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We show that entire positive solutions exist for the semilinear elliptic system
�u = p�x�vα, �v = q�x�uβ on RN , N ≥ 3, for positive α and β, provided that
the nonnegative functions p and q are continuous and satisfy appropriate decay
conditions at infinity. We also show that entire solutions fail to exist if the functions
p and q are of slow decay.  2002 Elsevier Science (USA)
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1. INTRODUCTION

Existence and nonexistence of solutions of the semilinear elliptic system

�u + f �u� v� = 0�
�v + g�u� v� = 0� x ∈ RN� (1)

have received much attention recently. See, for example, [1, 3–5, 8–12] and
the references therein. Most of these results have to do with the nonexis-
tence of positive solutions, the existence of radial solutions, or the asymp-
totic behavior of the solutions. In particular, in [1], the nonexistence of
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positive radial solutions was shown for the system where

f �u� v� ≥ aukvp and g�u� v� ≥ buqvt�

with k� t > 1, p� q ≥ 0, and a� b both positive constants. In [5], the authors
consider the system

�u = p�x�vα�

�v = q�x�uβ�
u > 0� v > 0� x ∈ RN� N ≥ 3� α ≥ β > 0� (2)

where p and q are nonnegative continuous functions defined on RN . Under
the assumption that p and q are radial, they show that entire positive radial
solutions exist in each of the following cases: (i) the sublinear case 1 > α ≥
β > 0; (ii) the case where both p and q have fast decay rates at infinity,∫ ∞

0
tp�t�dt < ∞�

∫ ∞

0
tq�t�dt < ∞� (3)

Moreover, large positive radial solutions (“large” means that both u and
v tend to infinity at infinity) exist if either (i) α ≥ β > 1 (the superlinear
case) and both p and q have fast decay rates (3) or (ii) 1 > α ≥ β > 0 (the
sublinear case) and the functions p and q have slow decay rates,∫ ∞

0
tp�t�dt = ∞�

∫ ∞

0
tq�t�dt = ∞� (4)

It appears to us that little is known about entire positive nonradial solu-
tions of semilinear elliptic systems in RN . In this paper we intend to fill this
gap by studying (2). In particular, we show:

• For α ≥ β > 0, the system has entire bounded solutions if p and q
decay fast at least at the rate of �x�−2−δ for δ > 0 at infinity; moreover, any
bounded entire solution has a limit at infinity.

• For α ≥ β > 1, entire solutions of (2) do not exist if the functions
p and q decay no faster than �x�−2.

• For 1 > α ≥ β > 0, any entire solution is bounded (and therefore
has a limit at infinity) if p and q decay fast at infinity in the sense that∫ ∞

0
t max
�x�=t

p�x�dt < ∞�
∫ ∞

0
t max
�x�=t

q�x�dt < ∞� (5)

We are unable to prove the existence of large entire solutions as suggested
by the results in [5], whose proofs rely on the radial symmetry assumption
in the system. For the single equation

�u = p�x�uα� (6)

where p has a fast decay and α > 1, Cheng and Ni [2] were able to classify
all nonradial entire solutions in a clear-cut fashion. They used the compar-
ison principle, which is not available for our system.
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2. STATEMENTS AND PROOFS OF THE THEOREMS

Theorem 1. Suppose that α ≥ β > 0 and that p and q decay to zero at
infinity faster than the quadratic ones,

p�x� + q�x� ≤ C�x�−�2+δ�� (7)

for some positive constant δ.

(i) For any pair of constants a� b > 0 satisfying

b − aαp0 > 0� a − bβq0 > 0�

where

p0 = max
x∈RN

�−��x� ∗ p�x��� q0 = max
x∈RN

�−��x� ∗ q�x���

� being the fundamental solution of the Laplacian, there exists an entire solu-
tion u�x�� v�x� of (2) with

lim
�x�→∞

u�x� = b� lim
�x�→∞

v�x� = a�

(ii) Any bounded entire solution �u� v� has a limit at infinity.
Proof of Theorem 1. Let ��x� be the fundamental solution of the

Laplacian. We define the sequences 
uk� and 
vk� as

v0 = a > 0�

uk+1 = b + � ∗ �pvα
k��

vk = a + � ∗ �qu
β
k+1��

By Lemma 2.3 of [6] and the decay condition (7), both � ∗ p�x� and
� ∗ q�x� are well-defined and have decay rate O��x�−δ� at infinity. Thus u1
is well-defined and if b − aαp0 > 0 it is positive and less than b. This, in
turn, implies that v1 is positive and less than a if a − bβq0 > 0. Repeating
this process, we have that for each positive integer k,

0 < vk�x� < a� 0 < uk�x� < b� x ∈ RN�

and that uk is a monotone increasing sequence, while vk is a decreasing one.
Let u�x�� v�x� be the pointwise limit functions of the sequences 
uk�

and 
vk�. Then we have

0 ≤ v�x� ≤ a� 0 ≤ u�x� ≤ b� x ∈ RN�
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Furthermore, by Lebesgue’s dominated convergence theorem, �u� v�
satisfies

u = b + � ∗ �pvα��
v = a + � ∗ �quβ��

(8)

Thus �u� v� is a nonnegative bounded entire solution of the system (2). By
the strong maximum principle, both u and v are positive. Moreover, by
Lemma 2.3 of [6] again, the convolution term in each of the equations in
(8) decays at least at the order of �x�−δ at infinity. This completes the proof
of Part (i) of Theorem 1.

To prove Part (ii), we apply Lemma 2.8 of [6] to the u and v equa-
tions, respectively. (By the maximum principle, the limits of u and v are
positive.)

Theorem 2. Suppose that α ≥ β > 1 and that p and q decay no faster
than �x�−2:

p�x�� q�x� ≥ C

1 + �x�2 �

Then (2) has no entire solutions.

Proof of Theorem 2. We follow [7] where the nonexistence of (6) was
studied. Suppose (2) has an entire solution �u� v�. This will lead to a con-
tradiction. The first step to reach this is to show that both∫

BR�0�
u�x�dx�

∫
BR�0�

v�x�dx

have exponential growth as R → ∞. This can be achieved by showing that
both

M�R� �= max
�x�≤R

u�x�� N�R� �= max
�x�≤R

v�x�

have such growth, because by the mean value property of subharmonic
functions (as u and v are), we have

M�R/2� = u�x̄� ≤ 1
�BR/2�x̄��

∫
BR/2�x̄�

u�x�dx�

≤ 2N

�BR�0��
∫
BR�0�

u�x�dx�

where x̄ is a maximum point of u in BR/2�0�.
Using the arguments on p. 223 of [7], we have

M�2R� ≥ M�R/2� + C1N
α�R/2��

N�2R� ≥ N�R/2� + C1M
β�R/2��
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Thus

M�2R� ≥ M�R/2� + C1+α
1 Mαβ�R/8�

≥ M�R/8� + C1+α
1 Mαβ�R/8�

≥ �1 + C1+α
1 �M�R/8��

(Without loss of generality, assume that u�0� = 1 and then M�R� ≥ 1.)
From this it follows that M�R� grows exponentially fast as R → ∞. Simi-
larly, we can show that the same is true for N�R�.

Now let w = u + v. Then on RN ,

�w ≥ K�x��uα + vβ��
where K�x� = C/�1 + �x�2�. Multiplying this by w and integrating on BR�0�
by parts, we have∫

∂Br�0�
w�∇w� ≥

∫
Br�0�

[�∇w�2 + K�x��uα + vβ�w]
dx�

and hence∫
BR�0�

w�∇w� ≥
∫ R

0

∫
Br�0�

[�∇w�2 + K�x��uα + vβ�w]
dxdr� (9)

Observe that by Hölder’s inequality, for r large,∫
Br�0�

K�x�uβ+1 dx

≤
(∫

Br�0�
K�x�uα+1 dx

)�β+1�/�α+1�(∫
Br�0�

K�x�dx

)�α−β�/�α+1�

≤
∫
Br�0�

K�x�uαw dx�

because
∫
Br�0� udx and hence

∫
Br�0� K�x�uα+1 dx have exponential growth

as r → ∞. Combining this with (9), we see that there exist constants 0 <
C2 < C3 < 1 such that for all large R,

∫
BR�0�

w�∇w�dx ≥ C3

∫ R

0

∫
Br�0�

[�∇w�2 + K�x��uβ+1 + vβ+1�]dxdr

≥ C2

∫ R

0

∫
Br�0�

[�∇w�2 + K�x�wβ+1]dxdr�

Now the proof of Theorem 3.4 in [7] leads to a contradiction.

The next result deals with the case when the decay rates of p and q lie
between the ones required in Theorems 1 and 2.
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Theorem 3. For 1 < α ≤ β, all entire positive solutions (if any) of (2) are
unbounded if the functions p and q satisfy

∫ ∞

0
t min
�x�=t

p�x�dt = ∞�
∫ ∞

0
t min
�x�=t

q�x�dt = ∞� (10)

Proof of Theorem 3. For convenience we denote

p�r� = min
�x�=r

p�x��

q�r� = min
�x�=r

q�x��

For any function f �x�, define its spherical mean by

f̄ �r� ≡ 1
�∂Br�0��

∫
∂Br�0�

f �x�dσ�

We have

�ū = ū′′ + n − 1
r

ū′ = �u

≥ p�r�vα ≥ p�r�v̄α�

Similarly, we have

�v̄ ≥ q�r�ūβ�r��

Thus we have

ū�r� ≥ u�0� +
∫ r

0
t1−N

∫ t

0
sN−1p�s�vα�s�ds dt� (11)

v̄�r� ≥ v�0� +
∫ r

0
t1−N

∫ t

0
sN−1q�s�uβ�s�ds dt� (12)

Clearly,

ū�r� ≥ u�0� + �v�0��α
∫ r

0
t1−N

∫ t

0
sN−1p�s�ds dt ≡ a + bαf �r��

and similarly v̄�r� ≥ v�0� + �u�0��βg�r�. However, limr→∞ f �r� = limr→∞
g�r� = ∞ as a consequence of (10). Thus �u� v� cannot be bounded.

Theorem 4. Suppose 1 > α ≥ β > 0 and that p and q have a fast decay
in the sense of (5). Then every bounded entire solution �u� v� of system (2) is
bounded in RN .
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Proof of Theorem 4. Let

p̄�r� = max
�x�=r

p�x�� q̄�r� = max
�x�=r

q�x��
We first show that the spherical means of u and v (as defined in the proof
of Theorem 3) are bounded. Observe that

ū′′ + n − 1
r

ū′ ≤ p̄�r�v̄α�r�
and

v̄′′ + n − 1
r

v̄′ ≤ q̄�r�ūβ�r��
Integrating the above inequalities and using the facts that ū′ ≥ 0 and v̄′ ≥ 0
yield that for r ≥ r0 (r0 to be chosen),

ū�r� ≤ ū�r0� +
∫ r

r0

t1−n
∫ t

0
sn−1p̄�s�v̄α�s�ds dt

≤ ū�r0� + v̄α�r�
∫ r

r0

t1−n
∫ t

0
sn−1p̄�s�ds dt

and
v̄�r� ≤ v̄�r0� + ūβ�r�

∫ r

r0

t1−n
∫ t

0
sn−1q̄�s�ds dt�

By the assumption (5), we can choose r0 large so that∫ ∞

r0

r1−n
∫ r

0
sn−1�p�s� + q�s��ds dt �= M < 1�

Therefore

ū�r� ≤ ū�r0� + Mv̄α�r� ≤ ū�r0� + M�1 + v̄�r���
v̄�r� ≤ v̄�r0� + Mūβ�r� ≤ v̄�r0� + M�1 + ū�r���

Hence ū�r� and v̄�r� are bounded. Consequently, ū�r� + v̄�r� is bounded,
say, by a constant L.

This implies that for R > 0,
1

�BR�0��
∫
BR�0�

wdx ≤ L� w �= u + v�

This and the fact that w is subharmonic yield, for every z ∈ RN ,

w�z� ≤ 1
�B�z��z��

∫
B�z��z�

w�x�dx

≤ 1
�B�z��z��

∫
B2�z��0�

w�x�dx

≤ 2NL�

Thus, u�x� and v�x� are bounded.
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