Years Gained - LYC and cost-effectiveness analysis (Quality-Adjusted Life years - QALYs) were performed for 10 years according to a Markov model with four health states – “progression free survival (PFS) in first and second lines”, “progression” and “death” - and monthly cycles. Health state transition probabilities were obtained from two randomized controlled clinical trials: PRIMA (Saller et al, 2008), and DARWIN (Saller et al, 2010). Health state utilities were obtained from literature (Pettenegger R. et al 2008). Resource consumption was estimated by a Portuguese expert’s panel. Costs were calculated considering the Portuguese health care perspective through official data (unit costs: €) in 2014. Costs and consequences were discounted at 5% per annum. Deterministic and probabilistic sensitivity analyses were performed for several assumptions namely time horizon, PFS supportive care and progression costs; adverse events costs; health state utilities values and costs and benefits annual discount. RESULTS: For a 10 years’ time horizon, the cost per QALY of PEG was €10,657 and for capsaicin 8% patch was €7,951/QALY. Capsaicin 8% patch was dominant in six/seven scenario analyses. Capsaicin 8% patch was more sensitive to variations in time to capsaicin 8% patch retreatment (worse case ICER, €77,155 per QALY gained), respectively. Probabilistic sensitivity analysis confirmed the robustness of the model with a cost per QALY gained of €10,657. The incremental cost-effectiveness acceptability curve shows that rituximab maintenance therapy is cost-effective compared to no further treatment in 90% of the Monte Carlo simulations. Sensitivity analyses confirmed the base case model results. Capsaicin 8% patch was more cost-effective than pregabalin for 90% of the scenarios tested. The effect sizes of the capsaicin 8% patch were derived from the results of the Oxford Adverse Sensitivity Analysis (OAS), using a combination of evidence and expert opinion. The results showed that the capsaicin 8% patch is cost-effective compared to pregabalin in terms of both cost-effectiveness and utility gains. CONCLUSIONS: Capsaicin 8% patch is cost-effective compared to pregabalin for patients who have failed one or more previous systemic treatments for NP.

PSY57

V. De Laat, Van der Heijden, D. Meekers, S. Vermeersch, R. De Meester, G. Vanhoutte, Y. Hoorens, J. Moons, CHIR, Brussels, Belgium

COST EFFECTIVENESS ANALYSIS OF AMFEPRAZONE (DIETHYLPROPION) FOR THE OBESITY TREATMENT IN MEXICO

Seto Molina H1, Díaz Martínez JP1, Escobar Juárez Y, Fernández del Valle C2

1 3ES Estudios Farmacoeconómicos, Mexico City, Mexico, 2 Instituto Politécnico Nacional, Mexico city, Mexico

OBJECTIVES: The main objective was to perform a pharmacoeconomic analysis to find out the cost effectiveness of diethylpropion (DEP) with diet and exercise. The study included the results of a randomized controlled trial, the economic model of the DEP plus diet and exercise was compared against placebo and other treatment options using decision tree approach. Results were obtained from economic and clinical studies as well as from expert interviews set up with patients, dietitians, physicians and pharmacists. The study included direct costs related to PHN. Indirect costs were not included as most patients with PHN are older and retired. Transition probabilities were based on the long-term and two-year clinical trials. Utilities were derived through a substitution method. Resource utilization was determined for two-step Delphi study with pain specialists, cost data were obtained from the official price tariffs/lists. Extensive sensitivity and scenario analyses were performed to explore robustness of the results. RESULTS: The DEP plus diet and exercise treatment yielded 0.4283 QALYs. For pregabalin and amitriptyline the total effect was 0.3390 QALYs. The mean costs per patient treated with lidocaine plaster (1.71 plasters/day) was 1,082 €. For pregabalin (488 mg/day) and amitriptyline (25 mg/day) the mean costs were 912 € and 346 €, respectively. Therefore, the lidocaine plaque compared to pregabalin and amitriptyline had an incremental cost-effectiveness ratio of 1,907 €/QALY and 8,246 €/QALY, respectively. Probability of the lidocaine plaque being cost-effective versus pregabalin and amitriptyline exceeded 90% when considering a threshold of 30,000 € per QALY gained. Extensive scenario and one-way sensitivity analyses confirmed robustness of the results. CONCLUSIONS: The lidocaine 5% plaster is a highly cost-effective treatment for PHN in the Netherlands.