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On the Finding of Final Polynomials 

JORGEN BaKowsKI AND JORGEN RICHTER 

Final polynomials have been used to prove non-representability for oriented matroids, i.e. to 
decide whether geometric embeddings of combinatorial structures exist. They received more 
attention when Dress and Sturmfels, independently, pointed out that non-representable 
oriented matroids always possess a final polynomial as a consequence of an appropriate real 
version of Hilbert's Nullstellensatz. We discuss the more difficult problem of determining such 
final polynomials algorithmically. We introduce the notion of bi-quadratic final polynomials, 
and we show that finding them is equivalent to solving an LP-Problem. We apply a new 
theorem about symmetric oriented matroids to a series of cases of geometrical interest. 

1. INTRODUCTION 

The method of using final polynomials, as a tool for proving non-representability of 
oriented matroids or for deciding geometric embeddings of combinatorial structures, 
was introduced when the first author studied 3-spheres and their polytopality. 
Sturmfels and Dress have independently pointed out that, through the use of a real 
version of Hilbert's Nullstellensatz, a final polynomial exists for every non
representable oriented matroid. This gave new impetus to the more difficult task of 
finding such polynomials algorithmically. For a comprehensive introduction the reader 
is referred to (14, 15, 16]. Any further progress in this direction would be a great 
advance, and this paper is devoted precisely to this question. 

Oriented matroids (and matroids) are general discrete structures which can perhaps 
be compared with graphs or lattices. Their general structure is an appropriate tool for 
tackling mathematical problems when linear dependencies and independencies play a 
substantial role. According to these very general properties, the rather young theory of 
oriented matroids has been used and applied in many different fields of mathematics. 

A fundamental problem in the theory of oriented matroids is deciding repre
sentability. Final polynomials were suggested as a general tool for proving non
representability. We emphasize the advantage of this method: once a final polynomial 
is known, the calculations for finding it are no longer needed in the proof. So far, only 
a rather small number of final polynomials have been found. In every case, these 
polynomials were determined by using rather long computer-algebra-like calculations, 
and sometimes even greater effort was needed in solving a specific problem, e.g. in (3]. 
This more difficult problem of finding a particular final polynomial for specific 
applications will be discussed in Section 2. We provide a polynomial algorithmic 
method, using essentially a suitable variant of linear programming for finding classes of 
final polynomials. It is very likely that there are final polynomials which we cannot find 
in this way. On the other hand, all final polynomials known to us so far can be found in 
this way. Thus our method, deciding first a suitable LP-problem, can at least be applied 
as a good pre-processing. 

Section 3 is devoted to symmetrical chirotopes. For symmetric d-chirotopes it is 
natural to decide whether there is a symmetrical realization with respect to a given 
finite subgroup of the orthogonal group O(d). Our main result in Section 3 asserts that, 
once the non-realizability of our chirotope along with (geometric) symmetry assump
tions has been achieved by our method, we can solve the general case as well, i.e. the 
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symmetry assumption can be dropped. This is a substantial shortcut in attaining the 
final polynomial, algorithmically. 

In Section 4 we apply our method of finding new non-embeddability proofs to a 
series of examples: for instance, we apply it to an example in the class of 
star-chirotopes, cf. [7], which were key examples in establishing the Non-Steinitz
theorem by Sturmfels [13], and in which it seemed to be difficult to find corresponding 
final polynomials. Yet another application of our method will be given in a forthcoming 
paper [4], in which we determine all (simplicial) embeddings of a certain class of 
matroid manifolds. 

In conclusion, we would like to mention that our approach to the problem has been 
coordinate-free. This new development has also been presented in the collection of 
papers written by Crapo, Havel, Sturmfels, White and Whiteley in Minnesota in 
1987 [8]. 

2. FINDING FINAL PoLYNOMIALS THROUGH LINEAR PROGRAMMING 

It is generally considered that the algorithmic search for final polynomials is very 
difficult. Sometimes the effort seems to be beyond our reach when the number of 
points increase. In this section, we provide an algorithmic method for finding final 
polynomials in a reasonable length of time. All final polynomials known to us so far 
can be achieved by our method. In describing the details, we restrict ourselves to the 
simplicial case, thus simplifying the main idea. 

Let x be a given simplicial d-chirotope of n points x:A(n,d)~{-1, 1}. Here 
A(n, d) denotes the set of all ordered d-tuples of n elements A.= (A.v ... , A.d) with 
At :os;; • • • :os;; A.d. If necessary, we refer to the tuples A. of A(n, d) as 

At= (1, 2, 0 • 0 ' d), A.2 = (1, 2, ... ' d- 1, d + 1), . . . ' l<'J> = (n- d- 1, ... , n ) . 

The map x is considered to be extended in an alternating fashion onto all d-tuples 
A. E {1, ... , n}d. To every A.= (A.t, A.2, .•• , A.d) E {1, ... , n}d, we assign a formal 
variable [A.t> A.2 , ••• , A.d], called a bracket, which in case of a realizable chirotope with 
points Xt, •.. , Xn E Rd, X;= (xf, xf, ... , xf) will be equal to the determinant 

But, in general, we consider these brackets as only being formal variables. We 
abbreviate -r := 'rt, ... , -rd-z· The following term will be called the GraBmann
Plucker polynomial: 

{'r IAt> Az, A3, A4} : = [-r, At, Az][ -r, A3, A4] - [-r, At> A3][-r, Az, A4] + [-r, At> A.4][ -r, A.2 , A.3]. 

Again, in the case of the brackets being determinants, this GraBmann-Pliicker 
polynomial is equal to zero, since in this case we have precisely a GraBmann-Pliicker 
syzygy. 

The definition of a chirotope requires one of the following relations: 

{-1,+1}cP or {0} =P 

with 

- x((-r, A.t, A.3))x((-r, A.z, A.4)), 
X((-r, A.t> A.4))x(( -r, Az, A.3))}. 
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This is a necessary condition for x being realizable; otherwise, no choice of 
coordinates for the points Xt, ••• , Xn would fulfill both the requirement 

and the above single GraBmann-Pliicker syzygy. 
The set of vectors a= (a~> ... , am) e R(~) with 

at= [1, 2, ... 'd], a 2 = [1, 2, ... , d- 1, d + 1], ... ' a(~)= [n- d- 1, ... , n], 

such that all GraBmann-Pliicker syzygies are fulfilled, defines the Grassmannian 
G(n, d) c Rm. The chirotope xis realizable iff there is a point 

a= (a~> ... , a<~)) e G(n, d) 

in the Grassmannian G(n, d), which also lies in the cone C(x) c Rm, defined as 

The change in the above GraBmann-Pliicker polynomial, caused by a permutation 
of the points on the right-hand side of the vertical line in 

{-r IAI> Az, A3, A4}, 
keeps the relation property (the chirotope condition) mentioned above invariant. The 
notation was accordingly chosen in order to avoid multiple checkings of this condition. 
The polynomial remains equal up to choosing the actual brackets 

or 
for a permutation :;r E Sd, where sd denotes the symmetric group, or it is equal up to 
ordering the bracket products. By a suitable permutation of the points AI> A2 , A3, A4, 
we can attain that all three bracket products are positive: 

[-r, Av Az][ -r, A3, A4]- [ -r, Av A3][-r, Az, A4] + [-r, At, A4][ -r, Az, A3]. 

>0 >0 >0 
In this case, we say, we have normalized our GraBmann....:.Pliicker polynomial. In 

case xis realizable and in the normalized case, we can deduce that the inequality 
[-r, A~> Az][-r, A3, A4] < [ -r, At, A3][-r, Az, A4] 

must hold. In what follows, it will be useful to have a special notation for these formal 
inequalities, arising from normalized GraBmann-Pliicker polynomials. 

DEFINmON 2.1. Let x be a simplicial chirotope and let 

{-r IAv Az, A3, A4} := [ -r, AI> Az][ -r, A3, A4] - [-r, Av A3][ -r, Az, A4] + [ -r, At, A4][ -r, Az, A3] 
be a GraBmann-Pliicker polynomial such that 

x(( -r, Av Az)) · x(( -r, A3, A4)) 
= x((-r, At, A3)) · x((-r, Az, A4)) = x((-r, A~> A4)) · x((-r, Az, A3)) = 1; 

then we call the 4-tuple B of formal variables, 

B = ([-r, AI> Az], [-r, A3, A4] I[-r, At, A3], [-r, Az, A4]), 
a bi-quadratic inequality of X· The set of all bi-quadratic inequalities of x will be 
denoted by @x. 
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REMARK 2.1. Whenever xis realizable, we have 

A·B<C·D for all (A, B IC, D) E 9/Jx. 

In order to prepare a definition for bi-quadratic final polynomials, we must identify 
those brackets, which in the realizable case would change according to the alternating 
determinant rules; i.e. for any permutation Jr E Sd we set 

[A.11 A.2, ... , A.d] - sign ;r · [An(l)• An:(Z), ... , An:(d)] =0. 
In other words, if R is the integer polynomial ring generated by the formal brackets 
{[A.] IA. E {1, ... , n }d} and if I is the ideal generated by polynomials of the form 

[A.v Az, ... , A.d]- sign ;r · [A.n:(l)• A.n<Z>• ... , A.n(d)], 
we calculate within the quotient ring R/1. Note that R/I is similar, but not identical, to 
the bracket ring introduced by White, see [8], where I contains also the GraBmann
Pliicker polynomials. Now we are ready to define bi-quadratic final polynomials as 
follows: 

DEFINITION 2.2. A simplical chirotope X admits a bi-quadratic final polynomial, 
whenever there is a collection of bi-quadratic inequalities 

such that the following equality holds within the ring R/I: 
k k 
ITA;. B;!::. IT C;. D;. 
i=l i=l 

Here a !:= b expresses that the ring variables a and b are equal modulo the set J. 

The above Definition 2.2 allows the following claim. 

LEMMA 2.1. If X admits a bi-quadratic final polynomial, then x is not realizable. 

PROOF. x admits a bi-quadratic final polynomial, i.e. there is a collection of 
bi-quadratic inequalities 

such that 
k k

IT A; . B;!::. IT C; . D;. 
i=l i=l 

In assuming that x is realizable we have by Remark 1, A;· B; < C; · D; for all 
i E {1, ... , k}, and since both sides in the above equation are by definition positive, 
we also have 

k k

IT A; . B; < IT C; . D;. 
i=l i=l 

In using 

[A.11 A.2, ... , A.d] - sign ;r · [A.n(l)• A.n:<z>, ... , A.n:(d)] = 0, 
whenever necessary, we arrive at a contradiction. 0 

REMARK 2.2. Now, it is a straightforward task to translate a bi-quadratic final 
polynomial into an ordinary final polynomial as introduced in [5]. 
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Of course, it seems as if one looses quite a bit of information in searching for 
bi-quadratic final polynomials rather then looking for final polynomials in general. But 
there are two reasons for doing this. (1) The solvability of the remaining system of 
inequalities can now be seen to be a LP-problem, yielding a polynomial algorithm by 
the ellipsoid method (cf. [10]). (2) Again, all known examples of non-representable 
oriented matroids, where non-representability was proven by means of final polyno
mials, can be treated automatically and more easily than before. 

And, above all, this might be the only accessible method of solving a more difficult 
problem under consideration. In any case, we suggest solving this LP-problem as a 
pre-processing method. How do we obtain the LP-problem? 

We consider the set of all formal inequalities ~x· We replace each variable 
X= [A1 , ••. , Ad] by its formal absolute value X· x((Av ... , Ad)). It is clear how one 
obtains new formal inequalities (A, B IC, D) for the formal absolute values. 
Assuming realizability, we can take the logarithm on both sides, and we obtain a linear 
problem ( *) with integer coefficients and strict inequalities for the new variables 
Y := log(X · X((Av ... , Ad))) chosen appropriately. 

In principle, it is now possible to use the special structure of this inequality system 
when solving this system of inequalities. Consider the inequalities with positive 
coefficient!> 

L · · ·+atY+· · ·<L:· · ·+· · · 
or 

L:· · · + · · ·< L:· · · + /3,Y + ... , 

and multiply those inequalities, which contain the variable Y, with suitable factors in 
order to obtain mY, where m denotes the smallest common multiple of all (positive) 
factors a-1, {3, of Y. We rewrite all inequalities in the form 

L · · ·<mY<L: · · ·. 

The decisive inductive step of our process for solving all variables is to replace this 
system of inequalities by all pairs of inequalities, and to compare all possible parts, left 
and right, that one has solved for Y together with the remaining system of inequalities. 
Now, either one obtains a solution this way, or one finally arrives at a contradiction, 
0 < 0, which then can be traced back in order to find the bi-quadratic final polynomial. 
We formulate this result as follows. 

THEOREM 1. A chirotope X admits a bi-quadratic final polynomial iff the dual of the 
above LP-problem (*) is admissible (LP-Phase I). Moreover, the solution of the 
LP-problem can be used for constructing the bi-quadratic final polynomial. 

REMARK 3. We do not recommend the procedure used above for algorithmic 
purposes in general. For practical solutions we applied the MINOS software system. 
When judging the above theorem it is the algorithmic point of view which one has to 
keep in mind. We were surprised ourselves about the practical significance, as will be 
shown in concrete applications in Section 4. 

3. FINAL POLYNOMIALS WITH SYMMETRIES 

This section is devoted to symmetric chirotopes and corresponding final polynomials 
with respect to a given symmetry. For symmetric d-chirotopes it is natural not only to 
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look for a realization at all, but also to decide whether there is a symmetrical 
realization with respect to a given finite subgroup of the orthogonal group 0(d). 

In a straightforward way, this leads to the tool of bi-quadratic final polynomials with 
respect to a symmetry group for disproving symmetrical embeddings. Our main result in 
this section asserts that once the non-realizability of our chirotope according to 
(geometric) symmetry assumptions has been established, by using this tool, we can 
then derive a final polynomial even for the general case, by dropping the (geometric) 
symmetry assumption. The result is that our chirotope is not realizable at all. The 
advantage of our theorem is immediate in these cases, as it is an essential shortcut in 
finding a final polynomial, algorithmically. 

In order to formulate this theorem, we first have to fix our notation. We abbreviate 
for any)..= (A11 A2 , ••• , Ad) E Ed and any a E Sn: 

a)..= (a(A1), a(A2), ••• , a(Ad)). 

Let X be a simplicial d-chirotope. An element a E Sn of the permutation group Sn is 
called a rotation of X if 

x(A) = x(aA) 
denoted by ax =X· Similarly, an element a E Sn is called a reflection of X if 

x(A) = -x(aA) for all)..= (At, ... ' Ad) E {1, ... 'n}d. 

In this case, we write aA = -x. We call 

Rx = {a E Sn Iax = X} 

the set of rotations of X and 

Mx = {a E Sn Iax = -X} 

the set of reflections of X· The union of these sets forms the group of automorphisms 
Aut(x) of x denoted by 

Gx := Rx U Mx = Aut(x). 
The group Gx(resp. any subgroup of Gx) acts on the polynomial ring R as follows. 

For any bracket and any a E sn> we define 

a*[A]={[aA] ifaERx, 
-[aA] if aeMx. 

For any polynomial P([A], [J.t], ... ) in the bracket variables [A], [J.t], ... , we define 

a*P([A], [J.t], ... )=P(a*[A], a* [J.t], ... ). 
The action of the group can be extended to any quotient RIJ, whenever the ideal J 
remains fixed under the group. In particular, we define for the above polynomial ring 
R II, for any P + I E R II; P E R and any a E Gx: 

a*(P+I):=(a*P)+I. 
Our next claim is that according to 

a* (A, B IC, D)= (a* A, a*B Ia* C, a* D), 
Gx also acts on the set of bi-quadratic inequalities. The only non-trivial fact we have to 
prove is the following: 

LEMMA 3.1. The property of (A, B IC, D) being a bi-quadratic inequality remains 
fixed under the action of Gx, i.e. for any a E Gx, a* (A, B IC, D) is again a 
bi-quadratic inequality. 
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PROOF. If (A, B IC, D) is a bi-quadratic inequality, then there are brackets E and 
F such that AB - CD + EF is a GraBmann-Pliicker polynomial, and AB > 0, 
CD >0, EF>O. Since GraBmann-Pliicker polynomials in R/1 do not change by 
renumbering the vertices, 

(a* A)(a* B)- (a* C)(a* D)+ (a* E)(a* F) 

is a GraBmann-Pliicker polynomial as well. For any rotation or reflection a, we have: 

Thus, by Definition 2.1, ( a*A, a* B Ia* C, a* D) yields a bi-quadratic inequality 
again; in other words, G acts on the set of bi-quadratic inequalities. 0 

Now, we introduce the notion of a symmetric realization of x with respect to GR, 
where Gn < Gx and GR < O(d), is any subgroup of Gx and O(d) respectively. By 
that, we mean a realization R of x with a geometric automorphism group isomorphic to 
GR. 

Given such a symmetric realization, we have for any A. E Ed and any a E GR 

[A.]- a* [A.]= 0. 

Now, we want to factorize our ring R/1, such that elements together with their 
symmetric images are identified. Therefore, we define the ideal faR in R which is 
generated by polynomials of the following type: [A.] - a* [A.] for any a E GR and any 
A. E Ed. We also consider the polynomial ring R!IaR' where faR denotes the ideal 
generated by I U faR· 

Here we have factored out the symmetry of X· A symmetric bi-quadratic final 
polynomial with respect to GR will now be defined, as follows. 

DEFINITION 3.1. A simplicial chirotope x admits a symmetric bi-quadratic final 
polynomial with respect to GR whenever there is a collection of bi-quadratic inequalities 

(A;, B; IC;, D;) E oox; 1 :,;:;; i :,;:;; k, 

such that 
k - k 

feR ITIT A; · B; = C; · D;. 
i=l i=l 

With this definition we obtain the following result: 

THEOREM 2. For any subgroup GR < Gx we have that a (symmetric) chirotope 
admits a bi-quadratic final polynomial, iff it admits a symmetric bi-quadratic final 
polynomial with respect to GR. 

REMARK. The result of Theorem 2 heavily and positively influences the computa
tional part of our applications. Whenever we want to prove that a symmetric chirotope 
is not realizable and we are looking for a bi-quadratic final polynomial, we can reduce 
the computational time tremendously. In particular, if the inequality system being 
considered generally has N inequalities, we only have to solve a system of approxim
ately N /IGx I inequalities. Our proof will show how to construct the bi-quadratic final 
polynomial whenever the symmetric one is given. 

PROOF OF THEOREM 2. One part of this theorem is very easily proven. Since for any 
P, QeR, 

Q l . . feR QP =I a so 1mp1tes P = , 
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the existence of a bi-quadratic final polynomial implies the existence of a symmetric 
one. To prove the reverse, we first provide the following two lemmas. 

LEMMA 3.1. For any A. 1 , A.2 E Ed, we have 

PROOF. [A.d=10R[A.2] implies that there exists a aEGR such that [A.d=1 a*[A.2] 

holds, and this in turn can be written as 

LEMMA 3.2. For any A. 1 , A.2 E Ed, we have 

PROOF. For A.v A.2 E Ed, we assume that 

We consider the orbits .Q([A.;]) := IIaeGR (a* [A.;]), i = 1, 2, of GR within R generated by 
[A.1], and [A.2], respectively. They induce corresponding orbits 

.Q([A.;]+I)= TI a*{[A.;]+I}= TI (a*[A.;])+J, i = 1, 2. D 

To pursue the proof of Theorem 2 let us assume that x admits a symmetric bi-quadratic 
final polynomial with respect to GR. Then there is a collection of bi-quadratic 
inequalities 

(A;, B; IC;, D;) E 9/Jx; 
such that k - k 

(**) nA; . B; ~~ n c;. D;. 
i=l i=l 

We will show that, in replacing any bi-quadratic inequality by its orbit under GR, we 
obtain a bi-quadratic final polynomial in R/1. In other words, the collection 

is a bi-quadratic final polynomial. Finally, we have to show that 

This is equivalent to 

TI (TI a*A;)·(TI a*B;)!::: TI (TI a*c;)·(TI a*D;). 
l=Eii=E;;k aeGR oeGR l=s;;;i=s;;k aeGR aeGR 

Since(**) is only valid if fo.!__any bracket [A.] on the left of(**) there is a bracket [A.'] on 
the right of(**) with [A.] =10R[A.'], the result follows according to Lemma 3.2. D 
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4. APPLICATIONS 

In this section we provide a collection of non-representable oriented matroids 
together with their bi-quadratic final polynomials. We first give some examples of 
known non-representable proofs and even known final polynomials. By using our 
theorems as discussed in Section 3, we can provide extremely short non-realizability 
proofs. 

Example 1: the Vamos matroid. As a first example, we give a non-realizability proof 
for an oriented version of the well known Vamos matroid of 8 points in rank 4. To give 
a combinatorial description of the oriented matroid, we start with the chirotope x 
which corresponds to the following rank 4 configuration: 

1 1 1 1 1 
2 1 1 -1 -1 
3 1 -1 1 -1 
4 1 -1 -1 1 
5 -1 1 1 1 
6 -1 1 -1 -1 
7 -1 -1 1 -1 
8 -1 -1 -1 1 

Notice that this configuration has a symmetry group isomorphic to Z 2 x S4 since the 
points 1, 2, 3 and 4 form a regular tetrahedron in the subspace {[w, x, y, z) Iw = 1} 
and the points 5, 6, 7 and 8 form a similar one in the subspace {(w, x, y, z) Iw = -1}. 
Notice furthermore that we have 

[1, 2, 5, 6] = [1, 3, 5, 7] = [1, 4, 5, 8] = [2, 3, 6, 7] = [2, 4, 6, 8] = [3, 4, 7, 8] = 0. 

We modify the chirotope x in order to obtain a new map Xv by replacing exactly these 
zero-orientations by 1, i.e. we require 

Xv(1, 2, 5, 6) =Xv(1, 3, 5, 7) = Xv(1, 4, 5, 8) 

= Xv(2, 3, 6, 7) = Xv(2, 4, 6, 8) = Xv(3, 4, 7, 8) = +1 

and x=Xv for all other 4-tuples. We will show that Xv is again a chirotope. We 
consider any GraBmann-Plucker polynomial {a, b I · · ·}, where a, b are vertices of the 
same tetrahedron, as mentioned above. In this polynomial {a, b I···}, there occurs no 
other basis A with X(A) = 0, since all 4-tuples contain a and b. But if a and b lie in 
different tetrahedra, and if there would be another A in the polynomial with X(A)= 0, 
we see from the structure of the polynomial {a, b I · · ·} and from the six 4-tuples 
above that this zero-valued X(A) is the second factor in the same summand of the 
polynomial which is already equal to zero. Two other summands of opposite signs 
must exist, showing that the chirotope condition for Xv is fulfilled. 

Notice that Xv has a combinatorial symmetry isomorphic to the alternating group A4 
which can be generated by the permutations 

(123)(567) and ( 12)(34 )( 56)(78) 0 

So far, we have only given a description of our (simplicial) chirotope Xv· Now we claim 
that Xv is not realizable. 



30 J. Bokowski and J. Richter 

LEMMA 4.1. The Vamos matroid Xv is not realizable, and Xv admits a bi-quadratic 
final polynomial. 

PROOF. Consider the GraBmann-Pliicker polynomial 

{1, 213, 6, 5, 4} 
= [1, 2, 3, 6][1, 2, 5, 4]- [1, 2, 3, 5][1, 2, 6, 4] + [1, 2, 3, 4][1, 2, 6, 5] =0. 

'----v----' '"----v-----1 '"----v-----1 '"----v-----1 '"----v-----1 '"----v-----1 
+ + + + 

([1, 2, 3, 6], [1, 2, 5, 4] I[1, 2, 3, 5], [1, 2, 6, 4]) is a bi-quadratic inequality of Xv· We 
assume that Xv is symmetrically (A4) realizable, therefore, we have permutations 
a 1 := (123)(567), a 2 := (124)(568) E Gxv' such that 

a;-1 * [1, 2, 3, 6] = [1, 2, 3, 5] and a2 * [1, 2, 5, 4] = [1, 2, 6, 4]. 

Thus, we have [1, 2, 3, 6][1, 2, 5, 4] =10•v[1, 2, 3, 5][1, 2, 6, 4]. In conclusion, Theorem 
2 proves the lemma; i.e. Xv is not realizable at all. 0 

Example 2: Desargues Theorem. Consider the configuration Dio given in Figure 1. 
This configuration is an oriented version of Desargues Theorem. Notice that in the 
corresponding chirotope xv, we have the mutations 

[1, 0, 6], [2, 0, 4], [3, 0, 5], [1, 3, 7], [2, 1, 8], [3, 2, 9], [7, 5, 6], [8, 6, 4], [9, 4, 5], [7, 8, 9]. 

When we require x(A.) = 0 for the corresponding 3-tuples A., we obtain exactly a 
chirotope corresponding to Desargues configuration. Xv has a symmetry isomorphic to 
z3 generated by a= (123)(456)(789). 

LEMMA 4.2. The Desargue chirotope Xv is not realizable, and Xv admits a 
bi-quadratic final polynomial. 

PROOF. Consider the GraBmann-Pliicker relations 

{112, 0, 6, 3} = [1, 2, 0][1, 6, 3]- [1, 2, 6][1, 0, 3] + [1, 2, 3][1, 0, 6], 
{117, 6, 5, 3} = [1, 7, 6][1, 5, 3]- [1, 7, 5][1, 6, 3] + [1, 7, 3][1, 6, 5], 

{715, 1, 8, 6} = [7, 5, 1][7, 8, 6]- [7, 5, 8][7, 1, 6] + [7, 5, 6][7, 1, 8], 

{718, 5, 0, 9} = [7, 8, 5][7, 0, 9]- [7, 8, 0][7, 5, 9] + [7, 8, 9][7, 5, 0]. 

FIGURE 1. 
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The underlined brackets have to be negative in any realization of Xv· This yields the 
bi-quadratic inequalities 

([1, 2, o], [1, 6, 31 1 [1, 2, 6J, [1, o, 3]), 

([1, 1, 6], [1, 5, 31 1 [1, 1, 5J, [1, 6, 3]), 

<[7, 5, 11, [7, 8, 61 1 [7, 5, 81, [7, 1, 6]), 

([7, 8, 5], [7, o, 91 1 [7, 8, o], [7, 5, 9]). 

Now the symmetry of Xv yields the following identities: 

a 2 * [1, 2, 0] = [3, 1, 0], a* [1, 5, 3] = [2, 6, 1), 

a2 * [7, 8, 6] = [9, 7, 5], a* [7, 0, 9) = [8, 0, 7), 

and this in turn leads to the identity 

lGx 
[1, 2, 0)[1, 6, 3)[1, 7, 6)[1, 5, 3)[7, 5, 1)[7, 8, 6)[7, 5, 8)[7, 0, 9) = 

0 

[1, 2, 6)[1, 0, 3)[1, 7, 5)[1, 6, 3)[7, 5, 8)[7, 1, 6)[7, 8, 0)[7, 5, 9]. 

Now Theorem 2 gives the desired result. D 

Example 3: a star-chirotope. In [7] an example of an infinite class of non-realizable 
chirotopes was given, such that any proper minor of each of those chirotopes is 
realizable. The non-realizability proof was given by standard geometric arguments, and 
finding corresponding final polynomials turned out to be difficult, when specific 
coordinates were chosen. Here, we give a bi-quadratic final polynomial for the 
smallest example of this class (see Figure 2). 

LEMMA 4. 3. The star-chirotope Xs corresponding to the configuration in Figure 2 is 
not realizable, and Xs admits a bi-quadratic final polynomial. 
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PROOF. We give a list of the GraBmann-Pliicker relations used and the cor
responding bi-quadratic inequalities: 

{61 0, 7, 2, 1} = 0 :::} ([6, 0, 2], [6, 7, 1] [6, 0, 1], [6, 7, 2]) E Pxs 

{716, 8, 3, 1} = 0 :::} ([7, 6, 3], [7, 8, 1] [7, 6, 1], [7, 8, 3]) E Pxs 

{817, 9, 4, 1} = 0 :::} ([8, 7, 4], [8, 9, 1] [8, 7, 1], [8, 9, 4]) E Pxs 

{918, 0, 5, 1} =0 :::} ([9, 8, 5], [9, 0, 1] [9, 8, 1], [9, 0, 5]) E Pxs 

{612, 3, 7, 1} =0 :::} ([6, 2, 7], [6, 3, 1] [6, 2, 1], [6, 7, 1]) E f3xs 

{713, 4, 8, 2} = 0 :::} ([7, 3, 8], [7, 4, 2] [7, 3, 2], [7, 4, 8]) E Pxs 

{814, 5, 9, 3} = 0 :::} ([8, 4, 9], [8, 5, 3] [8, 4, 3], [8, 5, 9]) E Pxs 

{915, 1, 0, 4} = 0 :::} ([9, 5, 0], [9, 1, 4] [9, 5, 4], [9, 1, 0]) E Pxs 

{0 11, 2, 6, 5} = 0 :::} ( [0, 1, 6], (0, 2, 5] [0, 1, 5], [0, 2, 6]) E Pxs 

{1 14, 6, 3, 2} = 0 :::} ( [1, 4, 3], [1, 6, 2] [1, 4, 2], [1, 6, 3]) E f3xs 

{215, 7, 4, 3} = 0 :::} ([2, 5, 4], [2, 7, 3] [2, 5, 3], [2, 4, 7]) E f3xs 

{311, 8, 5, 4} =0 :::} ( [3, 1, 5], [3, 8, 4] [3, 1, 4], [3, 8, 5]) E Pxs 

{412, 9, 1, 5} =0 :::} ([4, 2, 1], [4, 9, 5] [4, 2, 5], [4, 9, 1]) E f3xs 

{513, 0, 2, 1} =0 :::} ([5, 3, 2], [5, 0, 1] [5, 3, 1], [5, 0, 2]) E f3xs 

Any involved bracket appears exactly once, both on the right and on the left. In 
conclusion, the product of all brackets on the right equals in the ring R II the product 
of all brackets on the left, proving our lemma. D 

Example 4: the non-polytopal Altshuler sphere M!~5. We give the combinatorial 
neighborly description of Altshuler's 3-sphere M!~s with 10 vertices in terms of its 
facets: 

1045 1048 4579 8275 
3267 1062 4531 0497 
5489 0135 7604 2619 
7901 0197 7628 4831 
9823 3260 6791 6053 
0132 3284 6753 
2354 2357 9826 
4576 2319 9840 
6798 5482 8913 
8910 5406 8975 

The cyclic symmetry-group G generated by a= (13579)(24680) is a subgroup of the 
automorphism group of this sphere. Since the sphere M!~s is neighborly, it is also rigid 
by Shemer's result, [12], i.e. there are only two chirotopes x and -x which are 
compatible in the sense of [6] to the polyhedral structure of the polytope. M!~s is 
realizable, iff these chirotopes are realizable. Since the chirotopes are unique up to a 
multiplication by -1, they must have the same automorphism group as in the sphere 
M!g5. The facial structure of M!gs forces the following identities (for details see [3]): 

x((2, 6, o, 1, 8)) = x((2, 6, o, 1, 4)) = x((2, 6, o, 1, 3)) 

= x((2, 6, o, 4, 3)) = x((2, 6, o, 8, 3)) = x((8, 6, o, 1, 7)). 
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On the other hand, the symmetry requires: 
x((2, 6, o, 1, 4)) = x(~(2, 6, o, 1, 4)) = x((8, 2, 6, 7, O)), 
x((2, 6, o, 4, 3)) = x(a 2(2, 6, o, 4, 3)) = x((6, o, 4, 8, 7)), 
x((2, 6, o, 8, 3)) = x(a4(2, 6, o, 8, 3)) = x((O, 4, 8, 6, 1)). 

We claim that M!g5 is not realizable. To prove this, we have simply to consider two 
GraBmann-Pliicker polynomials {6, 8, 0 11, 7, 4, 2} and {2, 6, 0 11, 3, 8, 4}. With these 
preparations, we leave it to the reader to work out the conclusion by using Theorem 2. 

Example 5: a projective theorem. Our examples chosen above were oriented versions 
of projective theorems of the form 

whenever the brackets [a], [b], [c], ... are zero, then [x] has to be zero, too. 
Another type of projective theorem is of the form 

whenever the brackets [a], [b], [c], ... are zero and [r], [s], [t], ... 
are non-zero, then [x] has to be non-zero, too. 

The following theorem of this type has been proven in [8] by using a computer algebra 
system. 

THEOREM. For any 10 points given in R 3 
, we have, whenever 

[1, 2, 3] = [1, 6, 0] = [1, 7, 9] = [2, 4, 0] = [2, 5, 6] 
= [3, 4, 9] = [3, 5, 7] = [4, 5, 9] = [6, 7, 8] = 0, 

and whenever all other brackets except [8, 9, 0] are non-zero, then [8, 9, 0] is non-zero. 
Especially, we have [8, 9, 0] = [2, 3, 4] · [1, 6, 7]2 

• [3, 4, 7]. 

One oriented version of this theorem is that the configuration in Figure 3 is not 
realizable. This fact can again be proven by using a bi-quadratic final polynomial. The 
smallest final polynomial we know of was found on a computer algebra program that 
solves LP-problems with integer coefficients. This final polynomial is horribly large and 
consists of 135 bi-quadratic inequalities. A symmetric version with respect to the 
symmetry-group generated by (176)(253)(908) with 45 bi-quadratic inequalities can be 
sent by the first author on request . 
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Example 6: classification of matroid manifolds. What actually stimulated the inves
tigations which led to our results in this paper was a classification problem for 31 
matroid manifolds. This was recently completed but will be described in a forthcoming 
paper [4]. 
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