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Abstract 

In this paper we shall establish a new theorem on the existence and uniqueness of the adapted 
solution to a backward stochastic differential equation under a weaker condition than the 
Lipschitz one. 
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1. Introduction 

The equation for the adjoint process in optimal stochastic control (see Bensoussan, 
1982: Bismut, 1973; Haussmann, 1986; Kushner, 1972) is a linear version of the 
following backward stochastic differential equation: 

x(t) + f ( s ,  x(s), y(s))ds + [g(s, x(s)) + y(s)] dw(s) = X (1.1) 

on 0 ~< t ~< 1. Here {w(t): 0 ~< t ~< 1} is a q-dimensional Brownian motion defined on 
the probability space (f2,~' ,P) with the natural filtration {~-,:0~<t~< 1} (i.e. 

= a{w(s): 0 <<. s <~ t}), and X is a given ~-l-measurable Ra-valued random variable 
such that EIX[ 2 < oo. Moreover, f is a mapping from f2x [0, 1] x •d x R d×q to R d 

which is assumed to be ~ ®  ~ a ®  ~d×J~a×q-measurable,  where ~ denotes the 
a-algebra of ~-progressively measurable subsets of f2 x [0, 1]. Also 9 is a mapping 
from t2 x [0, 1] x R d to R d×q which is assumed to be ~ ® ~ a / ~ a  ×~-measurable. In the 
field of control, we usually regard y(. ) as an adapted control and x(. ) as the state of 
the system. We are allowed to choose an adapted control y(. ) which drives the state 
x( . )  of the system to the given target X at time t = 1. This is the so-called reachability 
problem. So in fact we are looking for a pair of stochastic processes 
{x(t),y(t):O <~ t <. 1} with values in Rdx R a×q which is ~ - ad ap t ed  and satisfies 
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Eq. (1.1). Such a pair is called an adapted solution of the equation. Pardoux and 
Peng (1990) showed the existence and uniqueness of the adapted solution under the 
condition that f ( t ,  x, y) and g(t, x) are uniformly Lipschitz continuous in (x, y) or in 
x respectively. More recently, Pardoux and Peng (1992) and Peng (1991) gave the 
probabilistic representation for the given solution of a certain system of quasilinear 
parabolic partial differential equations in terms of the solutions of the backward 
stochastic differential equations. In other words, they obtained a generalization of the 
well-known Feynman-Kac formula. In view of the powerfulness of the Feyn- 
man-Kac  formula in the study of partial differential equations, e.g. the KPP equation 
(cf. Freidlin, 1985), one may expect that the Pardoux-Peng generalized formula will 
play an important role in the study of quasilinear parabolic partial differential 
equations. Hence from both viewpoints of the control theory and the study of partial 
differential equations, it is useful to study the backward stochastic differential equa- 
tions in more detail. 

Pardoux and Peng (1990) established the existence and uniqueness of the solution 
to Eq. (1.1) under the uniform Lipschitz condition, that is there exists a constant 
K > 0 such that 

I f ( t , x , y )  -f(t,)c,)7)[ 2 ~< K ( l x  - )~l 2) + lY - .~12)  

I g ( t , x ) - g ( t , ~ ) [  2 ~< K l x -  ~l 2 a.s. 

a.s., (1.2a) 

(1.2b) 

for all x , ~ e  ~a,y, y e  ~a×q and 0 ~< t ~< 1. On the other hand, it is somehow too 
strong to require the uniform Lipschitz continuity in applications, e.g. in dealing with 
quasilinear parabolic partial differential equations. So it is important to find some 
weaker conditions than the Lipschitz one under which the backward stochastic 
differential equation has a unique solution. In the first instance, perhaps one would 
like to try the local Lipschitz condition plus the linear growth condition, as these 
conditions guarantee the existence and uniqueness of the solution for a (forward) 
stochastic differential equation. To be precise, let us state these conditions as follows: 
For each n = 1, 2, . . . ,  there exists a constant c, > 0 such that 

[ f ( t , x , y )  - f ( t , ~ , ~ ) [  2 <~ cn([x - -  .~[2 ...]_ [y -- 37[2) a.s., (1.3a) 

[O(t,x) -- g(t,g)[ 2 ~< c,[x -- ~12 a.s. (1.3b) 

for all 0 ~< t ~< 1, x, i e  R e, y, y e  R a×q with max{lxl, lNl, lyl, 1371} < n; and moreover 
there exists a constant c > 0 such that 

[ f ( t , x , y ) l  2 <<, c(1 + Ixl 2 + [y[2) and [g(t,x)l 2 <~ c(1 + Ixl 2) a.s. (1.3c) 

for all 0 ~< t ~< 1, x ~ Na, y e Rd×q. Unfortunately, it is still open whether (1.3a-c) 
guarantee the existence and uniqueness of the solution to the backward stochastic 
differential equation (1.1). The difficulty here is that the technique of stopping 
time and localization seems not to work for backward stochastic differential equa- 
tions. Now the question is: Are there any weaker conditions than the Lipschitz 
continuity under which the backward stochastic differential equation has a unique 
solution? 
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In this paper we shall give a positive answer. We shall propose the following 
condition: 

For all x, ~ ~ R d, y, 37 ~ R d x ~ and 0 ~< t ~< 1, 

I f ( t , x , y )  -f(t,2,37)[ 2 ~< x([x - 2[ 2) + e ly  - 37[2 a.s., (1.4a) 

19(t,x) - 9(t,2)12 ~< x(Ix - ~[2) a.s., (1.4b) 

where c > 0 and x is a concave nondecreasing function from R+ to R + such that 
x(0) = 0, x(u) > 0 for u > 0 and 

fo d u _  + ~(u)  ~ "  

The main aim of this paper is to show that under this condition the backward 
equation (1.1) has a unique solution. 

To see the generality of our result, let us give a few examples of the function x('). Let 
K > 0 and let 6 ~ (0, 1) be sufficiently small. Define 

x l (u)  = Ku,  u >>. O. 

~ulog(u-X), 0 ~< u ~< 6, 

xz(u) = [61og(6_1) + x ' z ( f - - ) ( u  -- 6), u > 6. 

f u l o g ( u - X j l o g l o g ( u - l ) ,  0 <<. u <<. 6, 
x3(u) = Z " " " "~61og(6-1) log log(6  -1)  + x~(6-) (u  - 6), u > 6. 

They are all concave nondecreasing functions satisfying 

I( du _ 

, +  ~ci(u) ~"  

In particular, we see that the Lipschitz condition (1.2a, b) is a special case of our 
proposed condition (1.4a, b). In other words, in this paper we obtain a more general 
result than that of Pardoux and Peng (1990). 

On the other hand, we should also bring the reader's attention to a recent paper of 
Pardoux and Peng (1994), in which somewhat different studies of the non-Lipschitz 
backward stochastic differential equations were presented, Pardoux and Peng (1994) 
considered a slightly special case of Eq. (1.1), i.e. the case when O(t,x) - O. In other 
words, they considered the following backward stochastic differential equation: 

f' f? x(t)  + f ( s ,  x(s), y(s)) ds + y(s) dw(s) = X (1.5) 

on 0 ~< t ~< 1. They showed the existence and uniqueness of a solution to Eq. (1.5) 
under the following conditions: f ( t ,  x , y )  is locally Lipschitz continuous in x but 
uniformly Lipschitz continuous in y; f ( t ,  x,  y) satisfies the linear growth condition; and 
the final value X is bounded. Besides, they also gave some other non-Lipschitz 
conditions. Essentially speaking, they assumed that not onlyf( t ,  x, y) is continuously 
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differentiable in (x, y) with locally bounded first-order derivatives but also X satisfies 
certain conditions, e.g. X is a bounded random variable belonging to the Wiener space 
and its derivatives on the Wiener space are bounded. A common feature in these 
results by Pardoux and Peng is that X needs to be bounded. However, X is generally 
in Lz in applications. Compared with their results, our result requires X in L2 only 
and is for a more general equation (1.1) than (1.5). Of course the techniques used and 
conditions proposed in our paper are different from those in Pardoux and Peng (1994) 
and the Bihari inequality will play a key role in our paper. 

We shall organize this paper as follows. We first formulate our main result in 
Section 2. We then prepare several lemmas in Section 3 and finally prove the main 
result in Section 4. 

2. Statements of main results 

Let us first introduce some notations. In this paper, let 1x1 denote the Eulclidean 
norm of x E lRd and (X,X) denote the inner product of x, X E Rd. An element y E Rd”4 
will be considered as a d x 4 matrix and its Euclidean norm is defined by 

T IYI = (trace(yy )) . 112 Denote by M'(0, 1; Rd) (resp. M2(0, 1; Rdxq)) the family of Rd- 
valued (resp. Rdxq -valued) processes which are $&-progressively measurable and are 
square integrable on Q x [0, l] with respect to P x ,I (here a denotes the Lebesgue 
measure on [O, 11). To state our main result, let us propose the standing hypotheses: 

(Hl) f(.,O,O) E M2(0, 1; Rd) and g(.,O) E M2(0, 1; Rdxq). 

(H2) Forallx,x~Rd,y,j~lRdxqandO~t~l, 

If(t,x,y) -f(t,%j)12 d ~(lx - A’) + cly - Y12) a.s., 

Ig(t,x) - &,X)1’ d rc(lx - Xl’) a.s., 

where c > 0 and K is a concave increasing function from R, to R+ such that K(O) = 0, 
K(U) > 0 for u > 0 and 

s du 
- 00. 

0+Ico- 
(2.1) 

Since K is concave and h-(O) = 0, one can find a pair of positive constants a and 
b such that 

rc(u)<a+bu forallub0. (2.2) 

We therefore see that under hypotheses (Hl) and (H2), f(. , x(. ), y( . )) E M2(0, 1; Rd) 
and g(.,x(.),y(.)) E M2(0, 1; Rdxq) whenever x(.) E M2(0, 1; Rd) and y(.) E M2 
(0,l; I?@-). 

Theorem 2.1. Assume (Hl) and (H2) hold. Then there exists a unique solution 
(x(.),y(-)) to Eq. (1.1) in M2(0, 1; Rd)x M2(0, 1; RdXq). 
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As an immediate application we obtain the following corollary, which is the main 
result of Pardoux and Peng (1990). 

Corollary 2.2. Let (H1) hold. Assume there exists a c > 0 such that 

I f ( t , x , y )  - f ( t ,~ ,Y) l  2 ~< c(Ix - ~12 + lY - 3712) a.s., 

Ig(t,x) - g(t,:f)l 2 ~< clx - :fl 2 a.s. 

for all x ,~  e R d, y,37 e R d×~ and 0~<t~< 1. Then there exists a unique solution 
(x( " ), y( " )) to Eq. (1.1) in M2(0, 1; R d) x M2(0, 1; Rd×q). 

3. Lemmas 

In order to prove the main result we need to prepare a number of lemmas. We first 
introduce a lemma due to Pardoux and Peng (1990). 

Lemma 3.1 (Pardoux and Peng, 1990). Let g( ' )  e M2(0, 1; ~d×q) and 
f :  f2 x [0, 1] x R d×q ~ R d be a mapping such tha t f ( ' ,O)  ~ M2(0, 1; R d) and 

I f ( t , y ) - f ( t , 3 7 ) l  2~<cly-3712 , y,37e R a×q, 

for some c > O. Then there exists a unique solution (x(" ), y(" ) ) in 
M2(0, 1; •a) x M2(0, 1; R a×q) to the following backward stochastic differential equation: 

ft  I ~ /  
x(t) + f ( s ,y ( s ) )ds  + [0(s) + y(s)] dw(s) = X, 0 -%< t ~< 1. 

We now construct an approximate sequence using a Picard-type iteration with the 
help of Lemma 3.1. Let xo(t) - O, and let {xn(t), yn(t): 0 ~< t ~< 1}~ ~ 1 be a sequence in 
M2(0, 1; N d) x M2(0, 1; R e×q) defined recursively by 

f? x~(t) + f ( s , x , - l ( s ) , y , ( s ) ) d s  + [O(s, xn-l(s))  + y~(s)]dw(s) = X (3.1) 

o n 0 ~ < t ~ < l .  

Lemma 3.2. Under hypotheses (HI) and (H2),for all 0 <~ t <~ 1 and n >~ 1, 

~< C1 and E y~ lyn(s)12 ds <% C2, (3.2) Elxn(t) l 2 

where C1 and C2 are both positive constants. 

Proof. Applying ItO's formula to ]x~(t)l 2 one can derive that 

EIx.(t)l 2 + E ly.(s)12 ds 
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= E I X I  2 - 2E  (x . (s) , f (s ,x ._l(s) ,y . (s)))ds  

f/ - E (lO(s,x._~(s))l 2 + 2trace[o(s,x._l(s))y.(s)T])ds. 

Using the elementary inequality 2[uv[ ~< u2/~ + O~V 2 for any ~ > O, one sees 

;) Elx.(t)l 2 + E ly.(s)12ds 

f /  f /  
= E I X I  e + ~-IE Ix.(s)leds + ~E If(s,x._l(s),y.(s))leds 

f/ ; + ~-IE Ig(s,x,,_l(s))12ds + o~E ly,,(s)12ds. 

But by hypotheses (H1), (H2) and (2.2) one can easily show that 

If(s,x._~(s),y.(s))l  z <<. 2lf(s,O,O)l z + 2a + 2blx._a(s)l z + 2cly.(s)l z 

and 

Io(s,x._l(s))l 2 ~ 210(s,O,O)l 2 + 2a + 2blx._x(s)l 2. 

Substituting these into (3.3) gives 

f l EIx.(t)l 2 + E ly.(s)le ds 

~< C3(~) + c~ -1 Elx.(s)leds + 2b(~ + ~-1) Eix._l(s) leds  

+ ~(2c + 1)E ly.(s)l 2 ds ,  

where 

(3.3) 

r l  
C3(~) =EIXI 2 + 2a(~ + ~ - 1 ) +  2~E Jo lf(s'O'O)12ds + 2ct-lE Jo Ig(s,O,O) 12ds. 

In particular, choosing ~ = 1/2(2c + 1) and setting fl = (2(2c + 1)) - l  + 2(2c + 1)] 
we get 

Elx.(t)l 2 + ½E ly.(s)l 2 ds 

f/ f/ ~< C4 + 2(2c + 1) Elx.(s)12ds + 2bfl EIx._l(s) leds 
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f;( ) ~< C4 + C5 sup EIx~(s)l e ds,  (3.4) 

where C4 = Ca(1/2(2c + 1)) and C5 = 2(2c + l) + 2bfl. Now let m be any integer. If 
1 ~ n <~ m, (3.4) gives (recalling Xo(t) - O) 

f?( ) Elxn(t)l 2 ~ C4 + C5 sup ElXk(S)I 2 ds.  

Therefore 

( ) ;;( ) sup ElXk(t)l 2 ~ c4 + C5 sup EIxk(s)l 2 ds. 
l<~k<~m l<~k<~m 

An application of the well-known Gronwall inequality implies 

( sup EIXk(t)'2) ~ C4ec ' ' ' - ' )  ~ <~k <~m 

Since m is arbitrary, the first inequality of(3.2) follows by setting C1 = Cge c~. Finally 
it follows from (3.4) that 

E f ~  ly,(s)12 ds ~ 2(C4 + C5C0 :-- C2. 

The proof is complete. [] 

Lemma 3.3. Under hypotheses (H1) and (H2), there exists a constant C6 > 0 such that 

;? Elx.+m(t) - x.(t)] 2 ~< C6 x(Elx.+m-x(S)  - -  X n - l ( S ) 1 2 ) d s  (3.5) 

for all O <~ t <<, l and n, m >>, 1. 

Proof. Applying It6's formula to [xn+,.(t) - x.(t)] 2 we have 

- E l x . + m ( t ) -  x.(t)l 2 

= 2E (x.+m(s) - x .(s) , f (s ,x~+.,- l(s) ,y .+m(s))  - f ( s , x . _ l ( s ) , y . ( s ) ) ) d s  

+ E Ig(s ,x .+m-l(s))  + y.+m(s) - g (s ,x . - l (S) )  - y.(s)leds.  (3.6) 

By Jensen's inequality we can then deduce in the same way as the proof of Lemma 
3.2 that 

glx.+m(t) - Xn(t)l 2 + 1 E ly.+m(s) - y.(s)l 2 ds 

I/ f? ~< 2(2c + 1) Elxn+m(s) - x.(s)le ds + 2fl x (EIx .+m-l ( s )  - x . - l ( s )12)ds .  

(3.7) 
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N o w  fix t ~ [0, T ]  arbitrarily. If t ~< r ~< T, then 

f/ Elxn+m(r) - xn(r)l 2 <~ 2(2c + 1) Elxn+m(s) - x~(s)l 2 ds 

f/ + 2fl x (E Ix~+m- l ( s )  -- x ~ - l ( s ) l e ) d s .  

In view of the Gronwal l  inequality we see that  

;/ EIx~+m(t) - xn(t)l e ~ 2fie 2~2c+ 1)"- ' )  x (EIx~+m- l ( s )  - X~-l(S)12)ds.  

So the required (3.6) follows by setting C6 = 2fie 2(2c+1). The  p roof  is complete. [ ]  

L e m m a  3.4. Under hypotheses  (HI)  and (H2), there exis ts  a constant  C7 > 0 such that  

EIx.+m(t)  - x~(t)l 2 ~< C7(1 - t) f o r  all 0 <<. t <<. 1 and n ,m  >>. 1. 

Proof.  By Lemmas  3.3 and 3.2, 

f l Elxn+,,( t)  - xn(t)l 2 ~< C6 x(4C1)ds = C6x(4C1)(1 - t) 

and the conclusion follows by letting C7 = C6K(4C1). The proof  is complete. [ ]  

We now start to prepare a key lemma. To  do so, let us introduce some new 
notations.  Choose  TI E [0, 1) such that  

i ( C 7 ( 1 - t ) ) ~ < C 7  for a l l r l ~ < t ~ < l ,  (3.8) 

where if(u) = C6x(u). Fix m ~> 1 arbitrari ly and define two sequences of functions 
{qgn(t)}.~> 1 and {¢~,.~(t)}~> 1 as follows: 

~o~(t) = C7(1 - t), 

f/ % + 1 ( 0  = ff(qo~(s))ds, n = 1,2 . . . . .  

Oo,~(t) -- e l x o + ~ ( t )  - x n ( t ) l  2,  n = 1 , 2  . . . .  , 

L e m m a  3.5. Under hypotheses  (H1) and ( H 2 ) , f o r  any m >t 1 and all n >>. 1, 

0 ~< ~.m(t)  ~< q~(t) ~< ~0~_l(t) ~< ... ~< q~(t) i f t e  [ T I , 1 ] .  (3.9) 

Moreover ,  the value 1 - TI depends only on the func t ion  x and not on the f ina l  value X .  

Proof.  First of all, by Lemma  3.4, 

(P l , rn( t )  = EIx1 +re(t)- xl(t)l  2 ~< C7(1 - t ) =  ¢ p l ( t ) .  
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Now by Lemma 3.3, 

(o2.~,(t) = EIx2+m(t) - x2(t)l 2 ~< C6 K(Elxl+m(s) -- xl(s)12)ds 

= e ( ~ , . m ( s ) ) d s  ~< ~ ( ~ o l ( s ) ) d s  = ~,02(t). 
t 

But by (3.8) we also have 

X/ f/ q92(t) = g(C7(1 - s))ds ~< C7 ds = C7(1 - t) = ~pl(t). 

In other words, we have already showed that 

q32.m(t) ~< ~p2(t) ~< ~p,(t) if t e [T1, 1].  

We next assume that (3.9) holds for some n >/2. Then by Lemma 3.3 again, 

f f  f t '  
(]')n+ 1,m(t) ~ ff((pn, m(s))ds <<. g(9%(s))ds = ~pn+ i(t) 

I/ ~< ~((0n- l(S))ds = ~0n(t), 

that is, (3.9) holds for n + 1 as well. So, by induction, (3.9) must hold for all n/> 1. 
To show the fact that the value 1 - T1 depends only on the function ~ and not on 

the final value X, note that (3.8) holds if 

C6~c(C7(1 - TI)) ~< C6~(4C1) or C7(1 - T1) = C6~(4C1)(1 - r l )  ~< 4C1. 

But, by (2.2), this holds if 

C6(a + 4bC1)(1 - T,) ~< 4C1 

and so if 

C6(1 + 4b)(1 - T1) ~< 4 

since Cl ~> a. In other words, if we choose 1 - T1 = 4/[C6(1 + 4b)] < 1, then (3.8) 
holds. Recalling the definition of C6, one sees clearly that 1 - T1 depends only on the 
function ~c and not on the final value X. The proof is complete. []  

Furthermore let us now state the Bihari inequality (cf. Bihari, (1956); Mao, 1991) 
which will be a key tool in the proof of Theorem 2.1. 

Lemma 3.6 (Bihari's inequality). Let  T > 0 and uo >1 0. Let  u(t), v(t) be continuous 
functions on [0, T].  Let  H : R +  ~ N+ be continuous and nondecreasing such that 

H(r) > 0 for  r > O. I f  

u(t) <~ Uo + I t v(s)H(u(s))ds for  all 0 <<. t <~ T ,  
3o 
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u(t) <<. G- l (G(uo)  + f l  v(s)ds ) 

for all such t ~ I-0, T ]  that 

G(uo) + f l  v(s)ds D o m ( G - 1 ) ,  

where 

fl as 
G(r) = ~ for r >~ O 

and G-~ is the inverse function of  G. In particular, if, moreover, Uo = 0 and 

+ H(s) 00 

then u (t) = 0 for all 0 <<. t <~ T. 

At last we can now start  to p rove  our  main  result, T h e o r e m  2.1. 

4. Proof of Theorem 2.1 

Existence: We claim that  

sup E l x . ( t ) -  xk(t)l 2 ~ 0  as n,k ~ o o .  (4.1) 
Tl ~ t <~ l 

Note  tha t  ~o. is cont inuous  on IT1, 1] due to an obvious  uniform bound  on dtp,(t)/dt. 
Note  also that  for each n />  1, (p.(t) is decreasing on IT1, 1], and for each t, (on(t) is 
nonincreasing monoton ica l ly  as n -~ oo. Therefore  we can define the function ~o(t) by 

~0.(t)~ q~(t). I t  is easy to verify that  q~(t) is con t inuous  and  nonincreasing on IT1, 1]. By 
the definition of ~0.(t) and ~o(t) we get 

f/ ;: q~(t) = lim q~.+~(t)= lim ~(q~.(s))ds = ff(~o(s))ds, t e [ r l ,  1].  

Since 

fo  d u _  + ~(u) oo, 

Bihari 's  inequali ty implies that  ~o(t) - 0 on t ~ IT1, 1]. Consequent ly ,  ~o.(T0$0 as 
n -* oo. So for any e > 0, one can find an integer N ~ 1 such that  q~.(T~) < e whenever  
n t> N. N o w  for any m/>  1 and n />  N, by L e m m a  3.5, 

sup Elx .+ , . ( t ) -x . ( t ) l  2 = sup ~.,m(t) ~< sup tp.(t) = ¢p.(T1) < e. 
Tl <~ t <~ l Tl  <~ t <~ l T~ <~ t <<. l 
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So (4.1) must hold. Applying (4.1) to (3.7) we see immediately that {x,(. )} is a Cauchy 
sequence in M 2 ( T ,  1; R d) (which can be defined similarly as M2(0, 1; Rd)) and {y,( ')} 
is a Cauchy sequence in M2(T1, 1; Rdx~). Define their limits by x(. ) and y(-) respec- 
tively. Now letting n ~ oo in (3.1) we obtain 

x(t) + f (s ,  x(s), y(s))ds + [9(s, x(s)) + y(s)] dw(s) = X 

on T1 ~< t ~< 1. In other words, we have showed the existence of the solution on 
[T1, 1]. Note from Lemma 3.5 that the value 1 - Tx depends only on the function 
x and not on the final value X. Hence one can deduce by iteration the existence on 
[1 - k(1 - T~), 1], for each k, and therefore the existence on the whole [0, 1]. The 
existence has been proved. 

Uniqueness: To show the uniqueness, let both (x( ' ) ,y( ' ) )  and (2('),37(-)) be the 
solutions of Eq. (1.1). Then, in the same way as the proof of Lemma 3.2 one can show 
that 

E[x(t) - ~(t)l 2 + ½E ly(s) - ~f(s)12 ds 

i' 
~ 2r2(2c + 1) + (2(2c + 1)) -~]  [EIx(s) - ~(s)l 2 + ~:(EIx(s) - ~(s)l~)] ds 

for 0 ~< t ~< 1. Since x( ' )  is a concave function and x(0) = 0, we have 

x(u) >1x(1)u f o r 0 ~ < u ~ < l .  

So 

fo du x(1) fo du 
+ u + x(u-----~) >>" x(1) +---------i + x(u) 

- - 0 0 .  

Therefore one can apply the Bihari inequality to (4.2) to obtain 

E l x ( t ) - ~ ( t ) [  z = 0  for a l l 0 ~ < t ~ < l .  

(4.2) 

So x(t) = ~(t) for all 0 ~< t ~< 1 almost surely. It then follows from (4.2) that y(t) = p(t) 
for all 0 ~< t ~< 1 almost surely as well. The uniqueness has been proved and the proof 
of the theorem is then complete. 
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