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SUMMARY

AS160 has emerged as a key player in insulin-medi-
ated glucose transport through controlling GLUT4
trafficking, which is thought to be regulated by
insulin-stimulated phosphorylation of sites including
the 14-3-3 binding phospho-Thr649 (equivalent to
Thr642 in human AS160). To define physiological
roles of AS160-Thr649 phosphorylation and 14-3-3
binding in glucose homeostasis, we substituted this
residue by a nonphosphorylatable alanine by
knockin mutation in mice. The mutant protein was
expressed at normal levels, while insulin-stimulated
AS160 binding to 14-3-3s was abolished in homozy-
gous knockin mice. These animals displayed im-
paired glucose disposal and insulin sensitivity, which
were associated with decreased glucose uptake
in vivo. Insulin-stimulated glucose transport and
cell surface GLUT4 content were reduced in isolated
muscles, but not in adipocytes. These results pro-
vide genetic evidence that insulin-induced AS160-
Thr649 phosphorylation and/or its binding to 14-3-3
play an important role in regulating whole-body
glucose homeostasis, at least in part through regu-
lating GLUT4 trafficking in muscle.

INTRODUCTION

Insulin promotes uptake of blood glucose mainly into skeletal

muscle and fat tissues by mobilizing the glucose transporter

GLUT4 from intracellular storage vesicles onto the cell surface

where GLUT4 can facilitate the entry of glucose into cells (James

et al., 1988). This process involves the engagement of multiple

signaling pathways with the exocytosis (or vesicular trafficking)

machinery. Numerous studies suggest that the phosphoinositide

3-kinase (PI 3-kinase)/protein kinase B (PKB, also known as Akt)

signaling cascade downstream of the insulin receptor plays

a central role in controlling insulin-induced GLUT4 translocation

(Larance et al., 2008). Though there are three PKB isoforms, only

PKBb (also known as Akt2) is indispensable in controlling GLUT4

trafficking (Cho et al., 2001; Ng et al., 2008).
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Recently, the Rab GTPase-activating protein (GAP) termed

AS160 (Akt substrate of 160 kDa, also known as TBC1D4) has

emerged as a candidate PKB effector for controlling GLUT4

trafficking in fat and muscle cells (Bruss et al., 2005; Eguez

et al., 2005; Larance et al., 2005; Sakamoto and Holman, 2008;

Sano et al., 2003; Thong et al., 2007; Zeigerer et al., 2004).

AS160 contains two N-terminal phosphotyrosine binding

domains (PTB), with a RabGAP domain toward the C terminus

(Chen et al., 2008; Sano et al., 2003). In unstimulated cells,

AS160 is thought to actively maintain its substrate Rab

GTPase(s) in a guanosine-50-diphosphate (GDP)-loaded and

inactive form, thereby retaining the GLUT4 storage vesicles

within cells (Larance et al., 2005). Upon insulin or insulin-like

growth factor (IGF)-1 stimulation of cultured cells, AS160 was

found to be phosphorylated at multiple sites including Ser318,

Ser341, Ser570, Ser588, Thr642, Ser666, and Ser751, which

fall into two clusters flanking the second PTB domain (Geraghty

et al., 2007; Sano et al., 2003). In cell-free assays, we showed

that PKB directly phosphorylated Ser318, Ser588, and Thr642

(Geraghty et al., 2007). To investigate the role that insulin-stimu-

lated phosphorylation of AS160 has in GLUT4 trafficking, several

groups overexpressed an AS160-4P mutant (in which alanine

replaces Ser318, Ser588, Thr642, and Ser751) in cultured fat

and muscle cells, and found that introduction of 4P mutant

efficiently inhibited the insulin-induced increase in the cell

surface GLUT4 content (Sano et al., 2003; Thong et al., 2007;

Zeigerer et al., 2004). This dominant-negative effect of the 4P

mutant has suggested that the insulin-stimulated phosphoryla-

tion prevents the GAP activity of AS160 from acting on the

downstream Rab(s), which become loaded with guanosine

50-triphosphate (GTP) and actively promote GLUT4 translocation

to cell surface (Randhawa et al., 2008; Sano et al., 2007). Recent

genetic analysis identified patients with severe insulin resistance

during puberty that carry a premature stop mutation in one allele

of AS160 (R363X), resulting in lower levels of AS160 protein

together with a dominant-negative truncated variant (Dash

et al., 2009). This association of AS160 with human disease

heightens the need to define precisely how AS160 regulates

glucose homeostasis.

Initially identified as a candidate gene linked to familial female

obesity (Stone et al., 2006), TBC1D1 is related to AS160 and has

a similar overall molecular architecture (Chen et al., 2008).

TBC1D1 is also phosphorylated in two clusters on either side

of the second PTB domain (Chavez et al., 2008; Chen et al.,
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Figure 1. Generation andBasic Characterization of

Mice with AS160 Thr649Ala Knockin

(A) Strategy for generating mice with AS160 Thr649Ala

knockin. The diagram illustrates the targeting knockin

construct, the AS160 gene, and the allele modification

generated. The Thr649Ala mutation was introduced into

exon 10, which is flanked by loxP sites, and the selection

marker (Pgk Neo) was flanked by FRT sites. The Thr649Ala

knockin was generated after in vivo Flp-mediated removal

of selection marker.

(B) Thr649 phosphorylation and 14-3-3 binding of AS160.

Eight-week-old male mice were anaesthetized and intra-

peritoneally injected with either saline buffer or insulin

(150 mU/g) for 20 min before the respective tissues were

removed. In the upper three panels, AS160 proteins were

immunoprecipitated from 0.5 mg of heart lysates and

Thr649 phosphorylation of AS160 and coprecipitation of

14-3-3s were determined using the Thr649 phosphospe-

cific antibody and K19 14-3-3 antibody, respectively. In

the lower three panels, PKB phosphorylation was deter-

mined in 40 mg of total heart lysates by using the phospho-

specific antibodies recognizing phosphorylated Thr308

and Ser473 on PKB, respectively.

KI, knockin; IP, immunoprecipitation. See also Figure S1.
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2008; Peck et al., 2009; Taylor et al., 2008). PKB is one of the

upstream kinases phosphorylating TBC1D1 at Thr596, which is

a paralogue of Thr642 on AS160 (Chen et al., 2008; Roach

et al., 2007). Ectopic expression of TBC1D1-3P mutant (in which

alanine replaces Ser489, Thr499/Ser501, and Thr590 on mouse

TBC1D1 protein) exerted robust inhibition on insulin-induced

GLUT4 translocation, indicating that phosphorylation of

TBC1D1 also regulates GLUT4 trafficking (Peck et al., 2009).

Phosphorylation of AS160 and TBC1D1 triggers the binding of

these proteins to 14-3-3 proteins (Chen et al., 2008; Geraghty

et al., 2007; Pozuelo Rubio et al., 2004; Ramm et al., 2006).

Insulin and IGF-1 induce 14-3-3 binding to AS160 mainly via

phospho-Thr642 with phospho-Ser341 also contributing (Ger-

aghty et al., 2007), whereas activators of AMP-activated protein

kinase (AMPK) promote interaction of 14-3-3s with TBC1D1 via

its phospho-Ser237 site with phospho-Thr596 playing a

secondary role (Chen et al., 2008). The 14-3-3 binding phos-

pho-Thr642 on AS160 is among the four sites mutated in the

4P mutant that can inhibit insulin-induced GLUT4 translocation

when overexpressed in muscle and fat cells (Sano et al., 2003;
Cell Metabolism 13, 68–79, January 5, 2011 ª201
Thong et al., 2007; Zeigerer et al., 2004). More-

over, there is evidence suggesting that 14-3-3

binding to AS160 is required for insulin-stimu-

lated GLUT4 translocation in 3T3-L1 adipocytes

(Ramm et al., 2006). We hypothesize therefore

that 14-3-3 binding to AS160 regulates whole-

body glucose homeostasis in response to

insulin, while 14-3-3 binding to TBC1D1 regu-

lates this process in response to insulin and/or

AMPK-activating stimuli, such as exercise.

Toward addressing this hypothesis, we gener-

ated a knockin mouse model in which Thr649

on mouse AS160 (equivalent to Thr642 on

humanAS160) ismutated to a nonphosphorylat-

able alanine to prevent 14-3-3 binding in vivo.
Here we provide genetic evidence that insulin-mediated phos-

phorylation (Thr649) and 14-3-3 binding to AS160 plays an

important role in regulating whole-body glucose homeostasis,

at least in part through regulating GLUT4 trafficking and glucose

transport in muscles.

RESULTS

Generation and Basic Characterization
of AS160 Thr649Ala Knockin Mice
AS160 Thr649Ala knockin mice were generated by using the

gene-targeting strategy depicted in Figure 1A. Mating of

AS160 Thr649Ala heterozygous (AS160T649A/+) animals gener-

ated homozygous (AS160T649A/T649A), heterozygous, and wild-

type (AS160+/+) littermate control mice. AS160 protein levels

were the same in AS160 knockin and wild-type mice in all the

tissues examined, except in the testes where it was modestly

reduced in heterozygous and nearly abolished in homozygous

knockin mice (Figure S1B, available online). Despite this diminu-

tion in AS160 mutant protein level in testes, the homozygous
1 Elsevier Inc. 69Open access under CC BY license.
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Figure 2. Insulin-Stimulated Phosphorylation of AS160, PKB, GSK3,

and TBC1D1

Eight-week-old male homozygous AS160 knockin (KI) mice or their littermate

wild-type (WT) animals were anaesthetized and injected with either saline

buffer or insulin (150 mU/g) for 20 min before the respective tissues were

removed. In the upper eight panels, AS160 proteins were immunoprecipitated

from 0.5 mg of gastrocnemius muscle lysates and phosphorylation of AS160

on Ser325, Ser348, Ser577, Ser595, Thr649, and Ser758 and coprecipitation

of 14-3-3s were determined by using the phosphospecific antibodies and

K19 14-3-3 antibody, respectively. In the middle two panels, TBC1D1 protein

was immunoprecipitated from 2 mg of skeletal muscle lysates and its phos-

phorylation was determined by using the phosphospecific pThr590 antibody.

In the lower four panels, the phosphorylation of PKB and GSK3 and total PKB

and GSK3 were determined in 40 mg of muscle lysates by using the respective

phosphospecific antibodies or total antibodies indicated in the Experimental

Procedures. See also Figure S2.
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male knockin mice were fertile and the genotypes of progeny

were in a Mendelian ratio (data not shown). Insulin had no effect

on the amount of total AS160 protein detected in various tissues

except in adipose tissue where its levels were increased after

insulin administration, regardless of the Thr649Ala mutation

(Figure S1B).

As predicted, because of substitution of threonine 649 to a

nonphosphorylatable alanine, neither basal nor insulin-stimu-

lated Thr649 phosphorylation could be detected in tissue

extracts from the knockin mice with a phosphospecific

pThr649 antibody, in contrast to the insulin-responsiveness of

this phosphorylation in extracts from the wild-type animals

(Figures 1B and 2 and Figure S2). In parallel with this observation,

the insulin-stimulated increase in 14-3-3 binding to AS160 as de-

tected in tissue extracts of wild-type mice was abolished in the
70 Cell Metabolism 13, 68–79, January 5, 2011 ª2011 Elsevier Inc. O
knockin animals (Figures 1B and 2 and Figure S2). The insulin-

stimulated phosphorylations of the activating sites on PKB

(Thr308 and Ser473), a major upstream kinase for AS160, were

comparable in both animals (Figures 1B and 2 and Figure S2).

The AS160 homozygous knockin mice were slightly smaller

than their wild-type littermates with overall proportional organ

sizes (Figures S1C–S1E) though food intake was only marginally

affected by the Thr649Ala mutation, consistent with no signifi-

cant difference in plasma leptin levels (Table 1). Blood glucose,

free fatty acid, plasma insulin, and adiponectin levels were not

altered in the knockin mice as compared to the wild-type litter-

mates under both fed and fasted states (Table 1).

AS160 Thr649Ala Knockin Mutation Did Not Cause
Detectable Changes in Insulin-Signaling Pathways
The Thr649Alamutation did not alter the insulin-stimulated phos-

phorylations of five other sites on AS160, namely Ser325,

Ser348, Ser577, Ser595, and Ser758 (residue numbers for the

mouse protein; Figure 2 and Figure S2A) in the skeletal and

cardiac muscle extracts derived from AS160 knockin animals.

The insulin-stimulated phosphorylations of PKB and its substrate

GSK3 were also normal in the knockin mice. Moreover, phos-

phorylation of the activating Thr172 site on AMPK, a master

kinase that controls cellular energy metabolism, was not

changed in the knockin animals (Figure S2B and data not

shown). Similarly, there was no detectable alteration in total

amounts and phosphorylation of the key insulin-signaling

enzymes in the heart and adipose tissue (Figure S2B and data

not shown). Neither the levels of TBC1D1 protein nor the levels

of phosphorylation of its insulin-responsive site Thr590 (equiva-

lent to Thr596 on human TBC1D1) were altered in muscles from

the knockinmice, indicating that there is no apparent compensa-

tory change in regulation of TBC1D1 protein in AS160 knockin

mice (Figure 2). Collectively, these data validate the utility of

AS160 knockin mouse for studying the specific function of

AS160-Thr649 phosphorylation and 14-3-3/AS160 interaction.

AS160 Knockin Mice Exhibit Impaired Glucose
Tolerance and Reduced Insulin Sensitivity
Because AS160 has been implicated in insulin-stimulated

glucose transport in muscle and fat cells (Sano et al., 2003;

Thong et al., 2007) and also in glucose-induced insulin secretion

from pancreatic beta cells (Bouzakri et al., 2008), we sought to

determine if whole-body glucose homeostasis is altered in the

knockin animals. We initially observed that levels of blood

glucose and plasma insulin in overnight-fasted and randomly-

fed states were comparable between knockin and wild-type

mice (Table 1). We then performed glucose tolerance test and in-

jected a bolus of glucose (intraperitoneal [i.p.], 2 mg/g body

weight), which led to similar increases in blood glucose levels

in both knockin and wild-type mice 15 min after the injection.

Strikingly, however, there was a marked delay in clearance of

blood glucose in the knockin animals (both males and females)

compared with wild-type littermates (Figures 3A and 3B). The

areas under the blood glucose response curve (AUC) were

significantly increased by 25% and 14% in the knockin male

and female mice, respectively, as compared with the wild-type

littermates (Figures 3A and 3B). These results demonstrate that

the AS160 knockin mice are glucose intolerant. To check
pen access under CC BY license.
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Table 1. Basic Characterization of AS160/TBC1D4-Thr649Ala Knockin Mice

Fasted Fed

WT KI WT KI

Insulin (ng/ml) 0.271 ± 0.017 0.268 ± 0.021 1.014 ± 0.150 1.056 ± 0.122

Blood glucose (mM) 6.7 ± 0.2 6.5 ± 0.2 10.5 ± 0.4 10.0 ± 0.5

Adiponectin (ng/ml) 42.90 ± 1.14 45.50 ± 1.76 42.96 ± 1.61 47.30 ± 1.39

Leptin (ng/ml) 1.799 ± 0.198 1.152 ± 0.128 n.d. n.d.

FFA (mM) 0.983 ± 0.117 0.924 ± 0.052 n.d. n.d.

Plasma insulin, blood glucose, adiponectin, leptin, and FFA concentrations were determined in 10 to 12-week-old male mice after fasting (5 hr in the

case of adiponectin, leptin, and FFA; 16 hr for plasma insulin and blood glucose measurements) and randomly fed conditions. Values are given as the

mean ± SEM from at least seven animals. FFA, free fatty acids; KI, knockin; n.d., not determined; SEM, standard error of the mean; WT, wild-type.
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whether impaired glucose tolerance observed in the knockin

animals was due to defects in insulin secretion and/or clearance,

we assessed plasma insulin levels during glucose tolerance test.

We observed that the glucose-induced increase in plasma

insulin levels was similar between knockin and wild-type mice

within the first hour (10, 30, 45, and 60min) after glucose injection

(Figure 3C and data not shown), indicating that altered insulin

levels in the blood were unlikely to be responsible for the glucose

intolerance phenotype of the knockin mice. We next injected

a bolus of intermediate insulin dose (0.75 mU/g body weight)

to assess whether or not AS160 knockin mice are insulin resis-

tant. Although there was an apparent trend toward moderate

blunting of insulin-induced hypoglycemia in the knockin animals,

the difference was not statistically significant compared to the

wild-type mice (Figure S3). To investigate whole-body insulin

sensitivity in a more physiological context (avoiding counterre-

gulatory responses induced by hypoglycemia in insulin tolerance

tests), we carried out a hyperinsulinemic-euglycemic clamp

study. Blood glucose levels were tightly maintained through

a variable glucose infusion rate (GIR) in response to a constant

insulin infusion in both genotypes (Figures S4A and S4B). The

GIR required to maintain euglycemia (�5.5 mM) was significantly

lower in the knockin mice than the wild-type littermates (Fig-

ure 4A), indicating that the knockin mice were insulin resistant

(Figures 3A and 3B). Endogenous glucose production through

hepatic gluconeogenesis and renal glucose reabsorption are

unlikely to account for the reduced insulin sensitivity during the

clamp, as the rates of endogenous glucose appearance (en-

doRa) in the basal state were comparable and insulin infusion

fully suppressed endoRa in both genotypes (Figure 4B). We

also observed that in response to glucose injection (i.p., 2 mg/

g body weight), the livers of the knockin mice and their wild-

type littermates displayed similar phosphorylation of PKB,

dephosphorylation of liver glycogen phosphorylase, which

mediates inhibition of glycogenolysis, and dephosphorylation

of glycogen synthase, which activates glycogen synthesis (Fig-

ure S4E). Furthermore, the knockin and wild-type mice also ex-

hibited identical blood glucose profiles in response to pyruvate

challenge (Figure S4F), indicating that hepatic gluconeogenesis

from pyruvate was unaffected. Notably, the rate of whole-body

glucose disappearance (Rd) was significantly lower in the

knockin mice than their wild-type littermates during the clamp

(Figure 4C). Taken together, it would appear that decreased

glucose disposal was the likely underlying cause for the insulin

resistance and glucose intolerance in the AS160 knockin mice.
Cell Metabolism 13, 68–79, Janua
However, several issues must be considered in the interpreta-

tion of the hyperinsulemic-euglycemic clamp experiments. First,

arterial plasma insulin levels at the end of clamp tended to be

reduced in AS160 knockin mice (Figure S4B). While not ap-

proaching significance (p = 0.128), this reduction could conceiv-

ably contribute to the reduction in glucose utilization. However,

we found no correlation between endpoint insulin levels and Rd

(R2 = 0.0969, Figure S4D). Furthermore, we confirmed that lower

endpoint insulin levels in the knockin mice were not associated

with reduced GIR (data not shown). Thus, the tendency for

reduced arterial insulin levels at the end of clamp has no

apparent statistical or physiological significance. In addition, in

our experience the biological variation of arterial insulin in the

short-term fasted conscious mouse is greater than in other

species and insulin concentrations during a clamp in the mouse

are variable (Ayala et al., 2006; Berglund et al., 2008).

The GIR during the hyperinsulinemic-euglycemic clamp did

not achieve a steady state but continued to rise (Figure 4A), sug-

gesting that insulin action did not obtain a steady state. This is in

contrast with other studies from our laboratory that show a

steady state is achieved in this time frame (Ayala et al., 2006).

Changes in the GIR will have no impact on the total rate of

glucose appearance and disappearance in the nonsteady state,

provided that the glucose-specific activity is stable. Figure S4C

shows that glucose-specific activity was indeed stable during

the tracer-sampling period (t = 80 to 120 min). The calculation

of endogenous glucose production is the difference between

the total glucose appearance rate and the GIR. The instability

of the GIR was paralleled by a decline in the endoRa and resulted

in negative rates of endoRa (Figure 4B). Again, it is important to

emphasize that the change in the GIR per se has no impact on

the nonsteady-state calculation of the rate of glucose disappear-

ance and does not impact conclusions regarding muscle

glucose utilization, which is the focus of these experiments.

Altered Glucose Transport in Isolated Skeletal Muscle
and Primary Adipocytes from AS160 Knockin Mice
To deduce the mechanisms underlying the decreased glucose

disposal and insulin sensitivity in AS160 knockin mice, we

measured glucose transport in isolated skeletal muscles and

primary adipocytes ex vivo. For soleus, glucose uptake into the

knockin muscles was slightly higher than wild-type muscles

under unstimulated conditions, but in contrast was significantly

lower (�15%) for knockin muscles compared with wild-type

muscles upon insulin stimulation (Figure 5A). Overall, both the
ry 5, 2011 ª2011 Elsevier Inc. 71Open access under CC BY license.
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Figure 3. Glucose Clearance and Plasma Insulin Levels in AS160 Knockin Mice after Intraperitoneal Injection with Glucose

(A) Glucose tolerance test of 10-week-oldmalemice. The inset shows the glucose area under the curve (AUC) during glucose tolerance test. The data are given as

the mean ± standard error of the mean (SEM) (n = 7–8). Asterisk indicates p < 0.05 (t test). Results shown are representative of four independent experiments with

different mouse populations.

(B) Glucose tolerance test of 10- to 12-week-old female mice. The inset shows the glucose area under the curve during glucose tolerance test. The data are given

as the mean ± SEM (n = 6–7). Asterisk indicates p < 0.05 (t test).

(C) Plasma insulin levels during a glucose tolerance test. The values represent the mean (± SEM) from seven to eight male mice (8 weeks old) for each genotype.

Results shown are representative of three independent experiments with different mouse populations.

See also Figure S3.
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fold increase in glucose transport upon insulin and the

DRateInsulin-Basal were significantly lower in soleus from the

knockin mice (Figure 5A). Similar results were also obtained in

the isolated extensor digitorum longus (EDL)muscles (Figure 5B),

although the ability of insulin to stimulate glucose uptake in EDL

was much more modest under our experimental conditions than

in soleus, as previously reported (Sakamoto et al., 2005). We

confirmed that insulin robustly stimulated PKB to the same

extent in ex vivo muscles from both genotypes, whereas

AS160-Thr649 phosphorylation was only potently stimulated

by insulin in muscles from the wild-type mice, but not from

knockin mice (data not shown).

Under basal conditions, glucose uptake into primary adipo-

cytes from AS160 knockin mice was slightly higher than into
72 Cell Metabolism 13, 68–79, January 5, 2011 ª2011 Elsevier Inc. O
wild-type cells (Figure 5C). However, unlike the isolatedmuscles,

insulin stimulated a significantly higher glucose uptake into

primary adipocytes from the knockin mice compared with cells

from the wild-type littermates (Figure 5C), resulting in a compa-

rable fold increase in glucose uptake upon insulin treatment

between the two genotypes.

AS160 Knockin Mice Have a Lower Rate of Glucose
Uptake into Skeletal Muscles In Vivo
To address the physiological relevance of the reduced insulin-

stimulated glucose uptake observed in isolated muscles, we

measured muscle glucose transport in vivo by injection of

glucose (i.p., 2 mg/g body weight) containing 2-deoxy-[3H]-

glucose into mice. We observed that glucose uptake into
pen access under CC BY license.
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Figure 4. Glucose Infusion Rate, Endogenous Glucose Appearance

Rate, and Whole-Body Glucose Disappearance during Hyperinsuli-

nemic-Euglycemic Clamp

(A) Glucose infusion rate (GIR) during insulin clamp in AS160 knockin and

wild-type male mice (16 weeks old). The inset shows the area under the curve

of the GIR during hyperinsulinemic-euglycemic clamp. Data are shown as
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hindlimb skeletal muscles from the knockin mice was modestly,

but significantly (�12%) lower than from thewild-type littermates

(Figure 5D). This observation together with ex vivo muscle

glucose uptake data strongly suggest that the reduced rate of

insulin-mediated uptake of glucose into muscles is the major

cause underlying the glucose intolerance phenotype in the

knockin mice.

Impaired GLUT4 Translocation from Intracellular
Compartments onto Plasma Membrane in AS160
Knockin Mice
To define the mechanism underlying the altered glucose uptake

of muscles and primary adipocytes we examined expression of

GLUT4, which is the major insulin-regulated glucose transporter

mediating insulin-induced uptake of glucose into heart, skeletal

muscles, and adipose tissue. Interestingly, GLUT4 protein levels

in extracts of these tissues were higher for the knockin mice than

the wild-type mice (Figure 6A; data not shown). However, glut4

transcript levels were not significantly altered (Figure S5A), indi-

cating that the mechanism(s) underlying the increase of GLUT4

protein levels are posttranscriptional.

GLUT4 translocation from intracellular storage compartments

onto plasmamembrane was determined via membrane fraction-

ation in adipose tissue and skeletal muscles from the mice that

had been injected with glucose (i.p., 2 mg/g body weight) to

increase blood insulin levels within the physiological range. The

presence of the plasma membrane in the pelleted fraction was

established by measuring the distribution of the Na+/K+-ATPase

a-1 subunit and insulin receptor b subunit between the pelleted

fraction and the cytosol fraction (Figure S5B). The cytosol frac-

tion should contain the intracellular GLUT4 vesicles, because

previous studies have shown that the vesicles are not pelleted

under the conditions used here (Larance et al., 2005). Consistent

with the elevated GLUT4 levels, both plasmamembrane-associ-

ated and intracellular GLUT4 levels were higher in the knockin

mice (Figure 6B and data not shown). Intriguingly, glucose injec-

tion increased plasma membrane-associated GLUT4 only in the

adipose tissue (1.6-fold) from the wild-type mice, but not from

AS160 knockin animals (Figure 6B). We confirmed that the

inability of glucose administration to promote GLUT4 transloca-

tion in the knockin mice was not due to reduced PKB activation

(data not shown). Although we observed that glucose injection

slightly increased the amounts of plasma membrane-bound

GLUT4 in the muscles from the wild-type mice but not the
mean (± SEM) for six to nine mice per genotype. Asterisk indicates p < 0.05

(t test).

(B) The endogenous glucose appearance rate (endoRa) during basal

conditions and during insulin clamps. Basal values are averaged from plasma

samples obtained at t =�15 and�5min prior to onset of insulin clamps. Clamp

values are averaged from plasma samples obtained at t = 80–120 min of the

insulin clamps. Data are shown as mean (± SEM) for six to nine mice per

genotype.

(C) Whole-body glucose disappearance (Rd) during basal conditions and

during insulin clamps. Basal values are averaged from plasma samples ob-

tained at t = �15 and �5 min prior to onset of insulin clamps. Clamp values

are averaged from plasma samples obtained at t = 80–120 min of the insulin

clamps. Data are shown as mean (± SEM) for six to nine mice per genotype.

Asterisk indicates p < 0.05 (t test).

See also Figure S4.
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Figure 5. Insulin-Stimulated Glucose Transport in Ex Vivo Muscles and Primary Adipocytes

(A) Insulin-stimulated glucose transport in ex vivo soleus muscles. The soleus muscles were isolated frommale mice (10–12 weeks old) stimulated with or without

0.1 mU/ml of insulin and used for glucose transport assay. A fold increase of the rates of glucose transport and an increase of the rates of glucose transport upon

insulin stimulation over the basal state were deduced from the glucose transport assay. The values are given as the mean ± SEM (n = 7). Asterisk indicates p <

0.05. a indicates p < 0.05 versus WT (insulin).

(B) Insulin-stimulated glucose transport in the ex vivo EDLmuscles. The EDLmuscles were isolated from both wild-type and AS160 knockin mice (8–9 weeks old)

stimulated with or without 0.1 mU/ml of insulin and used for glucose transport assay. A fold increase of the rates of glucose transport and an increase of the rates

of glucose transport upon insulin stimulation over the basal state were deduced from the glucose transport assay. Asterisk indicates p < 0.05.

(C) Insulin-stimulated glucose transport in primary adipocytes. The primary adipocytes were isolated from the epididymal fat pads of male mice (10 weeks old)

stimulated with or without 16.7 mU/ml insulin for 30 min and used for glucose transport assay. The values are given as the mean ± SEM (n = 8). Asterisk indicates

indicates p < 0.05. a indicates p < 0.05 versus WT (insulin).
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knockin animals (data not shown), we were not able to draw a

decisive conclusion because of technical difficulties in preparing

pure plasma membrane with high yield from this tissue.

To further establish the impaired recruitment of GLUT4 to the

plasma membrane, we quantitatively measured cell-surface-

exposed GLUT4 protein by a photolabelling method (Holman

et al., 1990) in primary adipocytes and isolated soleus muscles.

In the primary adipocytes, surface GLUT4 levels at basal states

were elevated by nearly 6-fold in the knockin cells (Figure 6C) in

contrast to only a 50% increase in the basal glucose transport

rates (Figure 5C), as compared with wild-type cells. Stimulation

with insulin led to a nearly 3-fold increase in surface GLUT4

levels in wild-type cells (Figure 6C). Interestingly, while insulin

had not changed the cytoplasmic-to-plasma-membrane-asso-

ciated partitioning of GLUT4 in knockin adipocytes (Figure 6B

and data not shown), insulin did increase the amount of

surface-exposed GLUT4 by nearly 2-fold (Figure 6C). In resting

soleus muscles, surface GLUT4 levels were slightly higher,

though not statistically significant, in the knockins than in the

wild-types (Figure 6D). In contrast, surface GLUT4 levels were

significantly lower in the knockin soleus than the wild-type

muscles upon insulin stimulation (Figure 6D), which is consistent

with the glucose transport rates (Figure 5A), suggesting that

impaired GLUT4 surface gain might account for the lower

insulin-stimulated glucose transport rates in the muscles from

the knockin mice.

DISCUSSION

Here, we generated a genetic knockin mouse model to study the

specific roles that phospho-Thr649 and its resulting binding of

14-3-3 to AS160 play in insulin-mediated GLUT4 trafficking

and glucose homeostasis. The most striking metabolic pheno-

type in AS160 knock-in mice (8 to 16 weeks old) is that they

display reduced glucose disposal and whole-body insulin sensi-

tivity. Thesemice are unable to absorb glucose from the blood as

efficiently as the wild-type animals in response to insulin and

glucose challenge, even though they had elevated levels of

GLUT4 relative to wild-type animals in muscle and adipose

tissues.

Overall, our data indicate that loss of Thr649 phosphorylation

and/or 14-3-3 binding of AS160 impacts on glucose homeo-

stasis by: (1) increasing the expression of GLUT4 proteins

through an unknown mechanism that does not involve a change

in steady-state glut4 transcript levels, (2) decreasing the insulin-

induced surface GLUT4 expression and glucose transport rates

in isolated muscles ex vivo and in intact muscles in vivo, (3)

causing a lag in clearance of blood glucose in response to

glucose load, and (4) impairing insulin sensitivity in hyperinsuli-

nemic-euglycemic clamp with lower glucose disposal rates.

The glucose intolerance in AS160 knockin mice was not asso-

ciated with changes in the levels of plasma insulin or adiponec-

tin, but with a lower rate of insulin-stimulated glucose uptake into

muscles. Elevating insulin levels in blood after glucose challenge
(D) In vivo muscle glucose uptake. Male mice at 12 to 14 weeks of age were s

2-deoxy-[3H]-glucose. At 60 min after injection, both tibialis anterior and quadri

The values are given as the mean ± SEM (n = 5). * indicates p < 0.05 (t test).
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not only stimulates glucose transport into muscle and fat tissues

but also suppresses hepatic glucose production and deregula-

tion of either process can lead to glucose intolerance. Hyperin-

sulinemia during the clamp study fully suppressed hepatic

glucose production in AS160 knockin mice as indicated by the

ablation of endoRa (Figure 4B). These data suggest that

enhanced hepatic gluconeogenesis is unlikely to be the under-

lying cause for the glucose intolerance and insulin resistance

phenotypes observed in the knockin mice. The Rd that is mainly

determined by muscles in the hyperinsulinemic-euglycemic

clamp was significantly lower in the knockin mice than their

wild-type littermates (Figure 4C), suggesting that the glucose

intolerance in the knockin mice was mainly caused by reduced

insulin-mediated glucose transport in muscle. This was sup-

ported by our results that AS160 knockin mice exhibit a reduced

rate of glucose uptake in muscle in vivo after glucose injection

(Figure 5D) and a lesser response to insulin of glucose uptake

into isolated soleus and EDL muscles from the knockin animals

ex vivo (Figures 5A and 5B). At the molecular level, the knockin

mutation decreased the insulin-induced cell surface GLUT4

expression in the muscles from the knockin mice (Figure 6D),

which would be expected to consequently limit the insulin-stim-

ulated glucose transport.

While our data are internally consistent in general and

supportive of AS160 phosphorylation and/or 14-3-3 binding

mediating insulin-stimulated glucose uptake into target tissues,

there are several mismatches that we cannot explain, which

point to further unknown regulatory steps in glucose transport.

First, there is a clear discrepancy in finding that the Rd in the

insulin clamp study was significantly lower in knockins than

wild-types under basal conditions (Figure 4C), and yet the

glucose transport rates were moderately higher in unstimulated

isolated muscles and primary adipocytes from the knockin

mice ex vivo (Figure 5). We cannot rule out the possibility that

ex vivo systems using isolated muscle or adipocytes do not

always mimic the physiological in vivo regulation of glucose

transport in mice mainly because of the absence of various

contributing factors (e.g., systemic and neural factors). It is

also possible that AS160 plays some additional roles in other

tissues that affect glucose metabolism in vivo. Another discrep-

ancy is between surface GLUT4 levels and glucose transport

rates in primary adipocytes. The surface GLUT4 level was

elevated by nearly 6-fold in the knockin adipocytes relative to

wild-type cells (Figure 6C) in contrast to only a 50% increase in

basal glucose transport rate (Figure 5C), suggesting that

the surface GLUT4 in knockin cells was not as active as the

GLUT4 in wild-type cells. Consistent with this suggestion, the

magnitude of insulin-stimulated surface GLUT4 expression

approximated the fold increase in glucose transport rates in

both knockin and wild-type primary adipocytes even though

the knockin cells already had much more GLUT4 at the plasma

membrane. There is a precedent for surface GLUT4 expression

being dissociated from glucose transport, in which a cell-perme-

able phosphoinositide-binding peptide increased surface
ubject to intraperitoneal injection of glucose (2 mg/g body weight) containing

ceps muscles were removed and used to determine muscle glucose uptake.

ry 5, 2011 ª2011 Elsevier Inc. 75Open access under CC BY license.

http://creativecommons.org/licenses/by/4.0/


A

to
ta

l G
LU

T4
 c

on
te

nt
 (A

.U
.)

0,0

0,5

1,0

1,5

2,0
WT
KI

heart

GLUT4

adiposesoleus

*
*

*

to
ta

l G
LU

T4
 c

on
te

nt
 (A

.U
.)

0,0

0,5

1,0

1,5

2,0
WT
KI

heart

GLUT4

adiposesoleus

**
**

**

C

su
rfa

ce
 G

LU
T4

 (A
.U

.)

0

2

4

6

8

10

12

basal
insulin

Surface
GLUT4

WT KI

adipocytes

(photolabelling)

a

b

*

*

su
rfa

ce
 G

LU
T4

 (A
.U

.)

0

2

4

6

8

10

12

basal
insulin

Surface
GLUT4

WT KI

adipocytes

(photolabelling)

a

b

**

**

B

pl
as

m
a 

m
em

br
an

e 
G

LU
T4

 (A
.U

.)

0,0

0,5

1,0

1,5

2,0

2,5

basal
glucose

GLUT4

WT KI

a b

adipose tissue

(fractionation)

*

pl
as

m
a 

m
em

br
an

e 
G

LU
T4

 (A
.U

.)

0,0

0,5

1,0

1,5

2,0

2,5

basal
glucose

GLUT4

WT KI

a b

adipose tissue

(fractionation)

**

D

su
rfa

ce
 G

LU
T4

 (A
.U

.)

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

basal
insulin

soleus muscle

(photolabelling)

Surface
GLUT4

WT KI

a

*

su
rfa

ce
 G

LU
T4

 (A
.U

.)

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

basal
insulin

soleus muscle

(photolabelling)

Surface
GLUT4

WT KI

a

**

Figure 6. The Total GLUT4 Protein Levels and GLUT4 Translocation in the Wild-Type and AS160 Knockin Mice

(A) The total GLUT4 protein levels in AS160 knockin and wild-type mice (8 weeks old). GLUT4 proteins were detected in 40 mg of total lysates of soleus muscles,

adipose tissue, and hearts by using anti-GLUT4 antibody and the signals were quantified. The data are given as the mean ± SEM (n = 8–9). Asterisk indicates

p < 0.05 (t test). Representative blots are shown.

Cell Metabolism

AS160-Thr649Ala Knockin Mice

76 Cell Metabolism 13, 68–79, January 5, 2011 ª2011 Elsevier Inc. Open access under CC BY license.

http://creativecommons.org/licenses/by/4.0/


Cell Metabolism

AS160-Thr649Ala Knockin Mice
GLUT4 levels without stimulating glucose uptake in 3T3-L1

adipocytes (Funaki et al., 2006). It has been proposed therefore

that surface GLUT4 needs an activation step, mediated by phos-

phatidylinositol-4,5-bisphosphate, to be fully functional (Funaki

et al., 2006). Moreover, optimal activation of glucose transport

in cardiomyocytes upon insulin stimulation requires supportive

events such as insulin-induced cytosol alkalinization through

the Na+/H+ exchanger and H+-ATPase (Yang et al., 2002).

Thus, we speculate that the activation of GLUT4 and/or the

supportive events for optimal activation of glucose transport

might be impaired or ‘‘oversaturated’’ by elevated GLUT4 levels

in AS160 knockin mice, contributing to the lower Rd in the

knockin mice.

The third paradox centers on the trafficking of GLUT4 from

plasma membrane to cell surface. Insulin-induced GLUT4 trans-

location from intracellular storage vesicles onto cell surface

involves multiple stages including soluble N-ethylmaleimide-

sensitive factor attachment protein receptor (SNARE)-mediated

docking and fusion steps (Hou and Pessin, 2007). The AS160-4P

mutant has been found to inhibit insulin-induced GLUT4 translo-

cation in 3T3-L1 adipocytes as well as L6 muscle cells (Sano

et al., 2003; Thong et al., 2007; Zeigerer et al., 2004). Recent

studies with overexpression of the AS160-4P mutant in 3T3-L1

adipocytes by using total internal reflection fluorescencemicros-

copy (TIRFM) suggest that AS160 regulates the docking step but

not the postdocking steps such as fusion of GLUT4 storage vesi-

cles (Bai et al., 2007; Jiang et al., 2008). Consistent with this

notion, our data on membrane fractionation show recruitment

of GLUT4 from intracellular compartments onto plasma

membrane to be impaired in AS160 knockin mice (Figure 6B

and data not shown), indicating that AS160-Thr649 phosphory-

lation and/or 14-3-3 binding play an important role in regulating

GLUT4 trafficking. And yet, cell surface GLUT4 expression

(determined via the photolabelling assay) and glucose uptake

in knockin primary adipocytes and isolated muscles were still

stimulated by insulin (Figures 5 and 6), albeit with an overall

lower ± insulin ratio in knockin muscles compared with the

wild-type tissues. It is worthwhile to point out that membrane

fractionation measures plasma membrane-bound GLUT4

including both docked and surface-exposed GLUT4, whereas

the photolabelling assay determines only surface-exposed

GLUT4. One possible explanation for the discrepancy between

GLUT4 levels determined bymembrane fractionation and photo-

labelling assay is that insulin also stimulates a final plasma

membrane-fusion step in GLUT4 trafficking (Jiang et al., 2008).
(B) Plasma membrane-bound GLUT4 in adipose tissue from male mice (10–12 w

fasted for 16 hr were subjected to intraperitoneal injection of glucose (2 mg/g bod

membrane fractions were separated from the intracellular fractions containing G

were quantified (n = 3 per genotype per treatment). The data were given as the m

b indicates p < 0.05 versus WT (glucose). A representative blot is shown.

(C) Cell surface GLUT4 levels in primary adipocytes. Primary adipocytes were iso

from the epididymal fat pads and stimulated with or without 0.17 mU/ml of insulin

BGPA, pulled down by using Streptavidin beads from equal amounts of lysates, a

* indicates p < 0.05. a, p < 0.05 versus WT (basal); b, p < 0.05 versus WT (insulin

(D) Cell surface GLUT4 levels in the ex vivo soleus muscles. The soleus musc

stimulated or not with 0.1 mU/ml of insulin and used for photolabelling assay. Su

down from equal amounts of lysates by using Streptavidin beads, and quantified

p < 0.05; a indicates p < 0.05 versus WT (insulin). A representative blot is shown

See also Figure S5.
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In the knockinmice, both the total and plasmamembrane-bound

pools of GLUT4 were elevated, presumably providing a larger

than normal pool of GLUT4 in vesicles that have docked with

plasma membrane and are poised and ready to undergo a final

AS160-Thr649 phosphorylation-independent fusion step in

response to insulin. Consequently, the pool of plasma mem-

brane-bound GLUT4 could partially compensate for inhibition

of the docking step imposed by the AS160 Thr649Ala mutation,

resulting in an insulin-induced surface GLUT4 expression and

glucose transport in ex vivo muscles and primary adipocytes.

However, the glucose intolerance and insulin resistance whole-

body phenotypes of AS160 knockin mice indicates that this

compensatory response cannot completely overcome the

impaired GLUT4 trafficking from intracellular storage sites to

plasma membrane caused by the AS160 Thr649Ala mutation.

Although our data suggest that AS160 Thr649Ala mutation

affects GLUT4 trafficking, the exact site in GLUT4 translocation

regulated by AS160-Thr649 phosphorylation and/or 14-3-3

binding is still to be identified. One idea is to cross the AS160

knockin mouse with the transgenic mouse expressing green

fluorescent protein (GFP) and hemagglutinin (HA)-epitope-

tagged GLUT4 that has recently been generated (Fazakerley

et al., 2009). More detailed dissection of the GLUT4 trafficking

in the offspring, taking advantage of TIRFM, should give further

insights into the mechanisms of how AS160-Thr649 phosphory-

lation and 14-3-3 binding regulate GLUT4 trafficking.
EXPERIMENTAL PROCEDURES

Hyperinsulinemic-Euglycemic Clamp

Male mice at 16 weeks of age were used for a hyperinsulinemic-euglycemic

clamp study via tail sampling, performed at the NIH Mouse Metabolic Pheno-

typing Center and led by David Wasserman (Vanderbilt University), as previ-

ously described (Ayala et al., 2006). Whole-body Ra and Rd were determined

by using Steele nonsteady-state equations (Steele et al., 1956). The endoRa

was determined by subtracting the GIR from total Ra.

Glucose Uptake in Isolated Soleus and EDL Muscles

and Primary Adipocytes

For glucose uptake assays in isolated muscles ex vivo, mice were killed by

cervical dislocation after overnight fast (16 hr). Soleus and EDL muscles

were isolated and 2-deoxy-[3H]glucose uptake was measured as described

(Sakamoto et al., 2005). Briefly, muscles were incubated in 8 ml Krebs-Ringer

bicarbonate (KRB) buffer (117 mM NaCl, 4.7 mM KCl, 2.5 mM CaCl2, 1.2 mM

KH2PO4, 1.2 mM MgSO4, 24.6 mM NaHCO3, pH 7.4) containing 2 mM pyru-

vate with or without insulin (0.1 mU/ml) for 50min at 37�C.Muscles were trans-

ferred to 2 ml KRB containing 1 mM 2-deoxy-D-[1,2-3H(N)]glucose (3 mCi) and
eeks old) after intraperitoneal injection of glucose or saline. The mice that were

y weight) or saline and tissues were taken at 20 min after injection. The plasma

LUT4 vesicles. GLUT4 levels were determined via western blot and the signals

ean ± SEM. Asterisk indicates p < 0.05; a indicates p < 0.05 versus WT (basal);

lated from male mice (15–16 weeks old). The primary adipocytes were isolated

for 30 min. Surface GLUT4 was then chemically tagged with the Bio-LC-ATB-

nd quantified via western blot. The data were given as the mean ± SEM (n = 4).

). A representative blot is shown.

les were isolated from wild-type and AS160 knockin mice (8–12 weeks old),

rface GLUT4 was then chemically tagged with the Bio-LC-ATB-BGPA, pulled

via western blot. The data were given as the mean ± SEM (n = 4–5). * indicates

.
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7mMD-[1-14C]mannitol (0.9 mCi) and incubated for an additional 10minwith or

without insulin at 30�C. Incubation and transport buffers were continuously

gassed with 95% O2-5% CO2. Transport was terminated by immersion in

ice-cold KRB containing 80 mM cytochalasin B. Muscles were frozen in liquid

nitrogen and processed as previously described (Sakamoto et al., 2005).

For glucose uptake in primary adipocytes, mice were killed by cervical

dislocation after overnight fast (16 hr) and epididymal fat was rapidly removed.

Primary adipocytes were isolated and glucose transport assay was carried out

in primary adipocytes as described previously (Holman et al., 1990). Briefly,

epididymal fat was minced and digested in Krebs-Ringer-4-(2-hydrox-

yethyl)-1-piperazineethanesulfonic acid (HEPES) buffer (KRH; 140 mM NaCl,

4.7 mM KCl, 2.5 mM CaCl2, 1.25 mM MgCl2, 2.5 mM NaH2PO4, 10 mM

HEPES, pH 7.4) containing 1 mg/ml collagenase (Worthington, Type I),

3.5% (w/v) bovine serum albumin (BSA), 5 mM glucose, and 200 nM adeno-

sine at 37�C for 40 min. The resulting cell suspension was filtered through

a nylon mesh (400 mm mesh size, Lockertex) and washed three times with

2.5% (w/v) BSA/KRH buffer containing 200 nM adenosine. The cell suspen-

sion was adjusted to a cytocrit of �20% and incubated with or without

16.7 mU/ml of insulin at 37�C for 30 min. The adipocytes were incubated in

2.5% (w/v) BSA/KRH buffer containing 40 mM 2-deoxy-D-[U-14C]glucose

(0.6 mCi) at 37�C for 30 min in the presence or absence of 16.7 mU/ml of

insulin. After stopping glucose transport by adding cytochalasin B (30 mM),

cell suspension was centrifuged through dinonylphthalate oil and used for

scintillation counting.

Photolabelling of Cell Surface GLUT4 in Isolated Soleus Muscles

and Primary Adipocytes

Photolabelling of cell surface GLUT4with a biotinylated photolabeling reagent,

Bio-LC-ATB-BGPA, in primary adipocytes (Holman et al., 1990) and isolated

muscle (Karlsson et al., 2009) was carried out as previously described.

Briefly, primary adipocytes were stimulated with insulin (0.17 mU/ml) or not

after isolation from epididymal fat pads. The cells were then incubated

with 200 mM of Bio-LC-ATB-BGPA at room temperature for 8 min and

irradiated under UV light for 1 min with a Rayonet Photochemical Chamber

Reactor (Southern New England Ultra Violet Company) to crosslink GLUT4

with the photolabels. After crosslinking, the cells were lysed and subjected

to further analyses. Isolated soleus muscles were first incubated in the pres-

ence or absence of insulin (0.1 mU/ml) for 50 min at 37�C and then for 8 min

at room temperature. After incubation with 200 mM Bio-LC-ATB-BGPA at

room temperature for 8 min, the muscles were irradiated twice under UV light

for 3 min each time. The muscles were snap-frozen after being rinsed. The

GLUT4 proteins chemically tagged with photolabels were isolated by using

Streptavidin beads and subsequently detected and quantified via immunoblot-

ting analysis.

Measurement of Muscle Glucose Uptake In Vivo

Skeletal muscle glucose uptake in vivo wasmeasured as previously described

with some modification (Bouskila et al., 2008; Kramer et al., 2006). Briefly,

mice were fasted overnight and then anesthetized with sodium pentobarbital

diluted in saline buffer (90 mg/kg body weight). After�15 min blood was taken

from the tail to assess basal glucose and background radioactivity levels. A

bolus of 2 mg D-glucose per body weight containing 2-deoxy-[3H]glucose

(10 mCi per �20–25 g mouse) was administered via an i.p. injection and blood

samples were taken 15, 30, 45, and 60 min later for the determination of blood

glucose and 2-deoxy-[3H]glucose-specific activity. After the last blood draw,

animals were sacrificed by cervical dislocation, the tibialis anterior and

gastrocnemius muscles were removed, and the muscles were immediately

frozen in liquid nitrogen. Accumulation of 2-deoxy-[3H]glucose-6-phosphate

from one muscle was assessed via a precipitation protocol as previously

described (Ferré et al., 1985) by using barium hydroxide, zinc sulfate, and

perchloric acid.
SUPPLEMENTAL INFORMATION

Supplemental Information includes five figures and Supplemental Experi-

mental Procedures and can be found with this article online at doi:10.1016/

j.cmet.2010.12.005.
78 Cell Metabolism 13, 68–79, January 5, 2011 ª2011 Elsevier Inc. O
ACKNOWLEDGMENTS

We thank Gail Fraser for assistance with genotyping of mice, members of the

resource unit for technical assistance, and Dr. Simon Arthur for helpful discus-

sions. We thank Professor Geoffrey Holman and Dr. Francoise Koumanov

(University of Bath, UK) for providing the Bio-LC-ATB-BGPA and protocols

for its use and Professor Juleen Zierath and Dr Håkan Karlsson (Karolinska
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