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Abstract

We investigate how non-standard neutrino interactions (NSIs) with matter can be generated by new
physics beyond the Standard Model (SM) and analyse the constraints on the NSIs in these SM extensions.
We focus on tree-level realisations of lepton number conserving dimension 6 and 8 operators which do not
induce new interactions of four charged fermions (since these are already quite constrained) and discard
the possibility of cancellations between diagrams with different messenger particles to circumvent exper-
imental constraints. The cases studied include classes of dimension 8 operators which are often referred
to as examples for ways to generate large NSIs with matter. We find that, in the considered scenarios, the
NSIs with matter are considerably more constrained than often assumed in phenomenological studies, at
least O(10−2). The constraints on the flavour-conserving NSIs turn out to be even stronger than the ones
for operators which also produce interactions of four charged fermions at the same level. Furthermore, we
find that in all studied cases the generation of NSIs with matter also gives rise to NSIs at the source and/or
detector of a possible future Neutrino Factory.
© 2008 Elsevier B.V. All rights reserved.

1. Introduction

With the near start of the LHC, particle physics will enter a new era. With unprecedented
energy reach and luminosity, the LHC will allow to clarify the origin of electroweak symmetry
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breaking and look for new physics at TeV energies. In addition, complementary to the LHC,
future precision experiments in the neutrino sector are aiming at measuring the remaining un-
known parameters in the lepton sector, i.e. the neutrino mass scale, leptonic CP violation and the
remaining unknown leptonic mixing angle θ13 [1].

Precision neutrino oscillation experiments, for example, are also sensitive to new physics
beyond the Standard Model (SM). This sensitivity is at the same time a chance and a potential
problem: On the one hand, there is the chance that such experiments discover new physics, for ex-
ample new interactions of neutrinos at the source, detector or with matter, a possible non-unitary
leptonic mixing matrix, or even a violation of fundamental principles such as CPT invariance or
locality. On the other hand, new physics may also lead to confusions of effects from new (CP
violating) interactions with the leptonic Dirac CP phase, in the standard parameterisation of the
leptonic mixing matrix, or with the small mixing parameter θ13. To avoid such confusion when
measuring the remaining unknown parameters in the lepton sector, a better knowledge of the
constraints on the new physics relevant to these experiments is highly desirable.

With respect to their effects on neutrino oscillations, one convenient way to describe new
interactions with neutrinos in the electroweak (EW) broken phase are the so-called NSI parame-
ters for non-standard neutrino interactions at the source (εs

αβ ), detector (εd
αβ ) [2] and with matter

(εm
αβ ) [3–5]. They give the relative strength of these interactions with respect to the Fermi con-

stant GF . Among these parameters, the NSIs with matter are comparatively weakly constrained,
i.e. some bounds on them are even O(1) [4]. In many analyses, large non-standard matter ef-
fects are therefore included, whereas possible new interactions at the source or detector are set
to zero.

In this study, we investigate how non-standard neutrino interactions (NSIs) with matter [6]
can be induced by new physics beyond the SM. We restrict our analysis to tree-level realisations
of lepton number conserving dimension 6 and 8 operators which do not induce new interactions
of four charged fermions (since these are already quite constrained), and discard the possibility
of cancellations between diagrams with different messenger particles to circumvent constraints.
The cases studied include classes of dimension 8 operators which are often referred to as ex-
amples for ways to generate large NSIs with matter without generating NSIs at the source and
detector of a neutrino oscillation experiment [4,7]. The goal of this study is to investigate the con-
straints on the NSI parameters if these operators are generated by explicit new physics beyond
the SM.

The paper is organised as follows: In Section 2 we define the NSIs ε
m,f
αβ with matter and the

related quantities ε̃m
αβ which affect neutrino oscillations in matter. In Section 3 we discuss the

possible approaches to realising large NSIs with matter as well as the restrictions we impose on
our analysis. The generation of matter NSIs from dimension 6 operators is discussed in Section 4,
and updated and improved constraints on the NSI parameters are derived. In Section 5 we inves-
tigate NSIs with matter from dimension 8 operators and derive the corresponding constraints.
Section 6 contains a summary and our conclusions.

2. NSIs with matter

Compared to the bounds on NSIs at the source and detector, the NSIs which can modify matter
effects are often assumed to be only very weakly constrained. In the following we will therefore
mainly restrict ourselves to this class of NSIs. The (lepton number conserving) NSI four-fermion
operators of interest are contained in the following Lagrangian after EW symmetry breaking,
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Lm
NSI = 2

√
2GF

∑
f

ε
m,fL
αβ

[
ν̄Lαγ δνLβ

][f̄LγδfL]

(2.1)+ 2
√

2GF

∑
f

ε
m,fR
αβ

[
ν̄Lαγ δνLβ

][f̄RγδfR].

The fermions f which the neutrinos couple to are either electrons e, up quarks u or down
quarks d , and may be left- or right-handed. α,β = 1,2,3 are family indices. Constraints on
the parameters ε

m,f
αβ have been derived in [4,8].

Neutrino oscillations in the presence of non-standard matter effects can be described by an
effective square mass matrix which can be parameterised as

(2.2)M2
eff = UPMNS · diag

(
0,	m2

21,	m2
31

) · U†
PMNS + 2EV

(
diag(1,0,0) + ε̃m

αβ

)
,

where V = √
2GF ne, with ne being the electron number density. The parameters ε̃m

αβ are given
by

(2.3)ε
m,f
αβ = ε

m,fL
αβ + ε

m,fR
αβ , ε̃m

αβ = ε
m,e
αβ + 2ε

m,u
αβ + ε

m,d
αβ + nn

ne

(
ε
m,u
αβ + 2ε

m,d
αβ

)
,

where nn is the neutron number density. While the individual ε
m,fL
αβ and ε

m,fR
αβ are predicted in an

explicit extension of the SM, only the combined quantity ε̃m
αβ is relevant for neutrino oscillations

in matter.

3. Strategy to realise large NSIs with matter

Direct experimental constraints on the effective operators of Eq. (2.1) can mainly be derived
through neutrino scattering experiments off electrons or nuclei and are, therefore, rather weak.
The main goal of this work is to investigate whether these mild bounds can be saturated in exten-
sions of the Standard Model avoiding stronger constraints from other operators generated by the
same SM extension as a byproduct. Indeed the operator of Eq. (2.1) is not gauge invariant and
its generation in any extension of the SM will usually involve also the charged lepton partners
of the neutrinos in the SU(2)L doublets. The simplest possibility to generate NSIs with matter
by SU(2)L-invariant operators would be to promote the left-chiral leptons (quarks) in the effec-
tive operators of Eq. (2.1) to lepton (quark) doublets. However, these SU(2)L-invariant operators
also generate interactions of four charged fermions. Conservatively estimated constraints on the
relevant off-diagonal NSIs with matter from such operators range from O(10−2) (εm,u,d

eτ , εm,u,d
μτ )

to O(10−6) (εm,e
eμ ) for the off-diagonal elements [9–14], while the constraints for the diagonal

elements are rather weak (but still stronger than the direct bounds of [4,8]).1 In the following,
we will therefore restrict ourselves to extensions of the SM (i.e. to the introduction of additional
messenger particles and interactions) where no interactions of four charged fermions are gener-
ated at tree-level. For example, this excludes SU(2)L-triplet fermions or scalars as messengers.
Their low energy effects include interactions of four charged leptons and the resulting NSIs are
known to be subject to the above constrains (see e.g. [15]).

We will furthermore not consider here the possibility that extensions of the Standard Model
with different messenger particles induce these constrained four charged fermion operators but

1 Further relaxation of these bounds (up to a factor of 7) is in principle possible [11,12], however it would require
specific arrangements in SU(2)L-breaking.
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conspire to cancel against each other circumventing the bounds. Such cancellations between con-
tributions from different messenger particles with different SM quantum numbers are typically
associated with a certain amount of fine-tuning without justification by a suitable symmetry.
We will consequently disregard the extensions in which the extra particles and couplings intro-
duced to produce the NSIs of Eq. (2.1) also lead to diagrams with four charged fermions. More
generally, we do not consider the possibility that experimental constraints are circumvented by
cancellations between contributions from different messenger particles.

The lowest dimensional gauge invariant realisations of the effective interactions of Eq. (2.1),
and presumably the least suppressed ones, are provided by dimension 6 operators. Loop-level
generation of them will always be suppressed by an additional “loop factor” of O(1/16π2) and
cannot lead to very large NSIs. We will therefore restrict ourselves to tree-level generation of ef-
fective operators. On the other hand, certain dimension 8 operators [4,7] containing four fermions
and two SM Higgs fields are often quoted as examples how to generate large NSIs (less con-
strained than NSIs from dimension 6 operators). The reason why dimension 8 operators appear
promising is that the vev of the Higgs SU(2)L doublets can be used to “project out” the neutrino
fields from the SU(2)L doublets after electroweak symmetry breaking, thus avoiding to generate
interactions with charged leptons instead of neutrinos. In our analysis, we therefore also include
the class of dimension 8 operators (which contains the above-mentioned operators) with external
fields L, L̄, f, f̄ ,H,H †, where f can be fL or f c

R with fL ∈ {L1,Q1} and f c
R ∈ {ec

R, uc
R, dc

R} and
where H is the SM Higgs doublet.

In summary, when we attempt to realise large NSIs with matter, we will restrict our search to
extensions of the SM satisfying the following restrictions:

• No new interactions of four charged fermions.
• No cancellations between diagrams with different messenger particles.
• Tree-level generation of the NSIs through dimension 6 and 8 operators.
• Electroweak symmetry breaking is realised via the Higgs mechanism.

In the following, we will always impose these restrictions on our analysis. We will start with
dimension 6 operators and their generation in Section 4 and turn to the class of dimension 8
operators in Section 5.

4. Dimension 6 operator for matter NSIs

There are only two dimension 6 operators and associated SM extensions satisfying the cri-
teria defined in the previous section: the anti-symmetric 4-lepton operator, generated from the
exchange of virtual singly charged scalar fields (cf. Fig. 1), and the dimension 6 operator mod-
ifying the neutrino kinetic terms, generated by the exchange of virtual fermionic singlets (cf.
Fig. 2). The latter operator generates the NSIs in an indirect way, i.e. after canonical normalisa-
tion of the neutrino kinetic terms.

4.1. Constraints on the NSIs from the anti-symmetric dimension 6 operator

In this subsection we will review and update the bounds on the matter NSIs generated from
the anti-symmetric dimension 6 operator composed of four lepton doublets (see also: [10,16,17])

(4.4)Ld=6,as
NSI = c

d=6,as
αβγ δ

(
L̄c

α · Lβ

)(
L̄γ · Lc

δ

)
,
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Fig. 1. Generation of the anti-symmetric 4-lepton operator by the exchange of virtual singly charged scalars Si .

considering its tree-level generation via singly charged scalar fields Si (cf. Fig. 1), i.e. new
fields beyond the SM in the representation (1,1,−1) of the SM gauge group G321 = SU(3)C ×
SU(2)L × U(1)Y. The dot in Eq. (4.4) denotes the SU(2)L invariant product (where indices are
contracted with ε := iσ2). In addition to the SM Lagrangian, we therefore consider the additional
interaction

(4.5)LS
int = −λi

αβL̄c
αiσ2LβSi + H.c. = λi

αβSi

(
�̄c
αPLνβ − �̄c

βPLνα

) + H.c.

as well as a mass mSi
for the Si .

Integrating out the heavy scalars Si generates the dimension 6 operator of Eq. (4.4) at tree
level. Written in component fields, it has the form

Ld=6,as
NSI = 4

∑
i

λi
αβλi∗

δγ

m2
Si

(
�̄c
αPLνβ

)(
ν̄γ PR�c

δ

)

(4.6)= 2
∑

i

λi
αβλi∗

δγ

m2
Si

(
�̄δγ

μPL�α

)
(ν̄γ γμPLνβ).

For the coefficients c
d=6,as
αβγ δ we can read off

(4.7)c
d=6,as
αβγ δ = −

∑
i

λi
αβλi∗

δγ

m2
Si

.

Using the definition of Eq. (2.1), we find that, for normal matter, only the NSIs

(4.8)ε
m,eL
αβ =

∑
i

λi
eβλi∗

eα√
2GF m2

Si

are induced. We note that, since the coupling matrix λi
αβ is anti-symmetric, the indices α and β

in ε
m,eL
αβ satisfy α,β �= e.2

2 Analogously, the operator in Eq. (4.4) also induces the NSIs ε
m,μL
αβ (α,β �= μ) and ε

m,τL
αβ (α,β �= τ ), which do not

play a role for neutrino oscillations in normal matter. The generalisation of the constraints to these NSIs is straightfor-
ward.
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4.1.1. Bounds from rare lepton decays
One type of constraints in the above extension of the SM comes from rare radiative lepton

decays lα → lβγ . Neglecting the masses of the light leptons we obtain

(4.9)
Γ (lα → lβγ )

Γ (lα → lβναν̄β)
= α

48π

∣∣∣∣∑
i

λi
αδλ

i∗
βδ

m2
Si

GF

∣∣∣∣
2

,

with δ �= α,β . Using the present experimental bounds [18] at 90% confidence level (cl)

(4.10)Br(μ → eγ ) < 1.2 × 10−11,

(4.11)Br(τ → eγ ) < 9.4 × 10−8,

(4.12)Br(τ → μγ ) < 1.6 × 10−8,

together with the experimental values Br(τ → ντμν̄μ) = 0.1736 ± 0.0006, Br(τ → ντ eν̄e) =
0.1784 ± 0.0006 and Br(μ → νμeν̄e) ≈ 100% [19], we obtain the following constraints:

(4.13)

∣∣∣∣∑
i

λi
eτ λ

i∗
μτ

m2
Si

GF

∣∣∣∣ < 5.0 × 10−4,

(4.14)

∣∣∣∣∑
i

λi
eμλi∗

μτ

m2
Si

GF

∣∣∣∣ < 1.0 × 10−1,

(4.15)

∣∣∣∣∑
i

λi
eμλi∗

eτ

m2
Si

GF

∣∣∣∣ < 4.4 × 10−2.

Comparing them with Eq. (4.8) we see that only τ → μγ allows to constrain one of the matter
NSI parameters. At the 90% cl this constraint is given by

(4.16)
∣∣εm,eL

μτ

∣∣ < 3.0 × 10−2.

This bound turns out to be comparatively weak compared to the bounds that can be obtained
from the determination of GF via μ and τ decays under the assumption of unitarity of the CKM
matrix, as we will now discuss.

4.1.2. Bounds from GF via μ and τ decays and assuming CKM unitarity
The unitarity constraint on the first row of the CKM matrix is experimentally tested to very

high precision. The extraction of Vud is performed through superallowed β decays, while Vus

is measured through kaon decays.3 In both processes GF , extracted from μ decays, is used as
an input. Thus, if we assume that the CKM matrix is unitary, the experimental bounds provide
excellent constraints on new physics contributions to μ decays.

The singly charged scalars Si introduced in Eq. (4.5) can mediate the decay μ → eναν̄β with
α �= e and β �= μ. For α = μ and β = e, in particular, the diagram interferes with the SM decay
amplitude and the suppression of the process will be linear in each λi

αβ instead of quadratic. At

3 The experimental value of Vub is smaller than the precision of the other two matrix elements in the unitarity relation
and thus negligible for this discussion.
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this order in λi
αβ , the Fermi constant extracted from the μ decay would be given by

(4.17)Gμ = GF

(
1 +

∑
i

|λi
eμ|2√

2m2
Si

GF

)
= GF

(
1 + εm,eL

μμ

)
.

Using Gμ to extract the values of Vud and Vus from β decays and kaon decays leads to

(4.18)V
exp
αβ = Vαβ

1 + ε
m,eL
μμ

,

where V
exp
αβ denotes the experimentally measured Vud and Vus . Using [19]

(4.19)V
exp
ud = 0.97418 ± 0.00027,

(4.20)V
exp
us = 0.2255 ± 0.0019,

and assuming that the unitarity of the CKM matrix is not affected by the new physics leading to
the NSIs, we find

(4.21)
∣∣V exp

ud

∣∣2 + ∣∣V exp
us

∣∣2 = 1

(1 + ε
m,eL
μμ )2

= 0.9997 ± 0.0010.

Analogous to the case of the μ decay, the decay τ → eνν̄ is modified to

(4.22)Gτ→eνν̄ = GF

(
1 +

∑
i

|λi
eτ |2√

2m2
Si

GF

)
= GF

(
1 + εm,eL

ττ

)
.

The comparison with the μ decay can now be used to obtain bounds on the universality of the
weak interactions [19,20], which yields

(4.23)

√
Gτ→eνν̄

Gμ→eνν̄

=
√

1 + ε
m,eL
ττ

1 + ε
m,eL
μμ

= 1.0004 ± 0.0023.

4.1.3. Constraints on NSIs with matter
Using Eqs. (4.21) and (4.23) and additionally the relation |εm,eL

μτ | �
√

ε
m,eL
μμ ε

m,eL
ττ derived from

Eq. (4.8), we obtain the following bounds (at 90% cl):

(4.24)
∣∣εm,eL

μμ

∣∣ < 8.2 × 10−4,

(4.25)
∣∣εm,eL

ττ

∣∣ < 8.4 × 10−3,

(4.26)
∣∣εm,eL

μτ

∣∣ < 1.9 × 10−3.

In summary, the anti-symmetric dimension 6 operator of Eq. (4.4) can only give rise to very
specific NSIs (with normal matter), namely to ε

m,eL
μμ , ε

m,eL
μτ and ε

m,eL
ττ . The most relevant con-

straints come from the determination of GF via μ and τ decays (under the assumption of unitarity
of the CKM matrix). Since only the shown matter NSIs involving eL are generated, the bounds
on ε̃m

αβ (which are defined in Eq. (2.3) and which are the quantities relevant for neutrino oscil-

lations in matter) are the same as the bounds on the corresponding ε
m,eL
αβ parameters given in

Eqs. (4.24)–(4.26). The bounds on ε̃m are summarised in Table 1.
αβ
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Table 1
Bounds on the NSI parameters ε̃m

αβ relevant for neutrino oscillations which are
generated from the anti-symmetric dimension 6 operator given in Eq. (4.4).

NSIs from cd=6,as Upper bound

|ε̃m
μμ| 8.2 × 10−4

|ε̃m
μτ | 1.9 × 10−3

|ε̃m
ττ | 8.4 × 10−3

4.1.4. Additionally generated NSIs at the source and their constraints
In addition to NSIs with matter, the operator of Eq. (4.6) can also induce non-standard neutrino

production at a Neutrino Factory source. The coefficients λi
αβ can mediate the decay μ → eνν̄,

coupling an incoming μ with an outgoing ν̄α with α �= μ and the outgoing e with an outgoing
νβ with β �= e. Thus, both the neutrino and the anti-neutrino may have non standard flavours.
Defining

(4.27)Ls
NSI = 2

√
2GF

∑
f

εs
eα,μβ

[
ν̄Lαγ δνLβ

][l̄eγδlμ],

we take into account the possibility of both neutrinos having non-standard flavours. We notice
that for β = μ, the NSI parameters εs

eα,μβ reduce to the εs
eα usually considered in the literature.

Eq. (4.6) gives:

(4.28)εs
eα,μβ =

∑
i

λi
μβλi∗

eα√
2GF m2

Si

.

From the bounds of Eqs. (4.13)–(4.15) we can derive the following bounds on the εs
eα,μβ :

(4.29)
∣∣εs

eμ,μτ

∣∣ < 7.5 × 10−2,

(4.30)
∣∣εs

eτ,μe

∣∣ < 3.0 × 10−2,

(4.31)
∣∣εs

eτ,μτ

∣∣ < 3.5 × 10−4.

As in the case of the NSIs with matter, additional bounds can be derived from the deter-
mination of GF through μ and τ decays which allows to derive bounds on the individual∑

i |λi
αβ/mSi

|2.
∑

i |λi
eμ/mSi

|2 is constrained through Eq. (4.21) and Eq. (4.23) can constrain∑
i |λi

eτ /mSi
|2. Similarly

∑
i |λi

μτ /mSi
|2 can be constrained by [19,20]

(4.32)

√
Gτ→μνν̄

Gτ→eνν̄

=

√
1 + ∑

i

|λi
μτ |2√

2m2
Si

GF√
1 + ∑

i

|λi
eμ|2√

2m2
Si

GF

= 1.0002 ± 0.0022,

which results in the bounds:

(4.33)
∣∣εs

eμ,μe

∣∣ < 8.2 × 10−4,

(4.34)
∣∣εs

eμ,μτ

∣∣ < 1.8 × 10−3,

(4.35)
∣∣εs

eτ,μe

∣∣ < 1.9 × 10−3,

(4.36)
∣∣εs

eτ,μτ

∣∣ < 5.7 × 10−3.
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Fig. 2. Generation of the dimension 6 operator contributing to neutrino kinetic terms by the exchange of virtual fermionic
singlets Ni

R.

4.2. Constraints on the dimension 6 operator contributing to neutrino kinetic terms

The second possibility to generate matter NSIs satisfying the criteria of Section 3 is via the
dimension 6 operator

(4.37)Ld=6
kin = −c

d=6,kin
αβ

(
L̄α · H †)i/∂(H · Lβ)

which induces non-canonical neutrino kinetic terms. After diagonalising and normalising the
neutrino kinetic terms, a non-unitary lepton mixing matrix is produced from this operator. The
tree level generation of this operator, avoiding a similar contribution to charged leptons that
would lead to flavour changing neutral currents, requires the introduction of SM-singlet fermions
(right-handed neutrinos) which couple to the Higgs and lepton doublets via the Yukawa couplings
(see e.g. [15]) as shown in Fig. 2,

(4.38)LY
int = −Y ∗

αi

(
L̄α · H †)Ni

R + H.c.

When singlet fermions (right-handed neutrinos) with Yukawa couplings and a (Majorana)
mass matrix are introduced, this can in general lead to two effective operators at tree-level: It
can, on the one hand, produce the dimension 5 neutrino mass operator (Weinberg operator) [25]
which generates neutrino masses after EW symmetry breaking and violates lepton number. On
the other hand, this extension of the SM always leads to the dimension 6 operator of Eq. (4.37)
which contributes to the kinetic energy of the neutrinos and induces non-unitarity of the leptonic
mixing matrix. As we will discuss in Section 5.1, the constraints on the diagonal elements of
this dimension 6 operator can be used to constrain the NSIs induced by the dimension 8 op-
erator. We note that the dimension 5 (Weinberg) operator for neutrino masses does not lead to
additional constraints, because it can be suppressed by an approximate global U(1) “lepton num-
ber” symmetry [15,26–31]. The smallness of neutrino masses in this case is not explained by
large masses of singlet fermions but by the smallness of lepton number breaking effects. Sizable
non-unitarity of the leptonic mixing matrix could arise from comparatively light singlet fermions
(with un-suppressed Yukawa couplings), without being in conflict with the smallness of the neu-
trino masses. Generally speaking, both operators are not directly related since the dimension 5
neutrino mass operator violates lepton number while the dimension 6 operator is lepton number
conserving.

From the point of view of neutrino oscillation experiments, having in mind in particular a
possible future Neutrino Factory, we will regard right-handed neutrinos with masses Mi above
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a few GeV as “heavy”, such that we can effectively integrate them out of the theory.4 In the
following, we review and update the constraints derived in [21] on the product NN† (where
N is the non-unitary lepton mixing matrix) for Mi larger than the EW scale ΛEW, and extend
the constraints to Mi larger than a few GeV but below ΛEW. In the following, without loss of
generality, we will always work in the basis where the charged lepton Yukawa matrix is diagonal.

4.2.1. The case Mi above ΛEW
In [21] the diagonal elements of NN† were constrained by the combination of universality

tests and the invisible decay width of the Z. Notice that, without the inclusion of the invisible
width of the Z, all the constraints derived would consist of ratios of elements of NN† and an
uncertainty on their overall scale would remain. This can be easily understood from the fact that
in the Lagrangian the mixing matrix N is always multiplied by the weak coupling constant g

and, since GF is measured through the μ decay, the comparison of any leptonic process will lead
to ratios of the elements of NN†. Apart from the invisible width of the Z, this can be resolved
by comparing leptonic and hadronic processes as in Section 4.1.2. Indeed the extraction of the
Fermi constant from the μ decay with non-unitary leptonic mixing leads to

(4.39)Gμ = GF

√(
NN†

)
ee

(
NN†

)
μμ

.

Performing the steps as in Section 4.1.2, we obtain

(4.40)
∣∣V exp

ud

∣∣2 + ∣∣V exp
us

∣∣2 = 1

(NN†)μμ

= 0.9997 ± 0.0010.

To update the bounds of [21], we replace the bound from the invisible decay width of the Z by
this more tight constraint.

Furthermore, the off-diagonal elements of NN† are constrained by rare radiative lepton de-
cays, lα → lβγ . With respect to the bounds derived in [21] we also add here the contribution
of the diagrams mediated by the heavy right-handed neutrinos. This was not considered in [21]
where a more model independent approach to the source of non-unitarity (based on the so-called
Minimal Unitarity Violation scheme (MUV) where an extension of the SM by only the dimen-
sion 5 Weinberg operator and the dimension 6 operator of Eq. (4.37) is considered) was adopted.
Notice also that the constraints on the diagonal elements can be used to obtain bounds on the
off-diagonal ones when the former are stronger, using:

v2

2

∣∣cd=6,kin
αβ

∣∣ = v2

2

∣∣∣∣∑
i

Y ∗
αiYβi

M2
i

∣∣∣∣ � v2

2

√√√√∑
i

∣∣∣∣Yαi

Mi

∣∣∣∣
2 ∑

j

∣∣∣∣Yβj

Mj

∣∣∣∣
2

(4.41)= v2

2

√∣∣cd=6,kin
αα

∣∣∣∣cd=6,kin
ββ

∣∣.
In combination with the additional constraints considered in [21], we obtain the following up-
dated bounds at 90% cl:

(4.42)
∣∣(NN†)

αβ
− δαβ

∣∣ = v2

2

∣∣cd=6,kin
αβ

∣∣ <

⎛
⎝4.0 × 10−3 1.2 × 10−4 3.2 × 10−3

1.2 × 10−4 1.6 × 10−3 2.1 × 10−3

3.2 × 10−3 2.1 × 10−3 5.3 × 10−3

⎞
⎠ .

4 Notice that even if Mi < v it will turn out that |vYαi/Mi | � 1, such that an effective operator expansion is still
possible.
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4.2.2. The case Mi below ΛEW but above a few GeV
One might think that the constraints on the generated NSIs could be significantly relaxed if

the singlet fermions are lighter than ΛEW. For completeness, we will therefore also discuss the
situation where Mi is below ΛEW but above a few GeV. From the point of view of neutrino os-
cillation experiments, right-handed neutrinos below ΛEW but above the typical energies of the
experiment can still be considered as heavy (and can thus be effectively integrated out of the
theory inducing non-unitarity of the leptonic mixing matrix). In general, the constraints on non-
unitarity of the leptonic mixing matrix from the decays of particles with masses above the masses
Mi of the right-handed neutrinos are indeed lost, since all the mass eigenstates are now avail-
able in the decay and unitarity is restored. Thus, the Z and W decays cannot be used anymore,
however the constraints on the diagonal elements of NN† derived from μ decays, β decays and
kaon decays together with the universality constraints from τ and π decays still apply and these
can still be translated into bounds on the off-diagonal elements using Eq. (4.41). Only the strong
constraint on the eμ element from μ → eγ is lost due to the restoration of the GIM mechanism.
In summary we obtain the following bounds (at 90% cl):

(4.43)
∣∣(NN†)

αβ
− δαβ

∣∣ = v2

2

∣∣cd=6,kin
αβ

∣∣ <

⎛
⎝4.0 × 10−3 1.8 × 10−3 3.2 × 10−3

1.8 × 10−3 1.6 × 10−3 2.1 × 10−3

3.2 × 10−3 2.1 × 10−3 5.3 × 10−3

⎞
⎠ .

4.2.3. NSIs with matter induced by the dimension 6 operator which contributes to neutrino
kinetic terms

As discussed above, the dimension 6 operator which contributes to neutrino kinetic terms
leads to non-unitarity of the leptonic mixing matrix, i.e. to (NN†)αβ �= δαβ . Therefore (cf. [21]),
it gives rise to non-standard matter interactions as well as to non-standard interactions at the
source and detector, which are related to the matter NSIs. In the following, we will review the
bounds on the matter NSIs in this case. However, we would like to emphasise that the related
non-standard interactions at the source and detector may also have strong (or even stronger)
effects on neutrino oscillation experiments.5

Using the bounds in Eqs. (4.42) and (4.43) and taking into account that the interactions with
the W and Z bosons are modified to Nαi and (NN†)αβ , respectively, we can compute the bounds
on the individual NSI parameters in matter induced by the dimension 6 operator of Eq. (4.37)
using the relations:

(4.44)ε
m,eL
αβ = −1

2

(
v2

2
cd=6,kin
αe δβe + v2

2
c
d=6,kin
eβ δeα

)
+

(
1

2
− sin2 θW

)
v2

2
c
d=6,kin
αβ ,

(4.45)ε
m,eR
αβ = − sin2 θW

v2

2
c
d=6,kin
αβ ,

(4.46)ε
m,uL
αβ = −

(
1

2
− 2

3
sin2 θW

)
v2

2
c
d=6,kin
αβ ,

5 The formalism for a full treatment of neutrino oscillations in the presence of such non-unitarity of the leptonic mixing
matrix can be found in [21]. The NSI parameterisation of new physics in neutrino oscillations can also be applied to the
case of non-unitarity. Using the NSI approach takes account of the leading order effects of the modified interaction with
the W and Z bosons, which are induced by the dimension 6 operator in Eq. (4.37) after EW symmetry breaking and
canonically normalising the neutrino kinetic terms.
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Table 2
Bounds on the NSI parameters ε̃m

αβ relevant for neutrino oscillations which are generated
from the dimension 6 operator which contributes to the neutrino kinetic terms, given in
Eq. (4.37). Values nn/ne for the crust and the mantle of the Earth can be found in Table 3.

NSIs from cd=6,kin Upper bound (for Mi > few GeV)

|ε̃m
ee| 2.0 × 10−3 × | nn

ne
− 2|

|ε̃m
eμ| 9.1 × 10−4 × | nn

ne
− 1|

(for Mi 	 ΛEW: 5.9 × 10−5 × | nn
ne

− 1|)
|ε̃m

eτ | 1.6 × 10−3 × | nn
ne

− 1|
|ε̃m

μμ| 8.2 × 10−4 × nn
ne

|ε̃m
μτ | 1.0 × 10−3 × nn

ne

|ε̃m
ττ | 2.6 × 10−3 × nn

ne

(4.47)ε
m,uR
αβ = 2

3
sin2 θW

v2

2
c
d=6,kin
αβ ,

(4.48)ε
m,dL
αβ =

(
1

2
− 1

3
sin2 θW

)
v2

2
c
d=6,kin
αβ ,

(4.49)ε
m,dR
αβ = −1

3
sin2 θW

v2

2
c
d=6,kin
αβ .

Using these relations the parameters ε̃m
αβ defined in Eq. (2.3) are given by (see e.g. [3])

(4.50)ε̃m
αβ = −1

2

(
v2

2
cd=6,kin
αe δβe + v2

2
c
d=6,kin
eβ δeα

)
+ 1

2

nn

ne

(
v2

2
c
d=6,kin
αβ

)
,

which leads to the constraints

(4.51)
∣∣ε̃m

αβ

∣∣ <
v2

2

⎛
⎜⎝

| 1
2 ( nn

ne
− 2)c

d=6,kin
ee | | 1

2 ( nn

ne
− 1)c

d=6,kin
eμ | | 1

2 ( nn

ne
− 1)c

d=6,kin
eτ |

| 1
2 ( nn

ne
− 1)c

d=6,kin
eμ | | 1

2
nn

ne
cd=6,kin
μμ | | 1

2
nn

ne
cd=6,kin
μτ |

| 1
2 ( nn

ne
− 1)c

d=6,kin
eτ | | 1

2
nn

ne
cd=6,kin
μτ | | 1

2
nn

ne
cd=6,kin
ττ |

⎞
⎟⎠

with v2

2 c
d=6,kin
αβ replaced by their upper bounds given in Eqs. (4.42) and (4.43) for Mi above or

below ΛEW, respectively. Since the ratio nn

ne
is in general close to 1, this implies that the bounds

on |ε̃m
eμ| and |ε̃m

eτ | are significantly stronger than the bounds on the individual ε
m,f
αβ . In Table 3

the values of the % weight amount of the main constituents of the Earth’s continental crust [22]
and mantle [23] together with the mean value of nn

ne
inferred from that composition are given.

Notice that the factor nn

ne
− 1 means an additional suppression of two orders of magnitude of the

NSI coefficient.

4.2.4. Additionally generated NSIs at the source and at the detector and constraints
A non-unitary neutrino mixing matrix N leads to non-standard interactions at the source and

at the detector of a neutrino oscillation experiment due to the modified coupling to the W . In
Ref. [24] it has been shown that, parameterising the non-unitary matrix as N = (1 + η)U where
η is a (small) Hermitian matrix and U is unitary, the NSI coefficients at the source and detector
can be expressed in terms of η as εs = εd = ηαβ . Since NN† = (1 + η)2 
 1 + 2η, the bounds
αβ αβ
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Table 3
Values of the % weight amount of the main constituents of the Earth’s continental crust
[22] and mantle [23] together with the mean value of nn

ne
inferred from that composition.

Compound Crust Mantle

SiO2 60.6 46.0
Al2O3 15.9 4.2
FeO 6.7 7.5
CaO 6.4 3.2
MgO 4.7 37.8
Na2O 3.1 0.4
K2O 1.8 0.04

nn/ne 1.017 1.019

Fig. 3. Topologies of tree-level Feynman diagrams which can realise the relevant dimension 8 operators. The solid
external lines in diagrams (a) and (b) correspond to the fields L, L̄, f, f̄ ,H,H † (where f can be fL or f c

R with fL ∈
{L1,Q1} and f c

R ∈ {ec
R, uc

R, dc
R}). In diagram (c) the dashed lines indicate the SM Higgs fields H and H †.

on Eqs. (4.42) and (4.43) can be translated into bounds on

(4.52)εs
αβ = εd

αβ = 1

2

((
NN†)

αβ
− δαβ

) = v2

4
c
d=6,kin
αβ .

5. Dimension 8 operators for matter NSIs

We now consider the possibility of generating NSIs with matter from dimension 8 oper-
ators under the restrictions discussed in Section 3. In particular, we analyse operators with
L, L̄, f, f̄ ,H,H † as external fields, where f can be fL or f c

R with fL ∈ {L1,Q1} and f c
R ∈

{ec
R, uc

R, dc
R} including their generation at tree-level.

To start with, operators with these external fields can be generated at tree-level via the three
topologies of Feynman diagrams shown in Fig. 3. Scanning over these topologies and possi-
bilities for the external fields to be arranged (up to here there are 51 inequivalent diagrams for
topology 1, 11 for topology 2 and 3 for topology 3) as well as over the virtual states allowed to be
interchanged, we find only three classes of possibilities which satisfy the criteria of Section 3.6

We will now discuss these three cases as well as the corresponding constraints on the NSIs with
matter.

6 We note that in some of the discarded cases the interactions of four charged fermions appear after canonically nor-
malising the kinetic terms of the fields.
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Fig. 4. Diagrams (a) and (b): Generation of dimension 8 operators which induce NSIs with matter after EW symmetry
breaking in extensions of the SM with fermionic singlets Ni

R coupling to lepton and Higgs doublets (via topology 1
of Fig. 3). Similar diagrams exist with quarks as external fields. Diagram (c): Feynman diagram which summarises the
diagrams (a), (b) as well as similar diagrams with quarks, introduced in order to simplify the discussion of constraints

on the generated NSIs. ρ
(f )
ij

are effective operators defined in Eq. (5.54). f stand for fL or f c
R with fL ∈ {L1,Q1} and

f c
R ∈ {ec

R, uc
R, dc

R}.

5.1. Case I: Coupling fermionic singlets to lepton and Higgs doublets

One generic possibility to generate NSIs with matter via dimension 8 operators while satis-
fying the criteria of Section 3 is to couple two pairs of lepton and Higgs doublets to SM singlet
fermions (right-handed neutrinos) Ni

R, via the Yukawa interactions of Eq. (4.38). Examples for
diagrams where the external fields f are either ec

R or L1 are shown in Fig. 4(a) and (b). Similar
diagrams exist with quarks as external fields. The resulting dimension 8 operators have the form
[4,7]
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(5.53)Ld=8,I
NSI = c

d=8,f,I
αβ

(
L̄α · H †)f cf̄ c(H · Lβ).

These operators are often quoted as examples how to realise very large non-standard matter ef-
fects. To summarise the classes of diagrams which realise the dimension 8 operators of Eq. (5.53),
we introduce another effective non-renormalisable operator (cf. Fig. 4(c)),

(5.54)Lρ,f

int = ρ
(f )
ij N̄Rif f̄ NRj .

In the examples in Fig. 4 this operator is generated by the exchange of a virtual singly charged
scalar field or by an inert Higgs doublet (which does not get a vacuum expectation value). In
the following, we will assume that the right-handed neutrinos are heavier than the typical scale
of a neutrino experiment, such that they can be effectively integrated out of the theory and the
dimension 8 operators of Eq. (5.53) remain.

To derive constraints on the NSIs generated by the operators of Eq. (5.53), we first match
the “full theory” with the dimension 8 operators. This leads to the following relation for the
coefficients c

d=8,f,I
αβ :

(5.55)c
d=8,f,I
αβ =

∑
ij

Yβi

Mi

ρ
(f )
ij

Y
†
jα

Mj

.

The corresponding NSI parameters are given by

(5.56)
∣∣εm,f

αβ

∣∣ =
∣∣∣∣v

2c
d=8,f
αβ

4
√

2GF

∣∣∣∣ = v2

4
√

2

∣∣∣∣∑
ij

Yβi

Mi

ρ
(f )
ij

GF

Y
†
jα

Mj

∣∣∣∣.
We continue by noting that

v2

2

∣∣∣∣∑
ij

Yβi

Mi

ρ
(f )
ij

GF

Y
†
jα

Mj

∣∣∣∣ � v2ρ̂(f )

2GF

√√√√∑
i

∣∣∣∣Yβi

Mi

∣∣∣∣
2 ∑

j

∣∣∣∣Yαj

Mj

∣∣∣∣
2

(5.57)= v2ρ̂(f )

2GF

√∣∣cd=6,kin
ββ

∣∣∣∣cd=6,kin
αα

∣∣,
where ρ̂(f ) is the modulus of the largest eigenvalue of ρ

(f )
ij . The dimension 8 operators of

Eq. (5.53) thus turn out to be constrained by the bounds on the dimension 6 operator contributing
to neutrino kinetic energy.

Now we can use the constraints from the dimension 6 operator contributing to neutrino kinetic
energy given in Eq. (4.42). This leads to the bounds (at 90% cl)

(5.58)
∣∣εm,f

αβ

∣∣ <

⎛
⎝1.4 × 10−3 6.4 × 10−4 1.1 × 10−3

6.4 × 10−4 5.8 × 10−4 7.3 × 10−4

1.1 × 10−3 7.3 × 10−4 1.9 × 10−3

⎞
⎠ ρ̂(f )

GF

,

which applies to both left- and right-handed fermions.
The bounds of Eq. (5.58) depend on the quantity ρ̂(f )/GF which gives the relative strength of

the effective coupling of Eq. (5.54) with respect to the Fermi constant. Let us now quantify how
large this factor could be: The extra particles beyond the SM required to generate this effective
coupling are scalar fields which contain (after EW symmetry breaking) an electrically charged
component. Such electrically charged scalars would have been produced by pairs via photon or
Z exchange in the s channel by LEP if their masses were lower than ∼ 70 GeV [19]. For NSIs
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with quarks, eR and L1 should be replaced by their quark counterparts in Fig. 4(a) and (b). The
extra scalar fields required in this case would additionally be colored and much more tightly
constrained. Taking the 70 GeV bound and, for example, couplings of the scalar fields to the
right-handed neutrinos of O(1), we find that ρ

(f )
ij /GF � 10. The bounds on the NSI parameters

|εm,f
αβ | are thus at least O(10−2).
Furthermore, we would like to emphasise that although the dimension 8 operator of Eq. (5.53)

itself produces only NSIs with matter, the additionally generated dimension 6 operator also gives
rise to non-standard interactions with matter (cf. discussion in Section 4.2.3), and additionally it
gives rise to non-standard interactions at the source and detector.

5.2. Case II: Coupling singly charged scalars to lepton doublets

Another generic possibility to select one neutrino and one charged lepton (and to avoid gen-
erating in addition couplings between two charged leptons) is to couple a pair of lepton doublets
to singly charged scalar fields Si , as in Eq. (4.5). The possible diagrams, which generate dimen-
sion 8 operators of the form

(5.59)Ld=8
NSI,II = c

d=8,f,II
αβγ δ

(
L̄c

α · Lβ

)(
L̄γ · Lc

δ

)(
H †H

)
,

are shown in Fig. 5. For NSIs from these dimension 8 operators, the same constraints as the ones
for NSIs from the anti-symmetric dimension 6 operator (cf. Section 4.1) still apply, since after
EW symmetry breaking the dimension 6 operator is recovered.

5.3. Case III: Mixed case with singly charged scalars and singlet fermions

In the mixed case (cf. diagram shown in Fig. 6) with one coupling of a pair of lepton doublets
to Si and one coupling of a lepton and a Higgs doublet to Ni

R, constraints on the NSIs can be
derived analogously to Section 5.1. Furthermore, they are of comparable magnitude since the

constraints on v|Yαi/Mi | < v

√
|cd=6,kin

αα | (cf. Eqs. (4.42) and (4.43)) and v|λi
eμ/mSi

| < 2.9 ×
10−2, v|λi

eτ /mSi
| < 9.2 × 10−2 (from the results of Section 4.1) are of the same order. The

associated dimension 8 operators are of the form

(5.60)Ld=8
NSI,III = c

d=8,f,III
αβγ δ

(
H †L̄c

α

)
(Lβ · H)

(
L̄γ · Lc

δ

)
.

Again, we would like to note that the couplings required for generating the dimension 8 operators
also give rise to dimension 6 operators which themselves produce non-standard interactions with
matter as well as non-standard interactions at the source and detector.

6. Conclusions

We have investigated how non-standard neutrino interactions (NSIs) with matter can be
induced by new physics beyond the Standard Model (SM) and derived the corresponding con-
straints. One motivation for this study was that while NSIs at the source and detector are typically
assumed to be strongly constrained, in many phenomenological studies very large NSIs with
matter (εm,f

αβ parameters O(1)) are considered, saturating their weak direct bounds. To justify
such large NSIs with matter (while escaping the stronger constraints that would stem from
their charged fermion SU(2)L doublet counterparts) it is often referred to specific classes of
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Fig. 5. Generation of dimension 8 operators which induce NSIs with matter after EW symmetry breaking in extensions
of the SM with antisymmetric couplings of singly charged scalars Si to two lepton doublets (via topologies 1, 2 and 3 of
Fig. 3). Effectively, the two couplings to the Higgs field only contribute to the propagators of the Si after EW symmetry
breaking and consequently the constraints on the NSIs in this case are the same as for the anti-symmetric dimension 6
operator in Section 4.1.

higher-dimensional operators. The goal of this study was to investigate the constraints on the
NSI parameters if these operators are generated by explicit new physics beyond the SM.

In our analysis, we have focused on the tree-level realisations of dimension 6 and 8 operators
which do not induce new interactions of four charged fermions (since these are already quite con-
strained). We have furthermore discarded the possibility of cancellations between diagrams with
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Fig. 6. Generation of dimension 8 operators which induce NSIs with matter after EW symmetry breaking in extensions
of the SM with fermionic singlets Ni

R coupling to one lepton and one Higgs doublet as well as singly charged scalars Si

coupling to two lepton doublets (via topology 1 of Fig. 3).

different messenger particles to circumvent constraints. The cases studied include the classes of
effective higher-dimensional operators mentioned above, which are often referred to as examples
for ways to generate large NSIs with matter. A discussion of the restrictions and limitations of
our analysis is given in Section 3.

Regarding dimension 6 operators there are only two possibilities which satisfy the criteria
defined in Section 3: the anti-symmetric 4-lepton operator of Eq. (4.4), generated from the ex-
change of virtual singly charged scalar fields Si , and the dimension 6 operator of Eq. (4.37)
modifying the neutrino kinetic terms, generated by the exchange of virtual fermionic singlets
Ni

R. The latter operator generates the NSIs in an indirect way, i.e. after canonical normalisation
of the neutrino kinetic terms. For both possibilities we have derived improved bounds on the NSI
parameters (cf. Tables 1 and 2). The bounds on the quantities |ε̃m

αβ | are at least O(10−2).
We have then analysed the possibility to generate NSIs with matter from dimension 8 op-

erators. Performing a systematic analysis of tree-level generations of operators with external
fields L, L̄, f, f̄ ,H,H †, where f can be fL or f c

R with fL ∈ {L1,Q1} and f c
R ∈ {ec

R, uc
R, dc

R},
we found that our criteria of Section 3 require that either lepton and Higgs doublets couple to
SM singlet fermions (right-handed neutrinos) and/or that two lepton doublets couple to singly
charged scalars fields Si . Using the LEP bounds on the charged components of the additional
scalar fields required for realising the dimension 8 operators and allowing for Yukawa couplings
O(1), the NSI parameters |ε̃m

αβ | are constrained to be below O(10−2).
In summary, we have found that in the considered setup (cf. Section 3), NSIs with matter

are considerably more constrained than assumed in many phenomenological studies, at least
O(10−2). In some cases the bounds on the NSIs from sources which have previously been
regarded as quite unconstrained have turned out to be even stronger than for conventional dimen-
sion 6 operators with structures L̄LQ̄Q or L̄LL̄L (which induce NSIs as well as interactions
of four charged fermions). We have furthermore found that the generation of NSIs with matter
always gives rise to additional NSIs at the source and/or detector of a possible future Neutrino
Factory. These NSIs at the source and detector can, for instance, lead to “zero distance” neutrino
flavour conversion effects which can be efficiently looked for in near detectors at future neutrino
oscillation facilities. While NSIs with matter with a strength below O(10−2) will be difficult to
observe at currently planned or running experiments, they might be observed at envisioned Neu-
trino Factories or β-Beam facilities [1] and their possible impact on precision measurements of
the neutrino parameters cannot yet be ignored. In order to determine the possible new physics
effects in such high precision neutrino oscillation experiments, searches at near detectors in neu-
trino oscillation experiments, improved data from EW precision tests and rare lepton decays as
well as the results from the LHC will play a crucial role.
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