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ABSTRACT. - In this article we prove new results concerning the long-time behavior 
of solutions to a class of non-autonomous semilinear parabolic Neumann boundary-value 
problems defined on open bounded connected subsets Q of RN. The nature of the equations 
that we investigate leads us to consider two complementary situations, according to whether 
the time-dependent lower order terms in the equations possess recurrence properties. If the 
lower order terms are recurrent, we prove that every solution stabilizes around a spatially 
homogeneous and recurrent solution of the same Neumann problem in the C’ (@-topology. In 
contrast, if the lower order terms are not recurrent, the asymptotic states need not be solutions 
to the original problem and we prove that every solution stabilizes around such an asymptotic 
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state, again in the C’ (a)-topology. In all cases the dynamics of the asymptotic solutions 
are governed by a compact and connected set of scalar ordinary differential equations, 
which are thereby asymptotically equivalent to the original Neumann problem for large 
times. A major difficulty to be bypassed in the proofs of our theorems stems from the 
fact that we allow the nonlinearities to depend explicitly on the gradient of the unknown 
function. Our method of proof rests upon the use of comparison principles and upon 
the existence of exponential dichotomies for the family of evolution operators associated 
with the principal part of the equations. It is also based on ideas that stem from the classic 
reduction methods of non-autonomous finite-dimensional dynamical systems originally devised 
by MILLER, STRAUSS-Y• RKE and SELL. 0 Elsevier, Paris 

1. Introduction and outline 

In this article we investigate the long-time behavior of classical solutions 
to non-autonomous Neumann boundary-value problems of the form 

ut(x, t) = k(t) AZ+, t) + s(t)g(u(z, t), V+, t)), 

(1.1) 

(:L t) E X2 x R+ 

In relation (1.1) R denotes an open bounded connected subset of R”’ with 
a sufficiently regular boundary dR, Ran (u) denotes the range of u and 
n the normalized outer normal vector to 82 We assume that the three 
functions k, s and g satisfy the following hypotheses, respectively: 
(K) We have k E CL” (R, , + R+) with h E (O? l] (Holder-Lipschitz 
continuity of exponent h) and 

k = inf k(t) > O! 
ER,+ 

Ic = sup k(t) < XI. 

fER,: 

(S) We have s E P (R, R) with p E (0, l] ; moreover t + s (t) = 0 (I) 
and t --+ so” @s(t) = O(1) as ItI -+ 30. 
(G) We have g E C1 ([un, ~11 x R”) where the numbers ~0; ur E R 
are such that g (~0, 0) = g (~1, 0) = 0 and g (u, 0) > 0 for every 
u E (~0, ~1). Moreover, we assume that there exists a bounded function 
c: [uo, ul] --f Ro+ such that 1 g (u, q) - g (u, 0) 1 5 c(u) 1 q I2 for every 
q E R”. 
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LARGE-TIME ASYMPTOTIC EQUIVALENCE 339 

Problems of the form (1.1) have a plethora of applications in various 
areas of science, ranging from theoretical physics to population dynamics, 
including the theory of heat diffusion, of nerve pulse propagation and 
of population genetics [3]. For this reason alone it is essential that one 
investigates the long-time behavior of solutions to Problem (l.l), since 
for many applications only the knowledge of the ultimate behavior of 
solutions is relevant. 

There have been several recent works devoted to related questions, which 
pertain to a variety of reaction-diffusion equations that bear some analogy 
with Problem (1.1) ([8], [lo], [ll], [12]). However, many of these deal 
with situations where both Ic and s are periodic functions of equal period, 
and where 9 is independent of VU. In such cases the end result depends in 
a very sensitive way on various hypotheses regarding the average behavior 
of s. Accordingly, the ultimate behavior of solutions can be described 
by a global attractor that may consist of either the constant ua, or of 
the constant ~1 or of a one-parameter family of time-periodic solutions 
which are spatially homogeneous. In all of these cases the method of 
proof is basically the same: one exploits the periodicity of the equation 
to deduce important spectral information about the corresponding Poincare 
map through the Krein-Rutman theory, which one then combines with some 
fundamental ideas from the theory of monotone dynamical systems. This 
approach has been thoroughly discussed in the monograph by HESS [ 121, 
and further developed by BRUNOWSKI et al. [5], TAKAC [26] and by DANCER 
and HESS [6] for the analysis of more complicated periodic problems. 
In this context, it is worth observing that the first result concerning the 
long-time behavior of solutions to problems of the form (1.1) with 5 = 1, 
s periodic and g dependent on VU is as recent as 1991, and is again 
by DANCER and HESS (see Proposition 5 of [7]) (For another recent work 
concerning discrete-time dynamical systems, see [ 171). 

When the functions Ic and s are no longer periodic and when g depends 
explicitly on VU, the investigation of the long-time behavior of solutions 
to parabolic problems of the form (1 .l) leads to many qualitatively new 
difficulties which prevent one from applying the method of [ 121. On the 
one hand, there is no natural and useful substitute for the notion of Poincare 
map; on the other hand, Liapunov functionals are not readily available, 
if available at all. This set of difficulties recently prompted some authors 
to develop new methods to handle certain classes of non-autonomous and 
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non-periodic problems. For instance, SHEN and YI investigated a class 
of almost-periodic parabolic problems in one space dimension through a 
detailed analysis of the corresponding skew-product flows ([23], [24]), 
while one of the present authors developed a stable- and center-manifold 
theory to analyze problems of the form (1.1) with k = 1, s almost-periodic 
and 9 independent of VU ([28]-[31]). In these four works, we studied 
the long-time behavior of all classical solutions to such problems, and we 
also characterized their stabilization properties by explicit rates of decay. 
Moreover, we also obtained a rather complete description of the geometry 
of the corresponding flow, of the global attractor and of its Liapunov 
stability properties. 

In this paper our primary purpose is to investigate the stabilization 
properties of solutions to Problem (1.1) when hypotheses (K), (S) 
and (G) hold. The nature of Problem (1 .I) leads us to consider two 
complementary situations, according to whether the function s possesses 
recurrence properties. If s is recurrent, we can prove that each classical 
solution stabilizes around a spatially homogeneous and recurrent solution 
of the same Neumann problem in the C* (n)-topology. In contrast, if s 
is not recurrent then the asymptotic states are no longer solutions of 
Problem (1.1) and we exhibit conditions that ensure the stabilization 
around such asymptotic states, again in the C1 @)-topology. Our main 
results concerning both cases are stated and further discussed in Section 2. 
In each case the dynamics of the asymptotic solutions are governed by 
scalar ordinary differential equations, which are thereby asymptotically 
equivalent to Problem (1 .l) for large times. Our proofs of the main 
results are carried out in Section 3, where we first prove a stabilization 
result for the orbits of an infinite-dimensional dynamical system associated 
with Problem (1.1) in the strong topology of the Sobolev space H2J’ (0) 
where p E (max (N, 2)) 00). Our method of proof there rests upon the 
existence of exponential dichotomies for the family of linear evolution 
operators associated with the principal part of Problem (I. l), and upon the 
use of parabolic comparison principles. A major difficulty to be bypassed 
there is the explicit dependence of 9 on VU. The stabilization result 
of Section 3 then directly leads to the proofs of the theorems stated in 
Section 2. Finally, we devote Section 4 to some concluding remarks and 
we refer the reader to [4] for a short announcement of the results. 
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Our work was primarily motivated by the desire to provide some 
new insights into the qualitative behavior of solutions to boundary-value 
problems of the form 

of which Problem (1 .l) represents a special separable case. We defer the 
presentation of our results concerning (1.2) to a separate publication. 

2. Statements and discussion of the main theorems 

Throughout the remaining part of this article we assume that R has a 
C3+]N/2]-boundary in the sense of [l] in such a way that R lies only on 
one side of 80, and that it satisfies the interior ball condition for every 
x E dR [9]. We also assume that all functions that we define on R or 
on si are real-valued and make no further mention of the matter. We 
are primarily interested in the long-time behavior of classical solutions to 
Problem (1.1). In order to define this notion properly, let C”*l (0 x R+) 
be the set consisting of all functions z E C (R x R+) such that (2, t) -+ 
D^ 8; z (x, t) E C (a x R+) for each Q! = (CQ, . . , o-v) E N’v and 
each y E N satisfying E,Fl, ~j + 27 5 2. In a similar way we define 
Cl.” (a x Rf ) as the set consisting of all x E C (ax RS 

II 
with the property 

that D” z E C (a x R’) for every Q E N” such that Cj~, cyj < 1. It will 
be essential later that both u and Vu possess Holder-Lipschitz continuity 
properties in the time variable. This remark motivates the following. 

DEFINITION 2.1. - A function u E C”,l (fl x R+) n C (fi x R$) n 
Cl.* (2 x R$) is said to be a classical solution to Problem (1.1) if the 
following conditions are satisfied: 

(Cl) There exist 6’ E (0, 11, T E R+, and a function c E Lp (0) with 
P E (max (N, 21, oo) such that Ju(z, t) -u((z, t’)j 5 c(z))&t’JH 
and 1 Vu (2, t) - Vu (z, t’) 1 5 C(X) 1 t - t’ 1” for almost every z E 52 
and for every t, t’ E [T, co). 
(CZ) .7: -+ ~((2, t) E C2 (2) for every t E R$. 
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(C3) (z, t) -+ ut (x, t) E C (R x R,f), t 4 ‘LL~ (x, t) E C (R+) 
uniformly in 3: E fi and u satisfies relations (1.1) identically. 

As already noticed in Section 1, the structure of Problem (1.1) makes 
it convenient to distinguish between the cases where s is recurrent and 
where it is not. The appropriate notion of recurrence is here the following. 

DEFINITION 2.2. - A function s satisfying hypothesis (S) is said to 
be recurrent if there exists at least one real sequence (t,, ) + !X such 
that the sequence of translates (st,, ) defined by st,, (t) = s (1; + t,, ) 
converges locally uniformly to s on R as 7~ + x; in other words 
“Upt~I 1 s (t + 6,) - s (t) 1 -3 0 as n -+ 30 for every compact interval 
I c R. 

We call the sequence (t,, ) of the preceding definition a returning sequence 
for s. Our first result is then the following. 

THEOREM 2.1. - Assume that hypotheses (K), (S) and (G) hold and 
let u be any classical solution to Problem (1 .l). Then the following two 
statements are equivalent: 
(a) The function s is recurrent. 
(b) There exists a unique classical solution C qf (1 .l), independent of :C 
and recurrent. such that 

(2.1) 
(lirr& sup 1 u (x; t) - ?I (t) 1 = 0 

.rEl;i 
lim sup 1 VU (x, t) 1 = 0 

f-+x- .rEG 

Moreover, if either statement (a) or (b) holds, we may choose the same 
returning sequence for ii as we do for s. 

Remarks. 
1. It is plain that the class of recurrent functions contains the algebra of 

all (Bohr) almost-periodic functions satisfying property (S): it is sufficient 
to choose (tn) as any sequence of almost-periods diverging to infinity. 
Thus, if s is periodic and if k = 1, we recover a result of DANCER and HESS 
stated in Proposition 5 of [7] in a slighly weaker form. We also note that 
the method of proof of these two authors is strictly limited to the periodic 
case, as they rely on the theory of discrete monotone dynamical systems. 

2. As a spatially homogeneous solution of Problem (l.l), 2 satisfies the 
separable initial value problem G’(t) = s (t) g (G (t), 0), ;ii (0) E (UC), ~1) 
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for every t E R. In such a case we say that this separable problem is 
asymptotically equivalent to (1.1) for large times. In a certain sense, the 
reduction of Problem (1.1) described in Theorem 2.1. corresponds to a 
reduction by a center-manifold of dimension one (compare with the proof 
given in Section 3). 

3. By our definition of recurrence, the function G of Theorem 2.1 
satisfies suptEI ]G (t + tn) - ;ii (t)l --+ 0 as n --) cc for every compact 
interval I C R. This is a very particular situation in that if s is not 
recurrent, sequences of translates of the form t --) ;ci (t + tn) where 2 is 
any s-independent solution of (1 .l) need not converge to any solution of 
(1.1). In fact, it is quite possible that the solutions of (1.1) stabilize around 
asymptotic states which are no longer solutions of the same boundary-value 
problem. The main difficulty here lies in the determination of what those 
asymptotic states are, and in the determination of their governing equations. 

We begin our analysis of the non-recurrent case with the following result. 

THEOREM 2.2. - Assume that hypotheses (K), (S) and (G) hold and 
let u be any classical solution to Problem (1 .l). Then the following two 
statements are equivalent: 
(a) We have JOm d< s (E) < co. 
(b) There exists a unique constant a, E (ILO, ~1) such that 

(2.2) 
lim sup 1 u (LX, t) - a,, 1 = 0 

t-+m .&I 
lim sup 1 Vu (x, t) ) = 0 

t-ix .ra 

Remarks. 
1. The statement of the preceding theorem is intuitively clear for 

functions s of the form s (t) = e-It1 or s (t) = (1 + ] t I)-” where 
cy E (1, co), in that the nonlinear term of (1.1) “rapidly goes to zero” as 
t --f co. But it is plain that Theorem 2.2 fails to hold for functions of the 
form s(t) = (1 + ItI)-* w h ere QI E [0, 11. We also note that condition (a) 
alone holds for functions like s (t) = sin (t2). Although this function is 
not Holder continuous and does not go to zero when t -+ 00, we still get 
the stabilization of all classical solutions of (1 .l) to some a,, E (~0, ~1) 
in this case, but only in the LF’ (IR)-topology (compare with the arguments 
of Section 3). 
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2. Condition (a) is indeed a condition of non-recurrence: it would easily 
follow from the recurrence of s and condition (a) that s = 0 (compare 
with the arguments of Section 3). 

3. With the exception of the trivial case s = 0, it follows from hypothesis 
(G) that the constant u,, is not a solution to Problem (1 .l). Thus 
if condition (a) of Theorem 2.2 holds, Problem (1.1) is asymptotically 
equivalent to the trivial problem ;ii’ (t) = 0, ;ii (0) E (~0, ~1) for large 
times! This means that every classical solution to (1.1) stabilizes around 
an asymptotic state that is spatially and temporally homogeneous. 

It remains to consider cases where s is not recurrent and where 
--cc < liminftim Ji d< s (<) < limsupti, Ji d< s ([) < w. We 
begin with the following result, which may be considered as an extension 
of the first two. 

THEOREM 2.3. - Assume that hypotheses (K), (S) and (G) hold 
and let u be any classical solution to Problem (1 .I). If s = sg + s1 
where so is continuous and recurrent and if j;,” d< s1 (0 < 30, then 
there exists a unique classical solution ;iio of the initial value problem 
2’ (t) = sg (t) g (52((t), 0), C(O) E (~0. ul), independent of :I: and 
recurrent, such that 

(2.3) 

)Jll sup 111 (X, t) - Bo (t) / = 0 
.J%n 

lim sup ( Vu (2, t) 1 = 0 
t-cc .rEiZ 

Moreover, we may choose ,for 60 the same returning sequence as we do 
for so. 

Remarks. - Theorem 2.3 clearly reduces to Theorem 2.1 if s1 = 0, and 
to Theorem 2.2 if SO = 0. In the general case we may summarize the 
statement of Theorem 2.3 by saying that Problem (1.1) is asymptotically 
recurrent. For instance, we may take s (t) = cy=r sin (wjt) + e-1’1 where 
the set of frequencies {WI, . . . , w7# } is rationally independent: the function 
t -+ e-It1 is here completely irrelevant to the long-time dynamics, which 
are quasi-periodic. Finally, notice that the condition on s in Theorem 2.3 is 
sufficient but not necessary for the statement to hold, unless one strengthens 
the hypothesis on SO a bit (compare with the proofs given in Section 3). 

The above three theorems show that the ultimate behavior of all classical 
solutions to Problem (1.1) depends in a very sensitive way on the ultimate 
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behavior of s. In order to handle the general case and to encode the 
long-time behavior of s into our theory, we shall now invoke methods 
from topological dynamics that can be traced back to the original works 
of MILLER [16], STRAUSS-Y• RKE [25] and SELL [20]-1221). These works 
concern the reduction of finite-dimensional non-autonomous dynamical 
systems and the underlying theory of limiting equations. Write momentarily 
C (R) for the Frechet space that consists of all continuous functions on 
R endowed with the topology of uniform convergence on compact sets. 
For any s E C (R) satisfying hypothesis (S), let E (s) c C(R) be the set 
consisting of all functions s* for which there exists a sequence (tz) --+ cc 
such that ;rry ]s(t + tz)-s* (t)] -+ 0 as n ---f cc for every compact interval 

I c R. It is clear that E (s) coincides with the w-limit set of s relative to 
the dynamical system induced by the time-translation operator in C (R), 
so that much of the information needed regarding the long-time behavior 
of s is already contained in E (s). Our next result describes a reduction 
of Problem (1.1) to ordinary differential equations whose dynamics are 
governed by the elements of E (s). It is exclusively based on hypotheses 
(K), (S) and (G) and thereby includes the general case where 

t t (2.4 --cx) < ll;mt;onf + .I d< s (<) < lim sup .I 4 s 69 < cc 
0 t-ice 0 

The trade-off for this degree of generality is, however, that we shall have 
to settle for a slightly weaker convergence result. 

THEOREM 2.4. - Assume that hypotheses (K), (S) and (G) hold and let 
‘IL be any classical solution to Problem (1.1). Then the following statements 
hold: 

(a) The set E (s) is a non-empty, compact, connected and invariant subset 
of C P-0 
(b) For any s* E E (s), there exists a sequence (tn) -+ CC and a classical 
solution U* of the initial-value problem (u*)’ (t) = s* (t) g (u* (t), 0), 
U* (0) E (~0, UI), t E R, such that the relation 

(2.5) lim sup sup Iu(2, t + tn) - U* (t)] = Cl 
R’CO fEI xc3i 
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holds for every compact interval I C R. Moreover, we have 

(2.6) 

Remarks. 
1. The invariance property of the set E (s) stated in Theorem 2.4 refers 

to the invariance under the flow generated by the time-translation operator 
in C (R). In other words, every translate of a* E E (s) also belongs to 
E(s), a fact that can be easily verified. 

2. If s satisfies hypothesis (S) and is periodic of minimal period T E Rf , 
then E (s) consists exclusively of the translates (st&,, T). More generally, 
if s satisfies hypothesis (S) then s is recurrent if, and only if, s E E (s) and 
we may choose s* = s, U+ = li in the second statement of Theorem 2.4 
so that relation (2.5) reduces to a weaker variant of relation (2.1). 

3. If s satisfies hypothesis (S) and condition (a) of Theorem 2.2 then 
E(s) = (0) and s (t) + 0 as t -+ co. In fact, the first relation (2.2) of 
Theorem 2.2 implies that 

(2.7) lirn sup Sup ( u (2, t + t,,) - a,, ( = 0 
“--+3cI tEI ,r(=Q 

for every sequence (t,, ) -+ co and every compact interval I c R, while 
relation (2.5) holds whenever s* E E (s). Relations (2.5) and (2.7) then 
imply that supt,1 ( u*(t) - n,, 1 = 0 for every compact interval 1 C R, 
so that 

u* (t) = G-l dl s* (I) + G (u* (0)) = a, 

for every t E R. In relation (2.8), the function G : (~0, ~1) -+ R stands 
for any primitive of the function u -+ l/g (u, 0) and G-l denotes the 
monotone inverse of G. From relation (2.8) we infer that the function 
t -+ J; de St (0 is a constant, and hence that s* = 0. So E (s) = (0) and 
we conclude from a classic result of topological dynamics that s (t) --+ 0 
as t -+ co (invoke, for instance, Theorem VII.6 of [22]). Here again, 
Theorem 2.4 reduces to a weaker form of Theorem 2.2. 

4. There are evidently bounded functions s that satisfy condition (a) of 
Theorem 2.2 and which do not go to zero as t -+ co. According to the 
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preceding remark such functions cannot be Holder continuous. A case in 
point is s (t) = sin (t2) for which we have E(s) = 0. This is hardly a 
surprise in view of the first remark following the statement of Theorem 
2.2. One possible interpretation of this fact is that the locally convex 
topology of uniform convergence on compact sets in C (R) is inadequate 
to describe the corresponding stabilization phenomena. 

5. If s satisfies hypothesis (S) and if s = sg + sr where both so 
and s1 are bounded and uniformly continuous (a stronger hypothesis 
than the corresponding one in Theorem 2.3), then for each s* E E(s) 
there exists s; E E (so) and ST E E (sr) such that s* = s; + ST. In 
fact, on the one hand there exists a sequence (tn) + cc such that 
suptcI [so (t + t,,) + s1 (t + tn) - s* (t)] ---t 0 as n --+ cc for every 
compact interval I c R. On the other hand, owing to the relative 
compactness of the sets of translates of so and ~1, there exists a 
subsequence (in/) & (&) such that sup,,1 Iso (t + tllf) - s; (t)j * 0 
for some ST, E E (SO), and there exists a further subsequence (t,,(f) E (t,,!) 
such that suptEI (~1 (t + t,~) - s; (t) ) -+ 0 for some ST E E (~1). 
Consequently, the three relations 

SUP 1 so (t + t&J) + Sl (t + tn”) - s* (t) 1 ---t 0 
ta 

(2.9) SUP 1 so (t + tn”) - s;; (t> ) + 0 
tEI 

SUP 1 Sl (t + t?P) - ST (t) 1 + 0 
El 

hold simultaneously, from which we infer that SUP,,~ I s* (t) - ST, (t) - 
ST (t) ( = 0 for every compact interval I C R. Hence s* = s; + s; 
or, symbolically, E (so + sl) 2 E (so) + E (~1). Thus if, in addition, 
we have Jo” dtsl (c) < cc then E (si) = (0) from Remark 3 so that 
E (so + si) s E(sa): the dynamics of the limiting equations are entirely 
governed by the elements of E (so); in case so is recurrent, we retrieve in 
this way a weaker variant of Theorem 2.3. 

In statement (b) of Theorem 2.4 the function s* E E (s) is given and we 
prove the existence of a sequence (tn) 4 oo so that relation (2.5) holds. 
We can in fact turn things around a bit and prove a dual result whereby the 
sequence (&) -+ 00 is given and the existence of s* E E (s) is proven. 
We complete this section by stating such a dual result. 
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THEOREM ‘2.5. - Assume that hypotheses (K), (S) and (G) hold and let u 
be any classical solution to Problem (1.1). Let (t,,) + x be any sequence 
diverging to in&&y. Then there exist a function s* E E (s) and a classical 
solution U* of the initial-value problem (u*)’ (t) = S* (t) 9 (u* (t), 0), 
U* (0) E (~0, UI), t E R such that the relation 

(2.10) lim sup sup / u (X. t + t,,) - ‘rb* (t) 1 = 0 
“‘cx %I ,rEjj 

holds for every compact interval I c R. Moreover, we have 

(2.11) lim sup 1 Vu (2, t) 1 = 0 
t-cc .cE2 

3. A stabilization result in the Sobolev space H2,p (Q) and proof of 
the main theorems 

In the first part of this section we prove a stabilization result for 
the orbits of an infinite-dimensional dynamical system associated with 
Problem (1.1). Write A,. ,I: for the LP (R)-realization of Laplace’s operator 
defined on the domain Hif’ ( ) R consisting of all functions x E H2J’ (62) 
satisfying Neumann’s boundary condition $$ (x) = 0 for every z E X1, 
where p E (max (N, 2), co) is the constant of Definition 2.1. Let 
u : Rof -+ L” (R) be the map defined by ‘u (t) (x) = u (x, t) where 
(II., t) -+ u (x, t) is a classical solution to Problem (1 .l). In a similar way 
we define Vu : R$ -+ U’(n, R”) by Vu(t) (x) = VU(X. t). From 
condition (Cl) of Definition 2.1, it follows that 

(3.2) 11 Vu(t) - vu (t’) 111’ L II c IIP I t - t’ I0 

for every t, t’ E [T, co). We further notice that the function (u (t), Vu (t)): 
R -+ [uo, ul] x Rx is bounded for every t E R+; furthermore, the 
nonlinearity in (1 .l) induces a mapping g going from the set of all 
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bounded functions in LP (0) x LJ’ (0, Rh’) into U’ (0) because of the 
continuity of g on [~a, ~1 ] x RN. Conditions (C2) and (C’s) of Definition 
2.1 then imply that u E C (R$, Q (a)) n Cr (R+, LJ’(fi)), and that u 
provides a classical solution to the evolution equation 

in Li’ (Q). Now write (] . ]]x,~ for the Sobolev norm in Hy (a) defined 
by ]] z ](Q = ]I (X0 - A,.,~~) z ]Ip where X0 E RS is chosen in such a way 
that I] zu ]]Q = ] zo ] for every zo E R. The main result of this section 
is then the following. 

THEOREM 3.1. - Assume that hypotheses (K), (S) and (G) hold and let 
u be any classical solution to Problem (1.1). Then there exists a unique 
classical solution G of (1. l), independent of x and bounded, such that 

Referring back to the definition of the Sobolev norm, it is plain that 
statement (3.4) is equivalent to having ]I u (t) - G (t) ]Ip -+ 0 and 
II APJV u (t> IIP -4 0 as t -+ co. Our arguments to prove these two 
statements rest upon the simultaneous use of parabolic comparison 
principles and of exponential dichotomies for the family of evolution 
operators generated by Ic (t) A,,h,. 

We begin by outlining briefly our strategy. Our analysis is based on the 
introduction of an auxiliary function U, : fi x Rt -+ R+ that satisfies 
a certain parabolic differential inequality when a is sufficiently large. 
The existence of such a function amounts to changing the dependent 
variable in Problem (1.1). To show what kind of function we are looking 
for we first notice that every z-independent solution ;ii to Problem (1.1) 
satisfies the scalar separable initial-value problem 6’ (t) = s (t) g (6 (t), 0), 
B (0) = G‘ E (ua, ur ) for every t E R. Such a solution u^ is necessarily 
of the form 

t (3.5) ii(t) = G-l 4 s(J) + G(G) 
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where G : (~0, ~1) + R stands for any primitive of the function 
‘u -+ l/g(u,O) and where G- ’ denotes the monotone inverse of G. 
For any a, ?I() -+ RS , we can always rewrite relation (3.5) as t 
(3.6;) G(t) = G-l d< s (<) + a-l Ln(*uo) + G (G) 

> 

for some E E (~0, ~1). Of course, there is a one-to-one correspondence 
between j2 and i; since G is strictly monotone. Then, given any classical 
solution u to Problem (1.1) as in Theorem 3.1, we define V, as the function 
whose relationship to u is formally identical to the relationship between 
~0 and ;ci in (3.6). This gives 

t 
(3.7) u(x,t) = G-l dC s (I$) + a-l Ln(v, (x, t)> + G (b) 

> 

or equivalently 

u(.r,t) d‘$ ‘t -- 
s(E,O) 0 dbK) J 11 

We then proceed by showing that v,stabilizes around some wa E R+ in 
L1 (0) as t + 00; this determines ~0 uniquely, which in turn determines 
the unique B of Theorem 3.1 through relation (3.6). From this we infer 
that lIu(t) - Wllp ---f 0 as t --+ 00, and finally that (IA,,~u(t)l)~, --+ 0 
from the use of exponential dichotomies for the linear part of (3.3). 

The derivation of a parabolic differential inequality for ‘uru requires the 
control of the dependence of g on Vu. This is accomplished by using the 
quadratic growth estimate of hypothesis (G). The precise result is 

LEMMA 3.1. - Let u be any classical solution to Problem (1.1) and let 
q, be given by relation (3.8) where we assume a E R+ and j2 E (~0, ~1). 
Then U, E C’,l(Q x R+) fl C(n x Rt) n Cl,‘@ x R+) and, for N 
s@iciently large, we have 

(V&(X, t) i k(t)A~(x, t>, (x,t) E Cl x R+ 
(3.9) 

2(x, t) = 0, (qt) E dR x R+ 
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In addition, there exists a positive constant c such that uN(x, t) 5 c for 
every (x,t) E 0 x Rz. 

Proof. - The regularity statement follows from the corresponding 
properties of U. As for relations (3.9), we first note that 

(3.10) V.ua(x, t) = a R&, t) 
dU(X> a 0) Vu(x, t) 

so that zta satisfies the homogeneous Neumann boundary condition since 
u does. This proves the second relation in (3.9); in order to prove that 
qq~Qr(x, t) - (%Jt(x, q 2 0, we first calculate each term separately 
from relation (3.8) by making use of the first equation in (1.1). After 
regrouping the various contributions we obtain 

= alc(t)v, (2, t) 
1 

Q: - g&4? % 0) 
s2Mx, a 0) 1 

P+, a2 
_ a s(Mu(x, a VuW)) _ s(t) 

{ du(x, a 0) 1 
‘u (x q 0 , 

Since both a and ‘Us are positive, we see that the right-hand side of (3.11) 
is non-negative if, and only if, the inequality 

(3.12) w Q - zw,w) w~,W 2 
( 

dg 
> 

holds. In order to prove this last inequality for a large enough, we 
construct an upper bound for the right-hand side and a lower bound for 
the left-hand side of (3.12) which still satisfy the above inequality for Q 
sufficiently large. Since both s and u -+ g(u, 0) are bounded and since g 
satisfies the quadratic growth condition of hypothesis (G), we first note 
that there exists cl > 0, depending only on ~0, ur and on the uniform 
norm of s, such that the estimate 

(3.13) 
s(t)s(u(x, q, O)MU(X> t>, Vu(x, t>> - du(x, t>, 0)) I ClP4? a2 
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holds pointwise on 0 x R+. As for the left-hand side of (3.12), we write 
momentarily rrl = max,lEIUu,l,l] J$$ (u, 0) and choose 0 E R+ n (m, cm). 

Since h > 0 by one of the requirements of hypothesis (K), we get the 
lower bound 

(3.14) k(t) o! - ~(n(z,~).o))lnrL(z,til’ 2 kC(a - m)lVu,(zJ)l” 
( 

pointwise on IR x R +. The comparison of the right-hand side of (3.14) 
with the right-hand side of (3.13) now shows that we always have 

(3.15) ga - m)lVu(z, t)12 2 Cl IVu(z, t)l” 

for a E R+ n [m + c&-l , co); this proves that the first relation in (3.9) 
holds. Finally, we infer from relation (3.8) that 

(3.16) w,(z,O) = exp Q! [ .6’(~rTo) &] 

Moreover, u(x,O) is a positive distance away from ua and ~1 for every 
z E a since z -+ U(Z, 0) is continuous on n and 2 is compact. From this 
and relation (3.16), we infer that there exists c > 0 such that w,(z, 0) 5 c 
for every z E fi. The last statement of the lemma then follows from the 
parabolic maximum principle applied to Problem (3.9). 0 

The result of Lemma 3.1 and a simple consideration of symmetry imply 
the following result, which will also be useful. 

LEMMA 3.2. - Let u be any classical solution to Problem (1.1). Then the 
function (LC,~) -+ G(u(z,t)) is bounded on R x R$. 

Proof - From relation (3.7) we have 

(3.17) G(u(x, t)) = .I’ d@(t) + aelLn(%(~, t>) + G(E) 

so that this function is bounded from above by the last part of hypothesis 
(S) and the last statement of Lemma 3.1. In order to get a bound from 
below, we cannot proceed directly from (3.17) since there is no known 
strictly positive lower bound for 21,. We avoid this difficulty by observing 
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that there exists a constant Icr such that ~1 - ~(5, t) 2 ICI > 0 for each 
(2, t) E n x R,f; if this were not the case, there would exist a sequence 
((zcn, tn)) C_ R x Rt such that u(z~, , tn) -+ ~1 as n --) cc, and hence 
such that G(u(z,, tn)) -+ co, since the first part of hypothesis (G) implies 
that G(u) -+ 00 as u --f ~1. This would contradict the fact that (3.17) is 
bounded from above. By symmetry, the existence of the above constant 
Icr then immediately implies the existence of a constant Ica E (0, ur - ug) 
such that 

(3.18) u(z, t) - uo 2 Ice > 0 

for every (x, t) E 2 x R, +. In order to see this it is sufficient to define the 
function U by 6(x, t) = uu + ~1 - U(Z, t) and to notice that U provides a 
classical solution to a problem of the form (1.1) with a new function Sand a 
new nonlinearity S which still satisfy hypothesis (S) and (G), respectively. 
From relation (3.18), we infer that ~(2, t) > uu + ko E (~0, ~1) for every 
(z,t) E 2 x Rt, and hence that G(u(z,t)) 2 G(uo + 50) since G is 
monotone increasing on (210, ~1) . 0 

Lemma 3.2 immediately implies the following result through 
relation (3.17). 

LEMMA 3.3. - We have inf (:c,t)~GxR,+ udz, t> > o for evev a > o 
sufficiently large. 

Our last preliminary result concerns the properties of exponential 
dichotomies for the family of evolution operators { U(t, T)}~z, generated 
by k(t)A,.,$f. Let {W~,,,(a)}O~u be the diffusion semigroup on P(0) 
whose infinitesimal generator is AP,~. Since k > 0 on Rt, the function 
t + J;! @k(l) is strictly monotone increasing and it is easily verified that 

(3.19) 

From relation (3.19), it follows that the exponential dichotomies for 
{U(t, T)}Q~ are determined by those of {W~,,,(~)},,~O. Let (X,)(& U 
(0) be the pure point spectrum of Ap,~v where (X,) C_ R- . There is a 
natural separation between the subspaces of D’(R) corresponding to the 
negative eigenvalues (X,) and the eigenspace corresponding to X = 0, 
which implies that { WA~,~(~)}~>O decays exponentially on the former - 
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hold for every t, r with t - r E RS, and for every cp E LJ’(R). In 
relation (3.20) and (3.21), X1 denotes the largest negative eigenvalue 
of Al,.,%* and h denotes the positive constant of hypothesis (K). 

Proof. - From relation (3.19) and the properties of exponential 
dichotomies for the diffusion semigroup on u?(n), we immediately infer 
that 

[-l~ll~~~C~~E~]ll~ll,~ 

and that 

/ I-’ 
Il~,.,vW +‘dIp I c(.l, ~i~!~~)-l~~P[-l~ll(~~~i(:i)]ll~ll~ 

for some c > 0. Relations (3.20) and (3.21) then follow from the definition 
of b in hypothesis (K). q 
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at a rate determined by the largest negative eigenvalue X1. Write 1’ and 
Q for the corresponding projection operators; that is, Q is the projection 
from D’(n) onto the eigenspace of AI,.,,,- corresponding to X = 0 while P 
is the complementary projection. Owing to relation (3.19) and to the fact 
{l~V~~~,,(a)},~r~ is an analytic semigroup, the preceding remarks lead to 
the following result (We also refer the reader to [13] and [19] for recent 
investigations of exponential dichotomies for linear evolutionary equations 
in infinite dimensions). 

LEMMA 3.4. - There exists c > 0 such that the two estimates 

(3.20) II w, wPll,~ I cw4-lUdt - 41114117 
(3.21) llA,,,dJ(t, +Vll, i &(t - r1-l -d-IX1 Ik(t - ~)lll~llp 

With Lemmata 3.1-3.4 we can now prove the following 

PROPOSITION 3.1. - Given any classical solution to Problem (1. l), there 
exists a unique classical solution u^ of (1. l), independent of x and bounded, 
such that 

(3.22) piI Ilu(Y) - G(t)ll?, = 0 

Proof. - Let wa(t) : 2 -+ R+ be defined by v~(~)(z) = wN(x,t) 

where U, is given by relation (3.8). The function t + &w&(t) is 
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monotone * decreasing because of inequality (3.9), which implies that 
Quo(t) -+ we = inftER+ Q~l~(t) as t --f 00. By Lemma (3.3) we have 
va > 0. In addition P;,(t) -+ 0 strongly in Li (0) as t -+ 00, so that 
vu(t) --f va strongly in L1 (52) as t ---f co. Given this ~0, let u^ be the 
unique classical solution to Problem (1.1) given by relation (3.6). From 
relations (3.6), (3.7), the fact that G-r has a uniformly bounded derivative 
on R and Lemma 3.3, we infer the sequence of estimates 

s 
&+(t)(z) - G(t)1 5 O(1) 

5-l / 
R dz(L+&, t)) - Ln(vo)l I 

5 O(1) max ((inf uucy(z, t))-r, v&l) 
s 

d+&)(s) - vol -+ 0 
51 

as t ---f 00, so that u(t) - ;ri(t) -+ 0 in L1 (a). By classical interpolation, it 
is now sufficient to prove that u(t) - G(t) remains bounded in L3” (0) for 
large times in order to get relation (3.22). But this follows immediately 
from the boundedness of the derivative of G-l, Lemma 3.2 and the 
boundedness of t + Ji c&s(<), for 

IW - Wllm = pig IG-l(GbWN) - G-lWW)l 5 

5 O(1) sup IG(u(x, t)) - G@(t))1 5 c < 00 
.I-& 

for some c > 0, uniformly in t. Cl 
In order to complete the proof of Theorem 3.1, it remains to show 

that Ap,Nu(t) -+ 0 strongly in D)(n) as t --f co. This is obviously 
equivalent to proving that k(t) A p,A-u(t) -+ 0 in V(R), because of the 
last part of hypothesis (K). Write y(t) = u(t) - G(t); referring back to 
equation (3.3) we obtain 

(3.23) y’(t) = WP,.,vdt) + s(t)b(W + y(t)> VY@)) - dW,O)) 

for the corresponding evolution equation. Since k(t)Ap.,vw(t) = 
k(t)A,,,*y(t), it is then sufficient to prove that 

(3.24) 4mmt) + ?I@)> VYW) - B(W), 0)) + 0 

(3.25) y’(t) -+ 0 
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strongly in D’(Q). The complication here is again due to the gradient 
in equation (3.23), and we shall see that the Halder continuity properties 
of k, s, as well as relations (3.1), (3.2), Lemma 3.4 and Proposition 3.1 
are all important to control it. We proceed by stating the existence of a 
uniform bound for VU(~) = Vg(t). 

LEMMA 3.5. - Let u be any classical solution to Problem (1.1). Then 
there exists a constant c E (0, CC) such that the estimate 

(3.26) SUP lvY(q(~>l i c 
(.r.t)~DxR,t 

holds. 
Proof. - Because of the range condition in (1. l), there exists Z E (0, co) 

such that SUP(,,$)&R + /~(t)(z)1 < C. The fact that (3.26) holds then 
follows from the standard a priori estimates for semilinear parabolic 
equations ([2], [14]). 0 

According to right-hand side of (3.23), we now define f : R$ -+ U(R) 
by 

(3.27) f(t) = .$t)(i@@) + Y(t)> VY(W - BMW)) 

This means that 

f@>(z) = s(q(dw) + Yb:, a VYCG a - dQ)> f-9) 

for every (z,t) E 2 x RS. We proceed by proving some essential 
pointwise and D’-bounds for f . 

LEMMA 3.6. - There exists c E (0, CQ) such that the pointwise estimate 

(3.28) I S(W)l I C{lYW)l +- IVYW)O 

holds for every (CC, t) E a x Rot. Furthermore 

(3.29) II ml:: 5 W){llY(~)ll:: + IlvYwll;I 

for each t E Rt . Finally, the mapping f : Rt -+ II’(R) is Hiilder- 
Lipschitz continuous on [T, CQ). 
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Proof. - From the smoothness hypothesis concerning g and relation 
(3.27), we may perform a Taylor expansion around (C(t), 0); we obtain 

(3.30) f(t)(x) = s(t) /lds( g@(r) + SY(Z, t>, 5VY(T UY(? t>+ 
0 

+ V,g(W + 5Y(? t), 5VY(G t)> . VY(Z, t) 
1 

Now the first part of hypothesis (G) implies that g and all its first- 
order partial derivatives are bounded on bounded subsets of R x R’. 
Estimate (3.28) then follows from (3.30) upon using the boundedness 
of s, together with the boundedness of (x,&s) + G(t) + sy(z,t) and 
that of (CC, t, 5) -+ sVy(z,t), the latter being an immediate consequence 
of Lemma 3.5. Estimate (3.29) is then a direct consequence of 
inequality (3.28) and of the convexity of [ -+ [[I”. As for the last 
statement of the Lemma, we start again from relation (3.28) and use an 
appropriate Taylor expansion as well as the a priori estimates for u(C) 
and Vu(t); we obtain 

II f(t) - fm; 5 
lo(l){ (s(t)-s(t’)~~+~~(t)-~(t’)~~+llU(t)-Il,(t’)II~+JIVU(t)-v?L(f’)ll~) 
and the assertion follows from the Holder-Lipschitz property of 
hypothesis (S), relations (3.1) and (3.2) and the fact that 2 is Lipschitz 
continuous. 0 

The comparison of relation (3.29) with relation (3.27) now shows that 
it is sufficient to prove that IIVy(t)llp ---f 0 in order to get (3.24) since 
we already know that IIy(t)llP + 0 by Proposition 3.1. We achieve this 
in Proposition 3.2 below . We first need an a priori bound on the strong 
derivative y’(t). 

LEMMA 3.7. - There exists c E (0,cm) such that 

(3.31) SUP llY’(t)llp L c 
ER,+ 

Proof. - Let P and Q be the projection operators defined before the 
statement of Lemma 3.4. Relation (3.31) then amounts to proving an U’- 
bound for both Py’(t) and Qy’(t) since P and Q are complementary 
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projectors in U(n). We first note that Q~,,,,J- = L$,,,l*Q = 0 on 
H,:;!(n) as a consequence of Gauss’ divergence theorem. Applying then 
the operator Q on both sides of equation (3.23) and using relation (3.27) 
we obtain &g’(t) = &f(t). But from relation (3.29), Proposition 3.1 and 
lemma 3.5 we infer that t --f ] ]f(t)]lr, is bounded, so that Q/(t) is bounded 
in the U-topology as well. It remains to prove that t + ] IP:y’(t)l II, is 
bounded. For this we invoke the variation of constants formula along with 
relation (3.19). For every t E [r, co) we obtain 

(3.32) 

B+/‘(t) = k(t)A,,,krU(t, +?y(T) + 
/ 

’ 4k(t)A,,,dW> I)J’f(I)+J’.f(t) 
. T 

= k(t)A,,,,d@, +W) + J ' dlk(t)A,..zrU(t, E)p(f(t) - f(t)>+ T 
f +Pf(t) + J 4k(t>A,.,vW, Wf(t) = T 

= W)A,,,vW +%(4 + J ' 4W)A,,,,dW Wf(E) - f(t))+ i 
J 
t + w, 4w@) + @(k(t) - k(t)>A,,,vW> EWW T 

We conclude the proof by showing that each term in (3.32) remains 
bounded in the Lp-topology as time becomes large. This is evident for the 
first and third terms since k and f are bounded and since relations (3.20) 
and (3.21) hold. In fact, these two terms converge exponentially rapidly 
to zero as t + 00. As for the second term in relation (3.32) we get 
the estimate 

(3.33) J t d(llk(t)Ap,,d7(t, t)p(f(t) - f(t))h) 5 T 
< ck-‘x - J t d((t - ,O-lexp[-IXllk(t - C)lllf(l) - f(t)ll~ 5 

T 

for some ,8 E ( - 1 , 01, upon using the boundedness of k, relation (3.2 1) and 
the Holder continuity of f. It is now plain that the last integral in (3.33) 
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is uniformly bounded in t as t -+ 00. Because of the boundedness of f 
and the Holder continuity of k, the fourth term in (3.32) has an identical 
structure and can be handled in a similar way. Cl 

We can now prove the desired result. 

PROPOSITION 3.2. - Given any classical solution to Problem (1.1) we have 

(3.34) 

Proof. - From the above considerations the proof of relation (3.34) 
is reduced to proving that (IOU(~)) (r, = IIVy I lP + 0 and that 
Ily’(t)llp -+ 0. We first notice that the a priori estimate (3.26) implies 
the LO”-bound I)Vy(t)(j, 5 c for each t E RJ. Again by classical 
interpolation, this means that it is sufficient to prove the L”-convergence 
IJVy(t)JJz --+ 0 as t + cc in order to get jIVy(t)Jj, + 0. To this end, 
define the function Y : Rz -+ Ri by 

(3.35) W) = l/2 R d~Y2W(d = vllY(~)lI; 
s 

This function is clearly differentiable and, upon using equation (3.23) and 
relation (3.27), we obtain 

(3.36) Y’(t) = 
.I 

R dXY (w->Y’@) (4 = 

after one integration by parts to account for Neumann’s boundary condition. 
Since k is uniformly bounded away from zero by hypothesis (K), relation 
(3.36) then allows us to write successively 

(3.37) kllVY(t)ll; I k(t) s2 dzlVy(t, x)12 I 
.I 

L l] ~~lY(wdllf@)(~)I + .h d~lY(t)(~)IlY’(t)(~)l I 

5 *~~~llY~~>ll2~llY~~~ll2 + Il77Y~~)ll2 + IlY’Wll2) 
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as a consequence of the pointwise estimate (3.28) and Schwarz inequality. 
We now observe that the first factor in the last expression converges to 
zero as t + x as a consequence of proposition 3.1, while the second 
factor remains bounded as a consequence of lemmata 3.5 and 3.7. These 
facts and estimate (3.37) then imply that I/Vy(t)((, + 0 as t -+ oc, and 
hence that 1 lVg(t)) I11 + 0 as already noticed. We conclude by proving 
that Il~‘(t)jll, -+ 0 as t + cc. Our point of departure for this is again 
the observation that 1 [y’(t) I II, + 0 if, and only if, IIPy’(t) 1 II’ + 0 and 
IIQy’(t)II,, ----f 0. Since Q?/‘(t) = Qf(t) and since [If(t)I + 0 by the first 
part of the proof and relation (3.29), we already have IIQw’(t)llp + 0. In 
order to handle Py’(t), our starting point is once more relation (3.32). We 
already know that the first and third terms of (3.32) converge exponentially 
rapidly to zero as a consequence of the exponential dichtomies of lemma 
3.4. It remains to show that the two integrals in (3.32) also converge to 
zero in the LI’-topology as t + XI. For the last integral it is immediate 
since we have the sequence of estimates 

(3.38) .I 
t 

@II(W) - ~(E))Al,.nrU(t,~)Pf(t)llI~ 5 
7 .t 
5 O(l) 

J 
W - 0’ IlA,,xW~ WfMlp L T 

5 O(1) .i t dJ(t - E)‘iexp[-lXllk(t - <)lllf(t)llr~ T 
as a consequence of the Holder-Lipschitz continuity of k and relation 
(3.21), where /3 E (-1, 01. The assertion then follows from the fact that 
the last integral in (3.38) remains bounded and that ) If(t)) lp -+ 0 when 
15 + 00. As for the remaining integral in (3.32) we first define function 
x : R+ + R;: by 

(3.39) x(w) = suP{llf(t) - f@‘)llp : 4 t’ 6 b> 41 
From this definition and the fact that Ilf(t)llP + 0, it follows that x is 
monotone decreasing and that x(w) -+ 0 as w ----f CO. Furthermore, the 
Holder-Lipschitz continuity of f and relation (3.39) both imply that 

(3.40) Il.@) - f(t’)llp I oo~mlt - t’r 
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for t, t’ E [w, co) and some (T E (0,l). The third integral in (3.32) can 
then be estimated from above by 

(3.41) 
.I 

t d[ll~(+J,.,V~(G @V(E) - f(G)llP 2 
T 

5 O(1) 
s ‘d<(t - <)-lexp[-IArllc(t - E)lllf(l) - fCt)IL) 5 
T 

whenever t, r E [w, oo), since the last integral in (3.41) is bounded. This 
immediately implies that for each E > 0, there exists wE > 0 such that 

IIJ 

t 
W(W,,AJv, E)W(E) - f(t)) 

I/ 
< E 

T 
for t, r E [wE, m). We conclude that Py’(t) -+ 0, and he&e that g’(t) -+ 0 
in L?‘(G) as t -+ m. 0 

Propositions 3.1 and 3.2 prove Theorem 3.1 entirely. Owing to the 
geometric interpretation of the projection operator Q, the stabilization 
result of Theorem 3.1 corresponds in a certain sense to a reduction of 
problem (3.3) by a center-manifold of dimension one, since the large- 
time dynamics are eventually governed by the scalar ordinary differential 
equation G’(t) = s(t)g(G’(t),O), G(0) = G E (ua,ul) where t E R. our 
proofs of the main theorems of Section 2 then amount to investigating the 
possibility of having further reductions of the solutions {ii};;EcUO,Ul~ when 
t + co. If s is recurrent, then each ;ii is also recurrent and no further 
reduction is possible. This is part of the content of Theorem 2.1 whose 
proof is given first. 

Proof of Theorem 2.1. - Let u be any classical solution to Problem (1.1). 
By Theorem 3.1 there exists a unique classical solution B of (1. l), 
independent of x and bounded, such that Ilu(t) - i2(t)l12,1, + 0 as t ---f oo. 
This immediately implies relations (2.1) since there exists the continuous 
embedding H2s (n) + C1 (2). In order to prove that (a) implies (b), it 
remains then to prove that the recurrence of s implies the recurrence of B, 
in fact with the same returning sequence (trL). Thus assume that (a) holds 
with the returning sequence (t,,); since t --) s,‘dEs(<) is bounded, this 
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implies that t + & d<s(<) is recurrent as well with the same returning 
sequence (t,,) [15]. Since B is necessarily of the form (3.5) and G-’ has 
a uniformly bounded derivative on R, we then infer that the estimate 

(3.42) f3lF lG(t + 6,) - G(t)1 5 

holds as n --f 00, for every compact interval 1 c R. This and the preceding 
remark prove (b). Conversely, assume that there exists an x-independent 
and recurrent solution B to Problem (1.1). Then ii is of the form (3.5) and 
there exists (t?,) ---f cc such that 

(3.43) 

holds as n + 00, for every compact interval I c R. From relation (3.5) 
or from the proof of Lemma 3.2, we further infer that there exist constants 
Icn,r E (~0, ~1) such that uu < Icn 2 G(t) 5 kr < ur for every t E R. 
This and the smoothness of g then allow us to conclude that 

t+tn t 
SUP 

Is 
dN9 - 

.I I 
d@(E) = 

ta 0 0 

= sup 
GI 

as n + co, so that t + & d<s(<) is recurrent. Now write momentarily 
F for this primitive of s and define the sequence of functions (@.N)N~N 
by (@N)(t) = N{F(t + l/N) - F(t)}. Obviously Q’n: is recurrent for 
each N with the same returning sequence (t12). Furthermore, the Holder- 
Lipschitz continuity of s implies that s is uniformly continuous on R, 
which immediately implies that @,v + s uniformly as N -+ cc. Hence s 
is recurrent as well with the same returning sequence (tr, ), which proves 
(a) and the very last statement of the theorem. 0 

If s is not recurrent, there exists a very simple reduction of ;Ti if 
.&F 643 < ~0. In fact, we see from the explicit from (3.5) that 
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limt,, a(t) exists if, and only if, &” dJs([) < cc. This and Theorem 3.1 
lead to the proof of the second theorem of Section 2. 

Proof of Theorem 2.2. - Let u be any classical solution to Problem (1.1). 
As before, we infer that there exists a classical solution G of (1 .I), 
independent of z and bounded, such that [jr@) - a(t)(j~,~ --f 0 as 
t -+ 00. Now assume that condition (a) holds; from relation (3.5) we 
infer that limtioo 6(t) = a,, for some a, E (~0, IQ), and consequently 
that I b(t) - au I ILQ + 0 as t ---f 00. This and the continuous embedding 
H2J’(0) --+ C1 (a) imply statement (b). Conversely, assume that statement 
(b) holds. This means that 1 [u(t) - (I~~II~~(~, -+ 0 as t + co. Since we 
also have IJu(t) - Zi(t)l12.1, + 0 for some c of the form (3.5), we get a 
fortiori [[u(t) - $(t)ll,,(,) -+ 0 and hence Iii(t) - a,,[ + 0. But this last 
relation and relation (3.5) imply that sow @s(J) < cc. 0 

We now turn to the proof of the third theorem of Section 2 where 
a more subtle kind of reduction takes place. That theorem illustrates 
the simplest case of a reduction when s is not recurrent and when 
-co < lim inftER Ji @s(t) < limsuptER Ji @s(l) < 00. 

Proof of Theorem 2.3. - Let u be any classical solution to Problem 1.1. 
Then Ilu(t) - ~(t>l12311 -+ 0 as before, where ;Ti is necessarily of the form 

C(t) = G-l {~dCso(F)+~dFs~(E)+Gi~)} 

for some i; E (~0, ~1). Now define the function 60 by 

(3.44) 
t Co(t) = G-l @o(l) + Woo) 

where ;;O = G-l { so” d[sl(E) + G(c)}. Clearly 60 is recurrent and 
satisfies the initial-value problem G’(t) = so (t)g(Gi(t), 0), G(0) = Go for 
t E R. Then 

IW) - Go(t)1 I O(l) ( .I’ &Q(C) + G(c) - G(co) /+ 0 

as t -+ 00 by the above choice of ;;O, from which we conclude that 
I b-4) - w> I Icy@ --) 0 holds as t t 00. The fact that the returning 
sequence for ;;;O may be chosen to be the same as that of so follows from 
the arguments given in the proof of Theorem 2.1. 0 
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As already noticed in Section 2, the structure of the set E(s) can be 
very complicated when s is not recurrent and when relation (2.4) holds. 
Speaking very loosely, Theorem 2.4 asserts that there are as many relevant 
limiting equations of the form (I*)’ = s*(t)g(u*(t), 0) as there are 
elements in E(s), which eventually describe the dynamics of all solutions 
to ( 1.1) along appropriate sequences (t,, ). We now turn to the proof of 
that result. 

Proof of Theorem 2.4. - Hypothesis (S) first implies that s is bounded 
and uniformly continuous. It then follows from Ascoli’s theorem that the 
set of all translates of s is relatively compact in C(R). This and the 
general principles of topological dynamics immediately prove statement 
(a), since E(s) is the w-limit set of s relative to the dynamics generated 
by the time-translation operator in C(R) [22]. Now let u be any classical 
solution to Problem (1 .l); again by Theorem 3.1 and the continuous 
embedding H2J (62) -+ C1 (a), there exists a unique solution i7; to (1.1) of 
the form (3.5) such that the relations 

(3.46) 

hold. Pick an s* E E(s) and let (tf) -+ cc be any sequence such that 
suptcl ]s(t + t;) - s*(t)1 -9 0 as n -+ oc for every compact interval 
I c R. Since ;ii is bounded and a positive distance away from uo and 
~1 (compare with the proof of Lemma 3.2), there exists a subsequence 
(t,,) C (tz) such that Z(t,,) + a* E (~0, ~1) as n --) oc. We then consider 
the initial-value problem 

(3.47) 
(u*)‘(t) = s*(t)g(u*(t),O), teR 

u*(o) = a* E (U(J,Ul) 

whose unique solution is 

u*(t) = G-l @s*(l) + G(a*) 

On the one hand, we have G(G(t,,)) - G(a*) -+ 0 as n. -+ 0;) by definition 
of a*. On the other hand, for every compact interval I c R there exists 
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a positive constant c(l) such that the estimate 

(3.49) 

SUP 1 J’~E(sK+~n-s*K)) 15 ““‘tEi-~;X,,I)r Is(t+M-s*(t)1 --+ 0 
El 0 c c 

holds as n -+ 03. From the above considerations, relations (3.5), (3.48), 
(3.49) and the fact that G-l has a uniformly bounded derivative, we infer 
the sequence of estimates 

(3.50) “t:y (a@ + GL) - u*(t)1 I 

2 00) ;:y / if+,. d(s(() + G(G) - 1’@*(l) - G(a*) I= 

I./ t I O(l) SUP @(s(F + tn) - s*(l)) + W&z)) - G(a*) i 
ta 0 

t dE(s(t + tn> - s*(E)> 1 +O(l)IG(%)) - G(a*)l -+ 0 
as n -+ 00, for every compact interval I c R. Relation (2.5) now follows 
from relations (3.45) and (3.50), while relation (2.6) is relation (3.46). 0 

The proof of Theorem 2.5 follows from similar arguments and is 
therefore omitted. 

Remark. - There is of course a very close connection between the above 
method of proof of Theorem 2.1-2.5 and the language of skew-product 
flows developed by SACKER and SELL in [18]. Thus for any s E C(R) 
satisfying hypothesis (S), let H(s) c C(R) be the hull of s relative to 
the Frechet topology of C(R). Then it is clear that E(s) c H(s), and 
that the scalar equation G’(t) = s(t)g(G(t),O) generates a skew-product 
flow 7r on R x H(s) in the usual sense. Let p: R x H(s) I--+ H(s) be 
the associated canonical projection; let B be any solution of the form (3.5) 
and let E(;ii, s) be the w-limit set of the pair (e, s) in r. Using the fact 
that for any two distinct solutions ;ii and ;ii* of the form (3.5) we have 
inftcR [Z(t) - a*(t)1 > 0, we can then easily infer from the results and 
methods of Chapters 2 and 3 of [18] that the set E(;;i, s) II p-‘(s*) is a 
singleton for every S* E E(s), namely E(B, s) n p-‘(s*) = {(u*, s*)} 
where u* is of the form (3.48). This fact and Theorem 3.1 then also imply 
the statement of theorem 2.4 (or 2.5), and hence also those of Theorems 
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2.1-2.3. Of course, the use of this skew-product flow formalism becomes 
indispensable to the qualitative analysis of more general equations such 
as (1.2) or such as those investigated in ([23], [24]), for which explicit 
solutions such as (3.5) are not available. 

4. Some concluding remarks 

In this paper we have investigated the long-time behaviour of solutions to 
the class of non-autonomous parabolic boundary-value problems given by 
relations (I. 1) and hypotheses (K), (S) and (G). By using the properties 
of exponential dichotomy associated with the principal part of the equations 
along with some general principles of topological dynamics, we have shown 
that the long-time dynamics of those solutions are governed by a compact, 
connected and invariant set of completely integrable ordinary differential 
equations. In particular, we have exhibited a necessary and sufficient 
condition for Problem (1.1) to possess a global recurrent attractor, as well 
as a necessary and sufficient condition for Problem (1.1) to possess an 
attractor that consists exclusively of spatially and temporally homogeneous 
solutions of some limiting equations. Finally, we would like to mention 
the recent works of VISHIK and CHEPYZHOV (see, for instance, [27] and 
some of its references) who have devised a completely different method 
to investigate the existence of global attractors of non-autonomous partial 
differential equations and their properties. Their method is, however, 
chiefly focused on the almost-periodic and the quasi-periodic cases. 
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