lie operators are independent of � or also even in �. The leading �2-term is of
course equal to the �2-term in (11).
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A few important aspects concerning the splitting error should already be mentioned. When the
three split operators F1; F2; F3 commute with one another, F̃ = F , no splitting error occurs. When,
for example, only F1 and F2 commute, the �rst and second term connected with the commutator F12
cancel and no error occurs due to splitting F1 from F2. It is the Lie operator approach that attends
to this clarity. The beauty of this approach is that it can be formulated for any autonomous operator
F with its split parts F1; F2; F3.
What remains to be done is to identify the local splitting error for the original problem (2) that

would arise if the substeps would be integrated exactly. For that purpose we work the modi�ed
problem expression (4) into (13) and (14). A straightforward computation then leads to

ct = f̃(c) ≡ f(c) + �2Ef(c) + O(�2+p1) + O(�2+p2) + O(�2+p3) + O(�4); (15)

where

�2Ef(c) = �2Es(c) + �p1E1(c) + �p2E2(c) + �p3E3(c);

with Es de�ned by

Es≡− 1
24f

′
12(f1 + 2f2 + 2f3) +

1
24 (f

′
1 + 2f

′
2 + 2f

′
3)f12

− 1
24f

′
13(f1 + 2f2 + 2f3) +

1
24 (f

′
1 + 2f

′
2 + 2f

′
3)f13

− 1
24f

′
23(f2 + 2f3) +

1
24 (f

′
2 + 2f

′
3)f23: (16)

We see that in (15) the leading term consists of the sum of the three local integration errors
introduced in (4) and the error term �2Es(c). The operator Es obviously de�nes the leading term of
the local splitting error for exact integration. That is, if all split steps would be integrated exactly,
or just very accurately, then this term will dominate the local splitting error. On the other hand, if
f1; f2; f3 commute with one another, Es will completely vanish. This means that the success of
Strang splitting in terms of local accuracy is determined by Es in the �rst place.

3. Advection–di�usion–reaction problems

In this section we will consider the advection–di�usion–reaction problem (1). In relation to (2)
we associate f1 with advection, f2 with di�usion and f3 with chemistry, that is

f1(c) =−3 · (uc); f2(c) =3 · (K3c); f3(c) = R(c):

Observe that the velocity u= (u; v; w), the di�usion matrix coe�cient K and the reaction term R(c)
do depend on the spatial variable x = (x; y; z). Also note that no component coupling exists in the
advection and di�usion parts as opposed to the chemistry part R(c) (R(c) ∈ Rm).

3.1. Commutativity

First we will answer the question when true commutativity occurs between the advection, di�usion
and chemistry operators. In that case no splitting error exists between the commutating processes.
To �nd the answer we have to elaborate the commutators

flm(c) = f′
m(c)fl(c)− f′

l(c)fm(c); (l; m) = (1; 2); (1; 3); (2; 3);
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and equate them to zero. In this elaboration the derivatives f′
1(c) and f

′
2(c) are to be interpreted

componentwise. They in fact act as diagonal matrix di�erential operators having equal entries. More
precisely, owing to their linearity we have, for any element s ∈ S,

f′
1(c)s ≡ f1(s) =−3 · (us); f′

2(c)s ≡ f2(s) =3 · (K3s):
Trivially, the derivative f′

3(c) is the m × m Jacobian matrix R′(c). Our elaboration leads to the
following theorem.

Theorem 1. (a) Advection commutes with di�usion if u and K are independent of x.
(b) Advection commutes with chemistry if 3 · u = 0 and R is independent of x.
(c) Di�usion commutes with chemistry if R is linear in c and independent of x.
(d) With exact integration no splitting error exists if R is linear in c and u; K and R are

independent of x.

Result (d) is based on (a), (b), (c) for which the proof is given below. Results (a) and (d)
can also be concluded from Fourier analysis (the standard constant coe�cient case). Note that the
requirement R independent of x does not mean that R is independent of c = c(x; t).

Proof. (a) For commutativity of advection and di�usion we need equality of

f′
2(c)f1(c) =−3 · (K3(3 · (uc)));

and

f′
1(c)f2(c) =−3 · (u(3 · (K3c))):

Recall that c is a vector but that u and K act componentwise. Further elaborating these two expres-
sions trivially shows equality, if both u and K are independent of x. In general the two expressions
are not equal.
(b) We need to compare

f′
3(c)f1(c) =−R′(c)3 · (uc);

and

f′
1(c)f3(c) =−3 · (uR(c)):

Let Rx(c) denote the partial derivative vector of R(x; c) with respect to x. Introduce a similar meaning
for Ry(c) and Rz(c). An elementary calculation yields

f′
3(c)f1(c) =−R′(c)(u ·3c)− R′(c)(3 · u)c;

and

f′
1(c)f3(c) =−(uR(c))x − (vR(c))y − (wR(c))z

=−R′(c)(u ·3c)− (3 · u)R(c)− (uRx(c) + vRy(c) + wRz(c)):
The two expressions are equal if the velocity �eld is divergence-free and R is independent of
x; y and z. This proves part (b) of the theorem. Note that in this case R is allowed to depend on c.



208 D. Lanser, J.G. Verwer / Journal of Computational and Applied Mathematics 111 (1999) 201–216

(c) For commutativity of di�usion and chemistry we need equality of

f′
3(c)f2(c) = R

′(c)(3 · (K3c));
and

f′
2(c)f3(c) = (3 · (K3))R(c):

Introduce the vectors,

X = Rx(c) + R′(c)cx; Y = Ry(c) + R′(c)cy; Z = Rz(c) + R′(c)cz:

Then we can write

f′
2(c)f3(c) =

@
@x
(K11X + K12Y + K13Z) +

@
@y
(K21X + K22Y + K23Z)

+
@
@z
(K13X + K23Y + K33Z);

and

f′
3(c)f2(c) =R

′(c)
[
@
@x
(K11cx + K12cy + K13cz) +

@
@y
(K21cx + K22cy + K23cz)

+
@
@z
(K31cx + K32cy + K33cz)

]
:

It immediately follows that in general the two expressions will di�er in value. However, in the
special case that R is linear in c and explicitly independent of x, we do have equality and hence
commutativity. Note that in this case dependence of K on x is permitted.

We have to conclude that in almost every practical situation splitting errors arise, since the case of
a space independent velocity �eld u and di�usion matrix K , combined with a space independent and
linear chemistry process R, hardly occurs. On the other hand, the extended use of Strang splitting
in computational air pollution modelling leads to the conjecture that in this �eld splitting errors are
kept within reasonable bounds, something which is con�rmed for the examples presented in [13].
The following interpretation of the results of Theorem 1, based on relevant practical properties of
u; K and R, is in further support of this conjecture.
An important feature for air pollution models of the state of the atmosphere [1] is the diurnal cycle

of sunsets and sunrises. This cycle obviously introduces a space–time dependency which manifests
itself in two ways relevant to operator splitting errors, viz. through the photochemical reactions and
the vertical transport. Let us �rst consider the photochemistry. After sunset, photochemical reactions
are switched o�. This not only simpli�es the chemistry, but also strongly diminishes the spatial de-
pendency of R. If also temperature and humidity hardly vary in x, then at nightly periods R is often
totally independent of x. Hence, if 3 · u = 0, advection will commute with chemistry according to
result (b) of Theorem 1, diminishing the splitting error. The vertical transport is modelled by param-
eterized turbulent di�usion through the coe�cient K . Since at night the stability of the atmosphere
often increases, in many models K decreases to very small values after sunset. This means that
the commutators f12 and f13 between di�usion and advection and di�usion and chemistry strongly
decrease, which will lead to a strong decrease of the splitting error. It also often occurs that the
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velocity �eld u and the di�usion coe�cient K vary slowly in x, so that even during day time f12
can get small in large parts of the space domain.
Summarizing, the diurnal cycle strongly in
uences the commutators leading to a relatively small

local splitting error over nightly periods. During these periods the global splitting error will also
decrease owing to stability. In other words, the splitting error will oscillate with the diurnal cycle
and not amplify beyond bound for evolving time. Speci�c circumstances will of course determine
actual values.

4. Illustrations

We now proceed with simpli�ed test models from class (1) so as to further study the local splitting
error, in particular the leading error term �2Es de�ned in Eq. (16). Furthermore, we look at ways
to reduce the splitting error in these cases and we pay attention to initial boundary value problems.
Simpli�ed models are used to avoid error terms too long to handle.

4.1. Examples of commutators

First consider the 3D problem,

ct + ucx + vcy = (�cz)z + R(c); ux + vy = 0; (17)

in which the transport is based on a divergence-free, horizontal velocity �eld, u = (u; v; 0), and on
vertical di�usion with di�usion coe�cient �. This problem is relevant to many practical studies in
the �eld of atmospheric air quality modelling where horizontal wind patterns dominate advection
by wind and one-dimensional parameterized turbulent di�usion is used to simulate transport in the
vertical direction. Putting

f1(c) =−ucx − vcy; f2(c) = (�cz)z; f3(c) = R(c);

we derive the commutators,

f12(c) =−(�(ucx + vy)z)z + u(�cz)xz + v(�cz)yz;
f13(c) = uRx(c) + vRy(c);

f23(c) =−�zRz(c)− �Rzz(c)− 2�R′
z(c)cz − �R′′(c)czcz:

Despite the simpli�cations introduced in (17), these commutators still turn out to be rather compli-
cated. The associated splitting error term Es becomes too long to provide even little insight. Therefore
a further simpli�cation is introduced below. In passing we note that f12, rewritten as

f12(c) =−�zuzcx − �zvzcy − 2�uzcxz − 2�vzcyz − �uzzcx − �vzzcy
+�xuczz + �xzucz + �yvczz + �yzvcz;

reveals that when u and v are constant in z and � is constant in x and y, the commutator f12
vanishes yielding a zero advection–di�usion splitting error.



210 D. Lanser, J.G. Verwer / Journal of Computational and Applied Mathematics 111 (1999) 201–216

We now proceed with the 2D problem,

ct + ucx = �czz + R(c); u constant; � = �(x); R(c) = R(x; c); (18)

with x and z as the independent space variables. Only a constant velocity in the x-direction exists,
the di�usion coe�cient � is restricted to a x-dependent function, and the reaction term R may only
depend on x, but not on z. For this model the split functions read

f1(c) =−ucx; f2(c) = �czz; f3(c) = R(c):

Of importance is that all three commutators,

f12(c) = u�xczz; f13(c) = uRx(c); f23(c) =−�R′′(c)czcz;

are unequal to zero, with the exception of special cases of course. In this sense su�cient generality
is maintained compared to (17). According to (16), after a long calculation

�2Es(c) = �2(E12(c) + E13(c) + E23(c)); (19)

where

E12(c) =− 1
24u

2�xxczz − 1
12u�xR

′′(c)czcz; (20)

E13(c) =− 1
24u

2Rxx(c) + 1
12u(R

′(c)Rx(c)− R′
x(c)R(c)) +

1
12u�R

′′
x (c)czcz; (21)

E23(c) =
�
24

(
(R′′(c)czcz)′(�czz + 2R(c))−

(
�
@2

@z2
+ 2R′(c)

)
(R′′(c)czcz)

)
: (22)

Even for the simpli�ed model problem (18) Es is still a rather complicated expression, providing
again little insight into the splitting error. We have to reckon with sti� chemistry, in which case
R and its derivatives can possess extremely large entries. Whether these large entries will actually
diminish the accuracy, depends in part on the size of R′′(c)czcz, being present in E12; E13 and E23.
Observe here that R′′(c) is a tensor, R′′(c)cz a matrix and cz a vector, so that componentwise

(R′′(c)czcz)(i) =
m∑

j; k=1

@2R(i)(c)
@c( j)@c(k)

c( j)z c
(k)
z :

If the chemistry is based on at most second-order reactions, which is normal in atmospheric chem-
istry, the second derivative operator R′′ is constant, that is independent of c. Further, many of the
entries will be zero since chemistry normally gives rise to very sparse Jacobian matrices (species
react with only a few others). However, at least a few large entries will always remain and the
coupling between fast (sti�) and slowly (nonsti�) reacting species will determine how these large
entries enter the local error.
Observe also that, in accordance with Theorem 1, E12 vanishes if � is constant and E13 vanishes

if R is independent of x. In general, E23 vanishes if and only if all entries of R′′ are zero. This is
the case for linear chemistry, that is for

R(c) = G c+ B(x; z);

with G a constant matrix. The source and sink vector B can still be space dependent. However,
in contrast to the di�usion-chemistry error, in this case the advection-chemistry error E13 does not
vanish as it is given by

E13(c) =− 1
24u

2Bxx + 1
12uGBx: (23)
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The advection–di�usion error reads

E12(c) =− 1
24u

2�xxczz:

As the error (23) illustrates, strong spatial variations in the sources and sinks contribute to the
splitting error.

4.2. Splitting advection and di�usion

We next examine the e�ect of only Strang splitting advection and di�usion for the 2D model
problem (18). In this case we are able to say more about the splitting error in relation to spatial
and time integration errors. So we consider the model problem,

ct + ucx = �czz; u constant; � = �(x): (24)

According to (20), the modi�ed equation for (24) reads

ct + ucx = �czz − 1
24�

2u2�xxczz +O(�4):

The error − 1
24�

2u2�xxczz can be seen as arti�cial di�usion due to splitting. To keep the local splitting
error su�ciently small, it turns out to be necessary that in �rst approximation

1
24�

2u2|�(x)xx|��(x): (25)

The explicit quadratic dependence on �u is clarifying as it reveals that in an actual application the
Strang splitting should work well, as long as for the numerical advection integration a normal CFL
condition holds and the split step size � is taken equal to the advection step size �t.
Let �x denote a mesh width in the x-direction. A normal CFL condition then is

�t|u|=�x6CCFL ≈ 1:
Inserting this condition and the equality �=�t in (25) gives

1
24C

2
CFL(�x)

2|�(x)xx|��(x):
If CCFL ≈ 1 and |�(x)xx| is of moderate size compared to �(x), the leading local splitting error
contribution will behave like O(�x)2. This order of accuracy is satisfactory in the sense that many
numerical advection schemes also generate O(�x)2 errors by the spatial discretization of the advec-
tion operator and O(�t)2 = O(�2) = O(�x)2 errors by the temporal integration. On the other hand,
if very large values for �u are allowed, as for example made possible by the use of an implicit
unconditionally stable advection integrator, or by many successive steps within split intervals with
a conditionally stable explicit one, then large splitting errors can arise.
Would we allow � in (24) to also depend on z, the modi�ed equation is given by

ct + ucx = (�cz)z − 1=24�2u2(�xxcz)z + 1=12 �2u{(−(�x�zz)z + (��xzz)z)cz
+(−3�x�zz + 3��xzz)czz + (−2�x�z + 2��xz)czzz}+O(�4):

Obviously, with appropriate modi�cations the above statements also hold for the case � = �(x; z).
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4.3. Reducing splitting errors

The error expressions (20)–(22) once again show that in general splitting errors will exist, because
they depend on very di�erent solution and problem properties. However, in actual applications it is
sometimes possible to eliminate at least part of the splitting error. In this paragraph we will consider
some of these possibilities.
For problem (17) one sometimes decides to solve chemistry and vertical di�usion coupled [2,11,12]

so as to avoid error terms like E23 resulting from splitting di�usion and chemistry. This coupled
solving involves the solution of a 1D di�usion–reaction system for every vertical column in a 3D
grid. Unfortunately, when the number of chemical species is large [11], in spite of the 1D nature,
a direct solution method using a standard band-solver in the linear algebra is costly. An itera-
tive tridiagonal Gauss–Seidel type process is a very competitive alternative though, but this type of
solution process only works for gas-phase chemistry [12]. Coupling between di�usion and chemistry
yields in some, but not in every case, an acceptable possibility to reduce the splitting error.
Part of the splitting error can be truly eliminated for problems of the form,

ct + ucx = f(x; c); u constant: (26)

We restrict ourselves to the 1D case, but the theory can easily be extended to 2D and 3D problems
with a nonconstant velocity �eld. Although f can represent any arbitrary nonlinear vector function
in Rm, we shall associate with f a chemical process. Note that our following derivation can also be
applied to problems like (17), where f(x; y; z; c) stands for vertical di�usion and chemistry. Observe
at last, as proved in Theorem 1, that the dependence of f on x in (26) is essential, because otherwise
no splitting error exists and our derivation is redundant.
We consider a special splitting technique for Eq. (26) similar to a semi-Lagrangian method. The

underlying idea has been discussed previously in [5,6] and in [4]. A Lagrangian methods solves

dc
dt
= f(x(t); c); ẋ = u; (27)

along the characteristics, using a moving grid to keep track of them. In case of a semi-Lagrangian
method one still solves (27) along the characteristics, but with this di�erence that no moving grid is
used and the solutions c(x∗ − u�; 0), needed as initial values for integration along the characteristics
to calculate the solutions c(x∗; �) in the gridpoints x∗, are found by interpolation between known
solutions in neighbouring gridpoints. Hence, within each time step a semi-Lagrangian method maps
the Lagrangian solution to an Eulerian grid.
Our splitting variant of this semi-Lagrangian method over an interval [0; �] is described as

@c1
@t
+ u

@c1
@x
= 0; c1(x; 0) = c̃(x; 0); (28a)

dc2
dt
= f(x(t); c2); ẋ = u; c2(x − u�; 0) = c1(x; �); (28b)

c̃(x; �) = c2(x; �):

First the advection step (28a) is carried out on an Eulerian grid. Then the second equation (28b) is
integrated on the same grid, but using x= x(t), with as initial value the solution obtained from the



D. Lanser, J.G. Verwer / Journal of Computational and Applied Mathematics 111 (1999) 201–216 213

proceeding advection step. Note here the resemblance with the semi-Lagrangian method. The initial
values needed for integration along the characteristics are determined in a proceeding step apart from
the actual integration. If the advection step is solved exactly on the grid, no splitting error occurs
between advection and chemistry. When no exact advection step is achieved, the errors, which
arise in an actual Eulerian advection step, resemble the interpolation errors of the semi-Lagrangian
method.
The way in which we obtain the solution to (28b) is not prescribed. One can think for instance

of applying a splitting scheme to split di�usion from chemistry or in case of gas-phase chemistry
one can decide to use the earlier mentioned iterative tridiagonal Gauss–Seidel solution method.

4.4. Strang splitting in initial boundary value problems

Till now, we restricted ourselves to pure initial value problems. In practical applications though,
we mostly encounter initial boundary value problems. When we use operator splitting in these
situations, we have to reckon with boundary errors. We will now focus on the subject of prescribing
boundary conditions in the intermediate steps of the Strang splitting and on the resulting possibility
of inconsistencies between these boundary conditions and the solutions calculated in the proceeding
intermediate steps. These inconsistencies can lead to numerical errors.
We consider once more the 2D autonomous problem (17) (v=0) now described over a bounded

domain {(x; z) | 06x62�; 06z6zH},
ct + ucx = (�cz)z + R(c); (29)

where u is constant in x and � and R can depend on x and z. As boundary conditions we prescribe
2�-periodicity in x-direction, and on z = 0 (the earth surface) and z = zH we prescribe

�cz = d(x)c + E(x); d(x)¡ 0 at z = 0; (30)

�cz = 0 at z = zH : (31)

The �rst condition describes the 
ux �cz at the earth surface in terms of deposition dc and emis-
sion E. The second condition describes a no 
ux condition at the upper boundary of our domain.
Our boundary conditions are chosen in close relation with boundary conditions found in practical
applications. �, d, E and R are assumed 2�-periodic in x, which occurs in true global models if x
is associated with the longitudinal direction [13].
We apply Strang splitting to system (29) over the interval [0; �], which yields

@c1
@t
+ u

@c1
@x
= 0; c1(x; z; 0) = c(x; z; 0); (32a)

@c2
@t
=
@
@z

(
�
@c2
@z

)
+ b:c:; c2(x; z; 0) = c1(x; z; �=2); (32b)

@c3
@t
= R(c3); c3(x; z; 0) = c2(x; z; �=2); (32c)
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@c4
@t
=
@
@z

(
�
@c4
@z

)
+ b:c:; c4(x; z; �=2) = c3(x; z; �); (32d)

@c5
@t
+ u

@c5
@x
= 0; c5(x; z; �=2) = c4(x; z; �); (32e)

where the initial value c(x; z; 0) in (32) satis�es the boundary conditions. Note that the boundary
conditions are prescribed in steps (32b) and (32d), so the solutions c2(x; z; �=2) and c4(x; z; �) always
satisfy the given conditions.
Consider the initial value for step (32b) delivered after exact time and space integration of step

(32a),

c2(x; z; 0) = c1(x; z; �=2) = c(x − u�=2; z; 0):
If uz 6= 0 for z = 0 and z = zH , then at time t = 0 in step (32b) the boundary conditions (30) and
(31) are not met, as can be seen from

@
@z
(c2(x; z; 0)) = cz

(
x − u �

2
; z; 0

)
− uz �2cx

(
x − u �

2
; z; 0

)
: (33)

The initial value for step (32b) is inconsistent with the boundary conditions prescribed in this step.
Numerical errors will exist if we do not choose the time step � large enough to damp out the initial
error due to this inconsistency. Note however that at the end of step (32b) the boundary conditions
are always met.
Now take uz=0, then c2z(x; z; 0)=0 holds when cz(x− u�=2)=0 as can be concluded from (33).

At a large distance from the earth surface uz = 0 is likely to happen, thus no boundary condition
inconsistency will exist at z = zH , when zH is chosen large enough. However, at the earth surface
we must satisfy

�(x; 0)c2z(x; 0; 0) = d(x)c2z(x; 0; 0) + E(x); (34)

or, inserting (33) into (34), where still uz = 0, we must satisfy

�(x; 0)cz(x − u�=2; 0; 0) = d(x)c(x − u�=2; 0; 0) + E(x):
In general this relation will only hold if �; d and E are independent of x.
Similarly we can show that in general the solution of the chemistry step (32c) used as initial

value in step (32d) introduces an inconsistency with the prescribed boundary conditions in this step.
If at z = zH

cz = 0 and Rz(x; z; c) = 0; (35)

no inconsistency is obtained, because the solution of step (32c) satis�es

@c3
@t@z

= R′(x; z; c3)
@c3
@z
+ Rz(x; z; c3):

For z = zH large enough, the assumptions (35) represent the realistic case. On the earth surface,
however, we expect an inconsistency, for Rz(x; z; c)=0 and also cz=0 may be violated there. Further,
it is possible that due to the prescribed emission and deposition condition (30) in step (32b) strong
transient exists, which can lead to a disturbance from the chemical equilibrium solution.
In [13] a comparison was made between solving the 3D problem (17) with a Rosenbrock method

in combination with approximate factorization, and with the Strang splitting method. Approximate
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factorization can be seen as a form of splitting performed at the numerical algebra level rather than
at the operator level as is done in Strang splitting. As boundary conditions were used

�cz = 0 at z = 0 and z = zH ;

while for the imposed wind�eld, uz = vz =0. In [13] it was argued that due to this form of splitting
at the numerical algebra level, operator splitting errors as well as errors, arising from inconsistencies
between the boundary conditions and the initial values prescribed in the intermediate steps in Strang
splitting, could be avoided. This should lead to more accurate solutions in favour of the Rosenbrock
method with approximate factorization. Results proved them right, but the gain in accuracy was
not as great as was expected. However, the results in [13] might have been too positive where
the Strang splitting method was concerned. The speci�c choice of the boundary conditions led to
no inconsistencies, while also the property uz = vz = 0 contributed to reduction of the splitting
error between advection and di�usion. In other words, in a more realistic situation, where boundary
conditions such as (30) and (31) can occur, the Rosenbrock method with approximate factorization
might be a good alternative to Strang splitting. Future research has to throw light on this aspect.

5. Conclusions

In this paper we focussed on operator splitting, where we mainly restricted ourselves to three-term
symmetrical Strang splitting primarily applied to time-dependent advection–di�usion–reaction (ADR)
problems. For pure initial value problems the Lie operator formalism proves to be very useful to
derive the structure of the splitting error. Through the notion of commutativity we are able to state
in which cases the usage of Strang splitting leads to no splitting error. Application of a three-term
symmetrical Strang splitting to pure initial value problems of the ADR-type leads to no splitting
error between advection, di�usion and chemistry, when, with exact integration of the intermediate
steps in the Strang splitting, the chemistry R(c) is linear in c, and the wind�eld u, the di�usion
coe�cient matrix K and R are independent of the spatial variable x.
However, in most applications splitting errors will occur. By relating the physics of the problem

with the commutators, we have conjectured that in air pollution models the splitting error will
oscillate with the diurnal cycle and will not grow beyond bound for evolving time. Unfortunately,
the splitting error expression is too complicated for real insight into its actual magnitude.
To avoid or reduce the splitting error several techniques can be applied. One concerns problems

of the form (17), where di�usion and chemistry can be solved coupled, so only a 1D di�usion–
reaction system has to be solved for every vertical column in 3D, avoiding an error due to splitting
di�usion and chemistry. Secondly, for problems of the form (26) an alternative splitting technique
exists, similar to a semi-Lagrangian method. A chemistry step is integrated along the characteristics
proceeded by an advection step on an Eulerian grid, leaving no splitting error if the advection step is
solved exactly and else resulting in an error similar to the interpolation errors of the semi-Lagrangian
method.
Several questions concerning operator splitting remain. A good start for further research is the

analysis of the splitting error in practical situations by using global Richard extrapolation to estimate
the splitting error for evolving time.
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