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a b s t r a c t

A new class of distances for graph vertices is proposed. This class contains parametric
families of distances which reduce to the shortest-path, weighted shortest-path, and the
resistance distances at the limiting values of the family parameters. The main property of
the class is that all distances it comprises are graph-geodetic: d(i, j) + d(j, k) = d(i, k) if
and only if every path from i to k passes through j. The construction of the class is based on
the matrix forest theorem and the transition inequality.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The classical distance for graph vertices is the shortest path distance [1]. Another distance, which is almost classical, is
the resistance distance [17,18,16], which is proportional to the commute-time distance [21,14,2].

The forest distances d̃α(i, j) [6] form a one-parametric family converging to the discrete distance as α → 0 (d̃0(i, j) = 1
whenever vertices i and j are distinct) and becoming proportional to the resistance distance as α → ∞. The parameter α
controls the relative influence of short and long paths connecting two vertices on the distance between them.

In a recent paper [26] (see also [20]), the authors construct a parametric family of graph dissimilarity measures whose
extrema are the weighted shortest path distance and the resistance distance. It is noteworthy that in clustering tasks, the
best performance is obtained with intermediate values of the family parameter. On the other hand, the corresponding
intermediatemeasures break the triangle inequality, so they need not be distances (in this paper, we use the term ‘‘distance’’
in the sense of a metric space).

Thus, there is a demand in certain applications (these include data analysis, computer science, mathematical chemistry
and some others) for a class of graph distances whose extreme properties are similar to those of the dissimilarity measures
proposed in [26]. Such a class is introduced in this paper. It comprises logarithmically transformed forest distances, and its
construction is based on the matrix forest theorem [7] and the transition inequality [3]. The logarithmic transformation not
only leads to the shortest-path / weighted shortest-path distance at α → 0+ and to the resistance distance at α → ∞, but
also, for every α > 0, it ensures the remarkable graph-geodetic property: d(i, j) + d(j, k) = d(i, k) if and only if every path
from i to k passes through j.
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We now introduce the necessary notation. Let G be a weighted multigraph (a weighted graph, where multiple edges are
allowed) with vertex set V (G) = {1, . . . , n}, n > 1 and edge set E(G). We assume that G has no loops. For i, j ∈ V (G), let
nij ∈ {0, 1, . . .} be the number of edges incident to both i and j in G; for every p ∈ {1, . . . , nij}, w

p
ij > 0 is the weight of the

pth edge of this type; let wij =
∑nij

p=1w
p
ij (if nij = 0, we set wij = 0) and W = (wij)n×n. W is the symmetric matrix of total

edge weights of G.
A rooted tree is a connected and acyclic weighted graph in which one vertex, called the root, is marked. A rooted forest

is a graph, all of whose connected components are rooted trees. The roots of those trees are, by definition, the roots of the
rooted forest.

By the weight of a weighted graph H , w(H), we mean the product of the weights of all its edges. If H has no edges, then
w(H) = 1. Theweight of a set S of graphs,w(S), is the total weight of the graphs belonging to S; theweight of the empty set
is zero. If the weights of all edges are unity, i.e. the graphs in S are actually unweighted, thenw(S) reduces to the cardinality
of S.

For a given weighted multigraph G, by F = F (G), Fij = Fij(G), and F
(p)
ij = F

(p)
ij (G) we denote the set of all spanning

rooted forests of G, the set of all forests in F that have vertex i belonging to a tree rooted at j, and the set of all forests in Fij
that have exactly p edges. Let

f = w(F ), fij = w(Fij), and f (p)ij = w(F
(p)
ij ), i, j ∈ V (G), 0 ≤ p < n; (1)

by F we denote the matrix (fij)n×n; F is called the matrix of forests of G.
Let L = (ℓij) be the Laplacian matrix of G, i.e.,

ℓij =


−wij, j ≠ i,−

k≠i
wik, j = i.

Consider the matrix
Q = (qij) = (I + L)−1.

By the matrix forest theorem1 [8,7,5], for any weighted multigraph G, Q does exist and

qij =
fij
f
, i, j = 1, . . . , n. (2)

Consequently, F = fQ = f · (I + L)−1 holds. Q can be considered as a matrix providing a proximity (similarity) measure for
the vertices of G [7,4].

By ds(i, j)we denote the shortest path distance,2 i.e., the number of edges in a shortest path between i and j in G; by dr(i, j)
we denote the resistance distance between i and j defined as follows:

dr(i, j) = ℓ+

ii + ℓ+

jj − 2ℓ+

ij , (3)

where (ℓ+

ij )n×n = L+ is the Moore–Penrose generalized inverse of the Laplacianmatrix L of G. dr(i, j) is equal to the effective
resistance between i and j in the resistive networkwhose line conductances equal the edgeweightswp

ij inG. IfG is connected,
then3

L+
= (L + J̄)−1

− J̄, (4)
where J̄ is the n × nmatrix with all entries 1

n . Furthermore, by [9, Theorem 3]

ℓ+

ij =
f (n−2)
ij −

1
n f
(n−2)

nt
, i, j ∈ V (G)

holds, where f (n−2) is the total weight of spanning rooted forests with n−2 edges and t is the total weight of spanning trees
in G. By virtue of (3) this yields

Corollary 1 (To Theorem 3 of [9] and (4)). If G is connected, then

dr(i, j) = xii + xjj − 2xij =
f (n−2)
ii + f (n−2)

jj − 2f (n−2)
ij

nt
, i, j ∈ V (G), (5)

where (xij) = (L + J̄)−1.

The forest representation (5) is a counterpart of the classical 2-tree expression for dr(i, j) (see, e.g., [22, Theorem 7-4] and
[23]); it will be of use in Section 4.

In Section 2 we introduce a new class of intrinsic graph distances and in Sections 3–5 we study its properties.

1 Cf. Theorems 1–3 in [11].
2 The weighted shortest path distance will be considered in Section 5.
3 In fact, for a connected graph, L+

= (L + α J̄)−1
− α−1 J̄ with any α ≠ 0 (Propositions 7 and 8 in [9], where the more general case of a multicomponent

graph is considered). This expression with α = n is presented in [18, page 88]. For other related references, see Remarks on Proposition 15 in [5].
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2. Logarithmic forest distances

Suppose that G is a connected weighted multigraph. Let

Qα = (I + Lα)−1, (6)

where α is a real parameter, I is the identity matrix, and Lα is the Laplacian matrix of the multigraph Gα resulting from G by
a certain transformation of edge weights. This transformation generally depends on α; for example, if every edge weight is
multiplied by α > 0, then4 Lα = αL, where L is the Laplacian matrix of G.

Define the matrix Hα as follows:

Hα = γ (α − 1)
−−−−→
logα Qα, (7)

where α > 0, α ≠ 1, γ is a positive factor, and
−−−→
ϕ(Qα) with ϕ being a function stands for elementwise operations,

i.e., operations applied to each entry of Qα separately. Finally, consider

Dα =
1
2
(hα1′

+ 1h′

α)− Hα, (8)

where hα is the column vector containing the diagonal entries of Hα , h′
α is the transpose of hα , 1 and 1′ being the column

of n ones and its transpose. The elementwise form of (8) is: dij(α) =
1
2 (hii(α) + hjj(α)) − hij(α), i, j = 1, . . . , n. This is

a standard transformation used to obtain a metric from a symmetric similarity measure (see, e.g., the inverse covariance
mapping in [13]). As Theorem 1 below states, Dα determines a metric on the vertices of G.

Since limα→1((α − 1)/ lnα) = 1, we extend Eq. (7) to α = 1 as follows:

H1 = γ
−−→
lnQ1, (9)

which preserves continuity. This extension is assumed throughout the paper.

Theorem 1. For any connectedmultigraph G and any α, γ > 0,Dα = (dij(α))n×n defined by Eqs. (6)–(9) is a matrix of distances
on V (G).

Before proving Theorem 1 we represent the entries of Dα in terms of the weights of spanning forests in Gα . Let

fij(α) = w(Fij(Gα)), i, j = 1, . . . , n. (10)

Proposition 1. For any connected multigraph G and any α, γ > 0, the matrix Dα = (dij(α)) defined by Eqs. (6)–(9) exists and

dij(α) =


γ (α − 1) logα


fii(α) fjj(α)
fij(α)

, α ≠ 1

γ ln


fii(1) fjj(1)
fij(1)

, α = 1
, i, j = 1, . . . , n.

Proof. Applying the matrix forest theorem (2) to Gα one obtains that Qα exists and its entries are strictly positive, provided
that G is connected. Therefore Hα and Dα also exist.

Let qij(α) and hij(α) be the notation for the entries of Qα and Hα , respectively. For any positive α ≠ 1 and γ , Eqs. (6)–(8)
and the matrix forest theorem (2) imply

dij(α) =
1
2
(hii(α)+ hjj(α))− hij(α)

= γ (α − 1)
[
1
2
(logα qii(α)+ logα qjj(α))− logα qij(α)

]
= γ (α − 1) logα


qii(α) qjj(α)
qij(α)

= γ (α − 1) logα


fii(α) fjj(α)
fij(α)

for every i, j = 1, . . . , n. If α = 1, then the desired expression follows similarly using (9). �

Proof of Theorem 1. Proving this theorem amounts to showing that for every i, j, k ∈ V (G):

(i) dij(α) = 0 if and only if i = j and
(ii) dij(α)+ djk(α)− dki(α) ≥ 0 (triangle inequality).

4 In this case, (6) is called the regularized Laplacian kernel of Gwith diffusion factor α (see [7,25,24]).
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Note that the symmetry and non-negativity of Dα (which are sometimes considered as part of the definition of distance)
follow from (i) and (ii) by putting k = j and k = i in the triangle inequality.

Let α ≠ 1. If i = j, then by (8), dij(α) = 0. Conversely, if dij(α) = 0, then by Proposition 1, fii(α) fjj(α) = (fij(α))2
holds. If i ≠ j, then fij(α) < fjj(α), since, by definition, Fij(Gα) ⊆ Fjj(Gα) and Fjj(Gα)r Fij(Gα) contains the trivial spanning
rooted forest having no edges and weight unity. Since Qα is symmetric, fij(α) < fii(α). Consequently, i ≠ j contradicts the
assumption dij(α) = 0, hence i = j.

To prove (ii), observe that (7), (8), and (2) for any positive α ≠ 1 imply

dij(α)+ djk(α)− dki(α) =
1
2
(hii(α)+ hjj(α)+ hjj(α)+ hkk(α)− hkk(α)− hii(α))− hij(α)− hjk(α)+ hki(α)

= hjj(α)+ hki(α)− hij(α)− hjk(α)

= γ (α − 1) logα
fjj(α) fki(α)
fij(α) fjk(α)

. (11)

Since Qα is symmetric and the matrix Fα = (fij(α))n×n determines a transitional measure for Gα [3, item 1 of Corollary 3],
we have that5 fjj(α) fki(α) ≥ fij(α) fjk(α) (the transition inequality) and so (11) implies that dij(α)+ djk(α)− dki(α) ≥ 0. For
α = 1 (i) and (ii) are proved similarly. �

Theorem 1 enables us to give the following definition.

Definition 1. Suppose that G is a connected weighted multigraph and α > 0. A logarithmic forest distance with parameter α
on G is a function dα : V (G)× V (G) → R such that dα(i, j) = dij(α), where Dα = (dij(α)) is defined by Eqs. (6)–(9).

In Definition 1, the scaling factor γ of (7) and (9) and the transformation G → Gα are regarded as internal parameters of
logarithmic forest distances. In Section 3,we show that all such distances are graph-geodetic. In Sections 4 and 5, logarithmic
forest distances with specific γ and G → Gα transformations and desirable asymptotic properties are considered. Section 5
also contains natural requirements a G → Gα transformation should satisfy.

3. The logarithmic forest distances are graph-geodetic

The key property of the logarithmic forest distances is that they are graph-geodetic.6

Definition 2. For amultigraph G, a function d : V (G)×V (G) → R is graph-geodetic whenever for all i, j, k ∈ V (G), d(i, j)+
d(j, k) = d(i, k) holds if and only if every path in G from i to k contains j.

If d(i, j) is a distance on the set of graph vertices, then the property of being graph-geodetic is a natural condition of
strengthening the triangle inequality to equality. The shortest path distance clearly possesses the ‘‘if’’ (but not the ‘‘only if’’)
part of the graph-geodetic property; the ‘‘if’’ part of this property for the resistance distance is established by Lemma E
in [18]. The ordinary distance in a Euclidean space satisfies a similar condition resulting from substituting ‘‘line segment’’
for ‘‘path in G’’ in Definition 2.

Theorem 2. For any connected multigraph G and any α > 0, each logarithmic forest distance dα(i, j) is graph-geodetic.

Note that Theorem 2 is not tantamount to item 2 of Corollary 3 in [3], since the construction of logarithmic distances in
the present paper differs from that in [3].

Proof. Since Fα = (fij(α))n×n is symmetric and determines a transitional measure for Gα [3, item 1 of Corollary 3], we have
that fjj(α) fki(α) = fij(α) fjk(α) is true if and only if every path in Gα from i to k contains j (the graph bottleneck identity).
Owing to (11) and the analogous expression for α = 1, this equality is equivalent to dα(i, j)+ dα(j, k)− dα(k, i) = 0. On the
other hand,Gα is constructed in such away that it shares the set of pathswithG. Consequently, dα(i, j)+dα(j, k)−dα(k, i) = 0
holds if and only if every path in G from i to k contains j. �

Graph-geodetic functions have many interesting properties. One of them, as mentioned in [18], is a simple connection
(such as that obtained in [15]) between the cofactors and the determinant of G’s distance matrix and those of the maximal
blocks of G that have no cut points. Another example is the recursive Theorem 8 in [19]. Clearly, for a tree, all the
n(n − 1)/2 values of a graph-geodetic distance are determined by the n − 1 values corresponding to the pairs of adjacent
vertices. The logarithmic forest distances, as well as their limiting cases, i.e., the shortest-path, weighted shortest-path, and
resistance distances (see Sections 4 and 5), need not be Euclidean; however, by Blumenthal’s ‘‘Square-Root’’ theorem, the
corresponding ‘‘square-rooted’’ distances satisfy the 3-Euclidean condition (cf. [19]).

It can be observed that the ‘‘ordinary’’ forest distances [6] defined without the logarithmic transformation (6) are not
generally graph-geodetic.

5 In this proof, we cannot formally apply Theorem 1 of [3] since the construction of logarithmic distances in the present paper has some difference from
that in [3].
6 This term is borrowed from [19].
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4. The shortest-path and resistance distances in the framework of logarithmic forest distances

Consider the family of logarithmic forest distances determined by the G → Gα edge weight transformation

w
p
ij(α) = αw

p
ij, i, j = 1, . . . , n, p = 1, . . . , nij (12)

(which implies Lα = αL) and the scaling factor

γ = ln(e + α
2
n ), (13)

where e is Euler’s constant. It turns out that the shortest-path and the resistance distances are the limiting functions of this
family.

Proposition 2. For any connected multigraph G and every i, j ∈ V (G), dα(i, j) with G → Gα transformation (12) and scaling
factor (13) converges to the shortest path distance ds(i, j) as α → 0+.

Proof. Denote by m the shortest path distance ds(i, j) between i and j ≠ i. Observe that the weight of every forest that
belongs to Fii(Gα) and has at least one edge vanishes with α → 0+, whereas Fii(Gα) contains one forest without edges
whose weight is unity. Taking this into account and using Proposition 1 and (1) one obtains

lim
α→0+

dα(i, j) = lim
α→0+


− logα

√
1 · 1

αm(f (m)ij + o(1))


,

where o(1) → 0 as α → 0+. Consequently,

lim
α→0+

dα(i, j) = lim
α→0+

(m + logα f
(m)
ij ) = m = ds(i, j). �

Proposition 3. For any connected multigraph G and every i, j ∈ V (G), dα(i, j) with G → Gα transformation (12) and scaling
factor (13) converges to the resistance distance dr(i, j) as α → ∞.

Proof. Observe that for every i, j ∈ V (G), f (n−1)
ij is the total weight of all spanning trees in G. Denote this weight by t; since

G is connected, t > 0. By Proposition 1 one has

lim
α→∞

dα(i, j) = lim
α→∞

2α
n

lnα (lnα)−1 ln


αn−1


t +

1
α
f (n−2)
ii + o

 1
α


αn−1


t +

1
α
f (n−2)
jj + o

 1
α


αn−1


t +

1
α
f (n−2)
ij + o

 1
α


 ,

where o( 1
α
) denotes expressions such that α · o( 1

α
) → 0 as α → ∞. Hence

lim
α→∞

dα(i, j) =
2
n

lim
α→∞

ln


1 +

f (n−2)
ii
αt

α 
1 +

f (n−2)
jj
αt

α

1 +

f (n−2)
ij
αt

α =
2
n
ln


exp


f (n−2)
ii

t


exp


f (n−2)
jj

t


exp


f (n−2)
ij

t


=

f (n−2)
ii + f (n−2)

jj − 2f (n−2)
ij

nt
.

Consequently, by Corollary 1 of Section 1, limα→∞ dα(i, j) = dr(i, j). �

Note that for logarithmic forest distances with arbitrary positive scaling factors γ , ‘‘converges’’ in Propositions 2 and 3
must be replaced by ‘‘becomes proportional’’.

5. The weighted shortest path distance in the present framework

In the theory of electrical networks, the edge weight wp
ij is interpreted as the conductance, and the Laplacian matrix

L = (ℓij) is termed the admittance matrix. The weighted shortest path distance dws(i, j) is defined as follows:7

dws(i, j) = min
π

−
e∈π

re,

7 This formula corrects Eq. (6.2) in [18]; cf. the first inequality in [12, p. 261].
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where theminimum is taken over all pathsπ from i to j and the sum is over all edges e inπ ; re = 1/we is called the resistance
of the edge e, wherewe is the weight of this edge.

It turns out that the weighted shortest path distance, as well as the ordinary shortest path distance, fits into the
framework of logarithmic forest distances. To show this, it suffices to consider the G → Gα transformation

w
p
ij(α) = ψα(r

p
ij ), where rpij = 1/wp

ij, i, j = 1, . . . , n, p = 1, . . . , nij, (14)
with

ψα(r) = αr . (15)

Proposition 4. For any connectedmultigraph G and every i, j ∈ V (G), dα(i, j)with G → Gα transformation (14)–(15) converges
to the weighted shortest path distance dws(i, j) as α → 0+, provided that the scaling factor γ in (7) goes to 1 as α → 0+.

Proof. Let Gα be the multigraph with edge weights αrpij . Using the notation (10), for all vertices i and j ≠ i, just as in the
proof of Proposition 2 we derive

lim
α→0+

dα(i, j) = lim
α→0+


− logα

√
1 · 1

fij(α)


= lim

α→0+
logα fij(α).

For every 0 < α < 1,

fij(α) =

−
F∈Fij(Gα)

w(F) =

−
F∈Fij(G)

∏
e∈E(F)

αre =

−
F∈Fij(G)

α

∑
e∈E(F)

re
= κij(α) α

dws(i,j), (16)

where 1 ≤ κij(α) ≤ |Fij(G)|. In (16) we use the fact that for every path from i to j, Fij(G) contains a forest sharing the set of
edges with this path. Consequently,

lim
α→0+

dα(i, j) = lim
α→0+

logα(κij(α) α
dws(i,j)) = dws(i, j). �

Remark. By definition,Gα results fromG by a certain transformation of edgeweights. Thismeans that V (Gα) = V (G) and for
every i, j ∈ V (G),G andGα have the same number of edges incident to both i and j (this fact is used in the proof of Theorem2).
Since the weight of every edge is positive, ψα(r) must be positive for every r > 0 and every α in the definition domain.
Moreover, recall that the edge weightwp

ij is interpreted as the conductance of the corresponding edge,wij =
∑nij

p=1w
p
ij , and

wij = 0 = wij(α) holds if and only if nij = 0. Since the absence of direct ij-connections, i.e., the case of nij = 0, can also be
interpreted as the zero conductance of such connections,wij(α) =

∑nij
p=1w

p
ij(α) should be smallwhenever the conductances

w
p
ij of ij-edges are small (i.e., whenever their resistances are large). Formally, the continuity conditionwe have just described

is stated as follows: limr→∞ ψα(r) = 0 for every α in the definition domain. Finally, a natural requirement is that ψα(r)
should be decreasing for every α (this monotonicity condition along with the above limiting condition implies the positivity
ofψα(r)). Note that the transformation (15) satisfies these conditions if and only if α ∈ ]0, 1[. Furthermore, the edge weight
transformations we consider in this paper are such that for each r > 0, limα→0+ ψα(r) = 0 and ψα(r) strictly increases in
α; except for ψα(r) = αr , these transformations are increasing functions of αr .

Using Propositions 3 and 4 one can easily define a parametric family of logarithmic forest distances converging to the
weighted shortest path distance as α → 0+ and to the resistance distance as α → ∞. Such a family is not unique. Perhaps,
the most interesting family with such asymptotic properties is the one described in Proposition 5.

Proposition 5. For any connected multigraph G and every i, j ∈ V (G), the logarithmic forest distance dα(i, j) defined by:
• (6) and (8) with (7) replaced by

Hα = γ α
−−→
lnQα, (17)

• G → Gα transformation (14) with

ψα(r) =
α

r
e−

r
α , and (18)

• any positive scaling factor γ = γ (α) such that limα→0+ γ (α) = 1 and limα→∞ γ (α) =
2
n

converges to the weighted shortest path distance dws(i, j) as α → 0+ and to the resistance distance dr(i, j) as α → ∞.

Comparing (17) with (7) shows that the family of distances introduced in Proposition 5 is contained in the class of
logarithmic forest distances (6)–(9). As a scaling factor in (17) that meets the requirements of Proposition 5, one can take,
for example, γ (α) = ( 2nα + β)/(α + β), where β > 0 is a parameter.
Proof. Let Gα be the multigraph with edge weights assigned by (14) and (18). Since the function (18) is asymptotically
equivalent to α/r as α → ∞, using Proposition 3 we conclude that for every i, j ∈ V (G), limα→∞ dα(i, j) = dr(i, j).
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Furthermore, for all vertices i and j ≠ i and the distance dα(i, j)under consideration, similarly to the proof of Proposition 2
we have

lim
α→0+

dα(i, j) = lim
α→0+


α ln

√
1 · 1

fij(α)


= lim

α→0+
(−α ln fij(α)). (19)

The definition of the graph weight and Eqs. (10), (14), and (18) yield

fij(α) =

−
F∈Fij(Gα)

w(F) =

−
F∈Fij(G)

∏
e∈E(F)

α

re
e−re/α =

−
F∈Fij(G)

αmFwFe−dF/α,

where mF = |E(F)|,wF =
∏

e∈E(F)we, and dF =
∑

e∈E(F) re.
Observe that if F, F′

∈ Fij(G) and

(a) dF < dF′ or
(b) dF = dF′ and mF < mF′ or
(c) dF = dF′ , mF = mF′ , andwF > wF′ ,

then for each small enough α > 0, αmFwFe−dF/α > αmF′wF′e−dF′ /α holds. Consequently, there exists α0 > 0 such that
for all α ∈ ]0, α0[ and some κij(α) satisfying 1 ≤ κij(α) ≤ |Fij(G)|,

fij(α) = κij(α) α
mF̄ wF̄e

−dws(i,j)/α (20)

is true, where F̄ is a forest F ∈ Fij(G) that satisfies (a) or (b) or the nonstrict version (with wF ≥ wF′ ) of (c) w.r.t. each
F′

∈ Fij(G). Substituting (20) in (19) results in

lim
α→0+

dα(i, j) = lim
α→0+

(−α(ln(κij(α)wF̄)+ mF̄ lnα − dws(i, j)/α)) = dws(i, j). �

6. Concluding remarks

Thus, the main property of the logarithmic forest distances introduced by means of Theorem 1 and Proposition 1 is that
they are graph-geodetic: d(i, j)+ d(j, k) = d(i, k) if and only if every path connecting i and k contains j (Theorem 2).

Three classical distances, namely, the shortest-path, the resistance, and the weighted shortest-path distances, all fit, as
limiting cases, into the framework of logarithmic forest distances. The two former distances can be obtained by the use
of the edge weight transformation (12), which generates the regularized Laplacian kernel, or, in other words, by putting
ψα(r) = α/r in (14) (Propositions 2 and 3). To obtain the latter distance, one can put8 ψα(r) = αr (Proposition 4).

To define a parametric family of logarithmic forest distanceswhose limiting cases are theweighted shortest path distance
and the resistance distance, it suffices to put ψα(r) =

α
r e−

r
α in (14) (Proposition 5).

The proofs of Theorems 1 and 2 are based on the fact that the matrix F = (fij) of spanning rooted forests determines a
transitional measure [3] on the correspondingmultigraph. That is why it can be useful to study the graph-geodetic distances
produced by the other transitional measures considered in [3].

We conclude with several remarks.
On intercomponent distances

Throughout the paper,we assumed thatG is connected. Otherwise, ifGhasmore than one component and i and j belong to
different components, then, by the matrix forest theorem (2), qij = fij = 0. Consequently, if logα(·) and ln(·) are considered
as functions mapping to the extended line R∪{−∞,+∞}, then (8) leads to the distance+∞ between i and j, which seems
quite natural.
On the parameter α and the length of paths between vertices

The parameter α of logarithmic forest distances controls the relative influence of short, medium, and long paths between
vertices i and j on the distance dα(i, j). As α → 0, only the (weighted) shortest paths matter; the long paths have the
maximum effect as α → ∞.
On the ‘‘mixture’’ of the shortest-path and resistance distances

The simplest way of ‘‘generalizing’’ both the (weighted) shortest-path and the resistance distances is to consider the
convex combination of the form d′

α(i, j) = (1 − α)ds(i, j) + αdr(i, j), where α ∈ [0, 1]. However, this approach
seems quite poor from both theoretical and practical points of view. First, it does not presuppose any underlying
model that might provide a deeper insight by unifying the shortest-path and the resistance distances; thus, the mixture
seems just ‘‘mechanical’’. Second, consider, for example, a path on four vertices: let V (G) = {1, 2, 3, 4} and E(G) =

{(1, 2), (2, 3), (3, 4)}. Then ds(1, 2) = ds(2, 3) = dr(1, 2) = dr(2, 3) = 1, and therefore d′
α(1, 2) = d′

α(2, 3) for all

8 It can be shown that ψα(r) = e−r/α is also suitable for this purpose.
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α ∈ [0, 1]. On the other hand, in applications, there aremodels and intuitive heuristics that result in either d(1, 2) > d(2, 3)
or d(1, 2) < d(2, 3). Indeed, suppose that the distance d(i, j) should depend on the whole set of routes between i and j: the
shorter and more numerous are the routes, the smaller must be the distance. Then the inequality d(1, 2) > d(2, 3) is
suggested by the observation that there are three routes of length 3 between vertices 2 and 3 (namely, (2, 3, 2, 3), (2, 1,
2, 3), and (2, 3, 4, 3)) and only two routes of length 3 between vertices 1 and 2 ((1, 2, 1, 2) and (1, 2, 3, 2)). On the other
hand, if the relative numbers of routes are important, then the opposite inequality d(1, 2) < d(2, 3) can be justified by the
observation that (1, 2) is the unique route of length 1 starting at vertex 1, whereas (2, 3) and (3, 2) are not unique routes of
length 1 starting at vertices 2 and 3, respectively. It is worth mentioning that the inequality d(1, 2) < d(2, 3) holds true for
the quasi-Euclidean graph distance [19].

The above example demonstrates that distances providing d(1, 2) = d(2, 3) are insufficient for the numerous applica-
tions of graph theory. As regards the forest distances, the logarithmic forest distances provide dα(1, 2) < dα(2, 3), whereas
with the ‘‘ordinary’’ forest distances [6], we have d̃α(1, 2) > d̃α(2, 3).
On some physical and probabilistic interpretations of graph distances

In the view of Chen and Zhang [10], ‘‘. . . the shortest-path [distance] might be imagined to be more relevant when there
is corpuscular communication (along edges) between two vertices, whereas the resistance distance might be imagined to
be more relevant when the communication is wave-like’’. The authors do not develop this idea in depth; presumably they
have in mind that a corpuscle always takes a shortest path between vertices, while a wave takes all paths simultaneously.
As has been shown in this paper, the shortest-path, weighted shortest-path, and resistance distances are extreme examples
of the logarithmic forest distances. The forest distance between vertices i and j is interpreted as the probability of choosing
a forest partition separating i and j in the model of random forest partitions [6, Proposition 5]. As α → 0, transformation
(7) preserves only those partitions that connect i and j by a (weighted) shortest path and separate all vertices this path does
not involve; thereby the (weighted) shortest path distance results in this case, as we see in Propositions 2, 4 and 5. When
α → ∞ and ψα(r) ∼ α/r , this transformation preserves only the partitions determined by two disjoint trees, which leads
to the resistance distance, as Propositions 3 and 5 demonstrate.
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