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An asymptotic model of isothermal catalyst is obtained from a well-known model
of porous catalyst for appropriate, realistic limiting values of some nondimensional
parameters. In this limit, the original model is a singularly perturbed m-D reaction�
diffusion system. The asymptotic model consists of an ordinary differential equation
coupled with a semilinear parabolic equation on a semi-infinite one-dimensional
interval. � 1997 Academic Press

1. INTRODUCTION

This paper deals with a well-known model of porous catalyst that after
suitable nondimensionalization [1, Vol. I] may be written as

�u��t=2u&,2f (u, v) in 0, �u��n=_(1&u) at �0, (1.1)

L&1 �v��t=2v+;,2f (u, v) in 0, �v��n=&(1&v) at �0, (1.2)

for t>0, with appropriate initial conditions

u=u0>0, v=v0>0 in 0, at t=0. (1.3)

Here u>0 and v>0 are the reactant concentration and the temperature
respectively, 2 is the Laplacian operator, n is the outward unit normal to
the smooth boundary of the bounded domain 0/Rm (with m�1) and the
parameters ,2 (Damko� hler number), L (Lewis number), ; (Prater number),
_, and & (material and thermal Biot numbers) are strictly positive. The
nonlinearity f accounts for the reaction rate and is usually of one of
the following forms, that are associated with the so-called Arrhenius and
Langmuir�Hinshelwood kinetic laws [1],
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f (u, v)=u p exp(#&#�v) (1.4)

f (u, v)=u p(u+k) &q exp(#&#�v) (1.5)

f (u, v)=u p[u+k exp(#a&#a�v)]&q exp(#&#�v) (1.6)

where the reaction orders p and q and the activation energies # and #a are
strictly positive. The reaction orders may be non-integers.

Porous catalysts usually exhibit a large thermal conductivity and conse-
quently ; is usually very small, the ratio _�& is large and & is either small
or of order unity, depending on the size of the catalyst (see [1]). In addition,
L and ,2 vary in a wide range (from small to large values). Then, the limit

; � 0, _�& � � (1.7)

is realistic, and leads to simpler submodels than (1.1)�(1.3). If, in addition,
& is small and ,2 remains bounded, then the following simpler sub-model
is obtained from (1.1)�(1.3)

�u��t=2u&,2f (u, v), �u��n=_(1&u) at �0, (1.8)

(V0�&L) dV�dt=S0(1&V)+(;,2�&) |
0

f (u, v) dx, (1.9)

with appropriate initial conditions, where V0 and S0 are the measures of
the domain 0 and of its boundary respectively, i.e.,

V0=|
0

dx, S0=|
�0

ds if m�2, S0=2 if m=1, (1.10)

and V is the spatial average of the temperature v, i.e.,

V=V&1
0 |

0
v(x, t) dx. (1.11)

The model (1.8)�(1.9) was obtained in [2] by means of formal, singular
perturbation techniques. For a rigorous derivation of a slightly different
model (namely, the boundary conditions in (1.1) and (1.8) being replaced
by new ones of the Dirichlet type) see [3]. For the rigorous derivation of
related simplified sub-models of general reaction-diffusion systems, see
[4�7]. As a by-product of the results below, a fairly direct derivation of
(1.8)�(1.9) could be readily obtained by means of the ideas in this paper;
but for the sake of brevity we shall omit that derivation. The steady states
of (1.8)�(1.9) and their linear stability were analyzed in [2] for the par-
ticular case when f is as given in (1.4) with p=1; some global stability
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properties for more general, smooth nonlinearities were obtained in [8],
and the steady states for some non-Lipschitzian nonlinearities were
analyzed [9].

If ,2 is large and & is small then the limit (1.7) is much more interesting
because the original model (1.1)�(1.2) is singularly perturbed. We shall
consider the case when ,2 � � but ;, is appropriately small. In this limit,
the following sub-model of (1.1)�(1.3) applies

�U� ��{=�2U� ��!2& f (U� , V) in &�<!<0, (1.12)

u � 0 as ! � &�, �u��!=(_�,)(1&u) at !=0, (1.13)

(V0,2�(S0&L)) dV�d{=1&V+(;,�&) |
0

&�
f (U� , V) d!, (1.14)

with appropriate initial conditions, where V0 , S0 and V are given again
by (1.10)�(1.11) and U� is appropriatetely close to u. The new rescaled
variables { and ! are

{=,2t, !=,', (1.15)

where ' is a co-ordinate along the outward unit normal to �0. Let us now
briefly explain (in loose, physical terms, but following the main ideas in the
derivation below) where this model comes from. Since ,2 is large, the
chemical reaction is very strong and, after some time, the reactant is con-
sumed and u becomes very small in 0 except in a thin boundary layer near
the boundary of 0. Since, in addition, ;, and & are small, the temperature
v becomes spatially constant (in first approximation) after some time.
Finally, if fu>0, after some time, the reactant concentration in the bound-
ary layer depends only on time and on the distance to the boundary of 0
(and not on transversal co-ordinates along �0 if the spatial dimension m
is greather than one) in first approximation. Then (1.12)�(1.13) gives the
evolution of u in the boundary layer, and (1.14) provides the spatially
averaged temperature in first approximation.

Notice that the sub-model (1.12)�(1.14) consists of a 1-D semilinear
PDE coupled with an ODE and thus is much simpler than the original
model (1.1)�(1.2); in particular, the sub-model is independent of the shape
of the domain 0 (it depends only on the overall quantities V0 and S0).
A formal derivation of this sub-model, based on singular perturbation
techniques, was given in [2], along with the analysis of the steady states,
their linear stability and local Hopf bifurcation, for the particular case
when the nonlinearity f is as given in (1.4), with p=1.

If ,2 is large but & is no longer small, then the temperature does not
become spatially constant after some time and a third sub-model is
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obtained that consists of the m-D heat equation with appropriate non-
linear boundary conditions, coupled with infinitely many 1-D semilinear
equations (one for each point of �0). This non-standard sub-model was
derived in [10] via formal, singular perturbation techniques and will be
rigorously justified elsewhere [11]. Besides its intrinsic mathematical in-
terest, this sub-model exhibits a large variety of codimension two and three
bifurcations that predict interesting dynamic behaviors (see [10]).

The main object of this paper is to provide a rigorous derivation of
(1.12)�(1.14). More precisely, we shall prove that, after some time T, (i) u
is very small except in a thin boundary layer and v is spatially constant in
first approximation, and (ii) the concentration in the boundary layer and
the averaged temperature satisfy (1.12)�(1.14), in first approximation,
uniformly in t�T.

Let us now state precisely the assumptions to be made below. We shall
consider the limit

, � �, ;,_�(,+_) � 0, & � 0 and _&1=O(1). (1.16)

The domain 0 and the nonlinearity f will be assumed to be such that

(H.1) 0/Rm (m�1) is a bounded domain, with a connected, C 4+: (for
some :>0) boundary if m�2. Notice that then 0 satisfies uniformly the
interior and exterior sphere conditions: there are two constants, \1>0 and
\2>0, such that for every point x of �0, two hyperspheres, of radii \1 and
\2 , S1 and S2 , are tangent to �0 at x and satisfy S1 /0 and S� 2 & 0� =[x]
(overbars stand for the closure).

(H.2) The C1-function f : [0, �[_[0, �[ � R is such that f (0, v)=0
for all v�0 and f (u v)>0 for all u>0 and all v�0.

(H.3) There is a continuous, increasing function, g1 : [0, �[ � R such
that

f (u, v)�g1(u) if u�0 and v�0.

(H.4) There are two strictly positive constants, k1 and k2 , and a
positive, continuous, decreasing function, g2 : [0, �[ � R, such that

k2u� f (u, v)�k1 u if 0�u�2 and v�1�2,

ug2(u)� f (u, v) if u�0 and v�1�2,

(H.5) There are three constants, k3>0, k4>0 and k5>0, such that

k3� fu(u, v)�k4 , | fv(u, v)|�k5u if 0�u�_�(_+,- k2�2m) and v�1.
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In addition, the initial conditions (1.3) will be assumed to be such that

(H.6) &u0 &C(0� )=O(1) and &v0&C(0� )=O(1) in the limit (1.16).

Notice that the non-linearities (1.4)�(1.6) satisfy (H.2) for p�1 and all
(positive) values of the remaining parameters; our results below do not
apply (and are not straightforwardly extended) to non-Lipschitzian non-
linearities, such as (1.4)�(1.6) if p<1, that are also of practical interest.
Assumption (H.4) is satisfied by (1.4)�(1.6) only if p=1. Now the restric-
tion is purely technical; if the inequalities in (H.4) are replaced by k2u p�
f (u, v)�k1u p and u pg2� f (u, v) with p>1, then our results below still
apply after some (unfortunately, not always obvious) changes, but we do
not pursue this extension for the sake of brevity. The first inequality in
assumption (H.5) (namely, fu(u, v)�k3) is essential in our derivation
below; although we have some reasons to believe that the model (1.4)�(1.6)
should still apply without this restriction, we do not see how to eliminate
it completely (we are only able to replace it by k3up&1� fu(u, v) with p>1,
but even this small extension requires additional technicalities that are
again omitted for the sake of brevity). The remaining restrictions in (H.5)
are clearly satisfied by the nonlinearities (1.4)�(1.6) for all (positive) values
of the parameters.

To end up this section let us state the main result of this paper, which
is proved at the end of Section 2.

Theorem 1.1. Under the assumptions (H.1)�(H.6), there are two con-
stants, *>0 and =>0, and for each solution of (1.1)�(1.3) there is a
solution of

�U� ��t=�2U� ��'2&,2f (U� , V) in &�<'<0, (1.17)

U� =0 at '=&�, �U� ��'=_(1&U� ) at '=0, (1.18)

(V0�S0L) dV�dt=&(1&V)+;,2 |
0

&�
f (U� , V) d'+�(t), (1.19)

and a constant T� >0 such that

(i) * depends only on the domain 0, = depends only on 0 and on the
quantities

,, _, L, ; and &, (1.20)

and T� depends only on 0, on the quantities, (1.20) and on

&u0&C(0� ) , &v0&C(0� ) . (1.21)
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(ii) = and T� are such that

==O(;,_�(,+_)),

T� =O(,&1+L&1) log \ 1
=+&++O(L&1) log \2+

,
_

+
=

&(=+&)+
+O((&L)&1) log \2+

&
=
+

;,2

& + , (1.22)

in the limit (1.16).

(iii) For all t�T� we have

|U� (&d(x), t)&u(x, t)|�[_(=+&)�(,+_)] exp[&*,d(x)]

if d(x)<\1 �2, (1.23)

|V(t)&v(x, t)|�=+& if x # 0, |�(t)|�(=+&)2+=�,2, (1.24)

where d(x) is the distance from x to �0 and \1 is as defined in assumption
(H.1).

2. MATHEMATICAL DERIVATION OF THE
APPROXIMATE MODEL

Under the assumptions (H.1)�(H.2), the parabolic problem (1.1)�(1.3) is
readily seen to have a unique classical solution in a maximal time interval,
0�t<T, that satisfies

u>0 and v>0 for all (x, t) # 0� _[0, T[ , (2.1)

&u( } , t)&C(0� )+&v( } , t)&C(0� ) � � as tZT if T<�. (2.2)

If, in addition, (H.3) holds then T=� and every solution of (1.1)�(1.3) is
uniformly bounded in 0�t<�.

In order to derive the asymptotic model (1.12)�(1.14) we shall first
obtain, in Section 2.1, some estimates on related linear elliptic problems
and on the solution of (1.1)�(1.3). Then, the asymptotic model will be
derived in Section 2.2, under the assumptions (H.1)�(H.5). Finally, the
asymptotic model will be analyzed in Section 3 and some concluding
remarks will be drawn in Section 4.

In order to avoid too clumsy expresions, we shall only give the orders
of magnitude (in the limit (1.16)) of the several constants that appear in
this section.
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2.1. Some Preliminary Estimates

Let us first prove some results concerning two singularly perturbed,
linear elliptic problems, that will be systematically used in the sequel.

Lemma 2.1. Let the domain 0/Rm be such that assumption (H.1) (at
the end of Section 1) holds, and let u and v be the unique solutions of

2u=42u in 0, �u��n=_(1&u) at �0, (2.3)

2v+=42u=0 in 0, �v��n=&(1&v) at �0, (2.4)

where 4, =, _ and & are positive and _>&. As 4 � �, the following estimates
hold

[_�(_+$1)] exp[&$1 d(x)]�u(x)

�[_�(_+$2)][cosh($2(\1&d1(x)))�cosh($2\1)], (2.5)

_S0 $2 �(_+$2)�42 |
0

u(x) dx�_S0$1 �(_+$1), (2.6)

1<v(x)�1+$3 , (2.7)

for all x # 0� , where \1 and S0 are as defined in assumption (H.1) and Eq. (1.10)
respectively, d(x) is the distance from x to �0, d1(x)=min[d(x), \1] and
the positive constants $1 , $2 and $3 satisfy

$2=4�- m, $3==_$1�(_+$1)& and |$1&4|=O(4&1) as 4 � �,

(2.8)

uniformly in =>0, _>0 and &>0.

Proof. If the dimension m is equal to 1, then (2.3) and (2.4) are solved
in closed-form and (2.5)�(2.7) are readily obtained. If m�2, let um=
min[u(x): x # �0]>0 and for each x0 # �0, let S2 be the outer hyper-
sphere, of radius \2 , that is tangent to �0 at x0 (assumption (H.1)). If r is
the distance to the center of S2 , let the function w=um exp[&$1(r&\2)],
where $1=(m&1)�2\2+- (m&1)2�4\2

2+42. Then $1 satisfies (2.8) and w
is such that

2w�42w in 01=[x # Rm : r>\2], w=um at �01 .

In addition 0/01 and w�um�u at �0. As a consequence, maximum
principles [12] readily imply that u�w in 0, and the first inequality (2.5)
follows provided that

um�_�(_+$1). (2.9)
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In order to obtain this inequality, let x0 be a point where the minimum um

is attained. Then u=w=um at x0 and, since u�w in 0, we have
�w��n��u��n at x0 , i.e., $1 um�_(1&um) and (2.9) follows. Thus the first
inequality (2.5) has been obtained.

The second inequality (2.5) is obtained in a similar way. Let uM=
max[u(x): x # 0� ]; notice that such maximum is attained at �0 because
2u>0 in 0. For each x0 # �0, let S1 be the inner hypersphere of radius \1

that is tangent to �0 at x0 (assumption (H.1)), and let the function w be
defined as w=uM cosh($2r)�cosh($2\1), where r is the distance to the
center of S1 and the constant $2 is as defined in Eq. (2.8). Then

2w�42w in 01=[x # Rm : r<\1]/0, w=uM�u at �01 ,

and maximum principles imply that u�w in 01 . But if x0 is a point where
the maximum uM is attained, then w(x0)=u(x0) and �w��n��u��n at x0 ,
i.e., $2uM�_(1&uM), or uM�_�(_+$2). Since, in addition, u�w for all
x0 # �0, the second inequality (2.7) follows when d(x)�\1 . In order to
prove that this inequality also holds when x # 02=[x # 0 : d(x)>\1],
notice that if 02 {<, then the maximum of u in 0� 2 is attained at �02

(because 2u>0 in 02) and u�(_�(_+$2)) cosh($2\1) at �02 . Thus the
second inequality (2.5) has been obtained.

In order to prove that (2.6) holds integrate Eq. (2.3) in 0, integrate
by parts and take into account the boundary condition to obtain
42 �0 u dx=_ ��0 (1&u), and apply (2.5).

Finally, the first inequality (2.7) is readily obtained via maximum prin-
ciples when taking into account that =42u>0 in 0� . In order to obtain the
second inequality (2.7), notice that the function v1=v&=(1&u) satisfies

2v1=0 in 0, �v1 ��n=&(1&v1)+=(_&&)(1&u),

and, since u�_�(_+$1) at �0 (see (2.9)) and _>&, maximum principles
readily imply that v1�1+=(_&&) $1 �(_+$1)& in 0� , or v�1+=_$1 �
(_+$1)& in 0� . Thus, the proof is complete.

Let us now prove some estimates on the solution of (1.1)�(1.3). In par-
ticular we show that, after some time, u becomes quite small except in a
boundary layer near �0 (Lemma 2.2) and |v&V| also becomes quite small
(Lemma 2.3), where V is the spatial average of v.

Lemma 2.2. Under the assumptions (H.1)�(H.4) and (H.6) (at the end of
Section 1) there is a constant T, depending only on

&u0&C(0� ) , &v0&C(0� ) , ,, _, L, ;, and &, (2.10)
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and satisfying

T=O(,&2 log(2+,�_+_�,)+,&1+(&L)&1 log(2+;,2�&)) (2.11)

in the limit (1.16), such that every solution of (1.1)�(1.3) satisfies

u1<u( } , t)<u2 , 1�2<v( } , t)<1+v1 in 0 if t�T, (2.12)

where u1 , u2 and v1 are the unique solutions of

2u1=2k1,2u1 in 0, �u1��n=_(1&u1) at �0, (2.13)

2u2=k2,2u2 �2 in 0, �u2��n=_(1&u2) at �0, (2.14)

2v1+;k1,2u2=0 in 0, �v1 ��n=&(1&v1) at �0, (2.15)

with the constants k1>0 and k2>0 as defined in assumption (H.4).

Proof. Let :1>0 be the smallest eigenvalue of

2.1+:1.1=0 in 0, �.1 ��n+&.1=0 at �0, (2.16)

and let .1 be the associated eigenfunction such that

.1>0 in 0� , max[.1(x): x # 0� ]=1. (2.17)

.1 and :1 are readily seen to satisfy

min[.1(x) : x # 0� ] � 1 and :1=S0 &�V0+o(&2) as & � 0,

(2.18)

where S0 and V0 are as defined in (1.10). The proof proceeds in five steps.

Step 1. u and v are such that

u<A1 and v<A2 if x # 0� and t�0, (2.19)

where the constants A1 and A2 depend only on the quantities (2.10) and
satisfy

1<A1=O(1) and 1<A2=O(1+;,2�&), in the limit (1.16). (2.20)

Let A1=1+max[u0(x) : x # 0� ], that satisfies (2.20) according to
assumption (H.6). The function w, defined as w=A1&u, is readily seen to
satisfy w>0 in 0� if t=0, �w��t&2w>0 in 0 if t>0 and �w��n+_w>0
in �0 if t>0 and, consequently, maximum principles [12] imply that
w>0 in 0 if t>0. Then, the first inequality (2.19) follows.
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In order to obtain the second inequality (2.19), let the function v2 be
defined as the unique solution of the linear problem

2v2+;,2g1(A1)=0 in 0, �v2 ��n+&(v2&1)=0 at �0,

where the function g1 is as defined in assumption (H.3). Maximum prin-
ciples readily imply that

v2�1+;,2g1(A1) .1 �[:1 min[.1(x) : x # 0� ]] in 0� ,

where :1 and .1 are as defined above, or, according to (2.17)�(2.18) and
the first estimate (2.20),

max[v2(x) : x # 0� ]=O(1+;,2�&) in the limit (1.16). (2.21)

On the other hand, the function w, defined as w=max[v0(x): x # 0� ]+
v2&v satisfies (see assumption (H.3))

w>0 in 0, if t=0, L&1 �w��t>2w in 0, if t>0, (2.22)

�w��n+&w�0 at �0, if t>0, (2.23)

and consequently maximum principles imply that w�0 in 0� if t�0. Then
assumption (H.6) and Eq. (2.21) yield the second inequality (2.19), with A2

satisfying (2.20), and the step is complete.

Step 2. There is a constant T1 , depending only on the quantities (2.10),
such that T1=O(1�&L) in the limit (1.16), and

v�1�2 in 0 if t�T1 . (2.24)

Let the constant A3�1�2 be such that A3.1>1&v0 in 0� . Notice that
A3 may be chosen to be bounded, according to assumption (H.6) and
Eq. (2.18). The function w defined as w=v&1+A3 .1 exp(&:1Lt) is
readily seen to satisfy (2.22) and (2.23) and, as above, maximum principles
imply that w�0 in 0 if t�0. Then (2.24) holds with T1=(:1L) &1

log (2A3) and the result follows.

Step 3. There is a constnat T2 , depending only on the quantities (2.10),
such that 0<T2&T1=O(,&2) in the limit (1.16), and

u�2 in 0 if t�T2 .

Let the constant A4>0 be defined as A4= g2(A1). According to the
assumption (H.2) and the results in steps 1 and 2, f (u, v)>A4u in 0� for
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all t�T1 , and the function w=A1 exp[&A4 ,2(t&T1)]+1&u satisfies

w>0 in 0� if t=0, �w��t>2w&A4 ,2w in 0 if t�T1 , (2.25)

�w��n+_w�0 at �0, if t>T1 . (2.26)

As a consequence, maximum principles imply that w�0 if x # 0� and
t�T1 , and the result follows with T2=T1+(A4 ,2)&1 log A1 .

Step 4. There is a constant T3 , depending only on the quantities (2.10),
such that 0<T3&T2=O(,&2 log(2+,�_+_�,)+,&1) in the limit (2.4)
and

u1�u�u2 in 0� if t�T3 , (2.27)

where u1 and u2 are as given by (2.13)�(2.14).

For the sake of brevity we shall only obtain the second inequality (2.27);
the first inequality is obtained in a completely similar way. Let the function
u3 be the unique solution of the linear problem

2u3=k2,2u3 in 0, �u3 ��n=_(1&u3) at �0,

and let the constant $ be defined as

$=min[u3(x): x # 0� ]�2.

According to Lemma 2.1, $ is such that

$�[_�2(_+$1)] exp(&$1 D�2), (2.28)

where D is the diameter of the domain 0 and |$1&- k2 ,|=O(,&1). Then
the function w=(1+$) u1&u3&$ is such that 2w<k1,2w in 0, �w��n+
_w=0 at �0, and maximum principles imply that w�0 in 0� , i.e.,
u2&u3�$(1&u2) in 0� , or according to Lemma 2.1,

u2&u3�$,�(,+- 2m�k2_). (2.29)

Now, if the constant A5>0 is such that A5>u( } , T2)&u3 in 0� (A5 may
be chosen to be such A5�2, according to the result in step 3), then the
function w=u3&u+A5 exp[&,2k2(t&T2)] satisfies (2.25)�(2.26) with A4

and T1 replaced by k1 and T2 respectively, and again maximum principles
imply that w�0 in 0 if t�T2 . Then the second inequality (2.27) holds
provided that

T3&T2=(,2k2)&1 |log[A5(,+- 2m�k2_)�$,]|

and, when taking into account (2.28), the result follows.

78 MANCEBO AND VEGA



File: 505J 321012 . By:CV . Date:22:01:97 . Time:07:59 LOP8M. V8.0. Page 01:01
Codes: 2495 Signs: 1371 . Length: 45 pic 0 pts, 190 mm

Step 5. There is a constant T, depending only on the quantities (2.10),
such that 0�T&T3=O(1�&L) log(2+;,2�&) in the limit (1.16), and

v�1+v1 in 0� if t�T. (2.30)

According to the results in steps 1�4, if t�T3 then u�u2 (�1) and
1�2�v�A2 , and according to assumption (H.4), f (u, v)�k1 u in 0� . Let
the function w be defined as

w=v1&v+A6 .1 exp[&:1L(t&T3)],

where A6�1 satisfies A6 .1�A2 in 0� ; notice that, according to (2.18), A6

may be chosen such that

A6=O(A2)=O(1+;,2�&). (2.31)

Also the function w satisfies (2.22)�(2.23) with t replaced by t&T3 , and
maximum principles imply that w�0 in 0� for all t�T3 . As a consequence,
(2.30) holds with T=T3+(:1 L)&1 log(1+A6). Finally, T&T3=O(1�&L)
log(2+;,2�&) in the limit (1.16), as obtained when taking into account
(2.18) and (2.31). Thus the step and the proof of the Lemma are complete.

Lemma 2.3. Under the assumptions of Lemma 2.2 there are two con-
stants, +>0 and T $�T such that (i) + and T $&T depend only on (the
domain 0 and)

,, _, L, ; and &, (2.32)

(ii) +=O(&+;,_�(,+_)) and T $&T=O(L&1) log[(1+(;_,�
(_+,)&))�+] in the limit (1.16); and (iii) if t�T $ then

|v&V|�+ for all x # 0� , (2.33)

where V(t) is the spatial average of v, i.e.,

V(t)=V&1
0 |

0
v(x, t) dx, with V0=|

0
dx. (2.34)

Proof. Let us define the new time variable

{=Lt&T. (2.35)

Then the spatial average of v satisfies

dV�d{=_& |
�0

(1&v) ds+;,2 |
0

f (u, v) dx&<V0 , (2.36)
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as obtained upon integration of (2.2) in 0, integration by parts, substitu-
tion of the boundary condition and multiplication by V&1

0 . If (2.36) is
substracted from (2.2) then we obtain

�(v&V)��{=2(v&V)+;,2f (u, v)

&V&1
0 _& |

�0
(1&v) ds+;,2 |

0
f (u, v) dx& , (2.37)

�(v&V)��n=&(1&v) at �0. (2.38)

On the other hand, according to assumption (H.4) (at the end of
Section 1) and Lemmas 2.1 and 2.2, we have

f (u, v)�k1u2 in 0� if {�0, 0<u2<1 in 0� ,
(2.39)

&1&u2&C(�0)=O(,�(,+_)),

|
0

u2(x) dx=O(_�,(_+,)), &v1 &C(0� )=O(1+;,_�(,+_)&) (2.40)

in the limit (1.16), where u2 and v1 are as given by (2.14) and (2.15).
The proof proceeds in three steps.

Step 1. The following inequality holds

|
0

(v&V)2 dx�B2 exp(&2#1{)+2#1 B1

_|
{

0
&v( } , !)&V(!)&C(0� ) exp[2#1(!&{)] d! (2.41)

if {�0, where #1>0 depends only on the domain 0, B1>0 and B2>0
depend only on (the domain 0 and) the quantities (2.32), and B1=
O(&+;_,�(_+,)) and B2=O(1+;_,�(_+,)&)2 in the limit (1.16).

If (2.37) is multiplied by v&V, the resulting equation is integrated in 0,
integration by parts is applied and (2.38) is substituted, then the following
equation results

1
2

d
d{ |

0
(v&V)2 dx=&|

0
|{v| 2 dx+;,2 |

0
(v&V) f (u, v) dx

+& |
�0

(v&V)(1&v) ds, (2.42)
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where we have taken into account that, according to (2.34)

|
0

(v&V) dx=0 for all {�0. (2.43)

Now we take into account the following Poincare� �Friedrichs-type
property. There is a constant #>0, depending only on the domain 0, such
that for every . # W 1

2(0) such that �0 .(x) dx=0, the following inequality
holds (see, e.g., [13, p. 45, Eq. (2.12)]) # �0 .(x)2 dx��0 |{.| 2 dx. If, in
addition, (2.12), (2.39), and (2.40) are taken into account, then the follow-
ing inequality results from (2.42)

1
2

d
d{ |0

(v&V)2

�&# |
0

(v&V)2 dx+B1 &v( } , {)&V({)&C(0� ) if {�0 (2.44)

where B1=;,2k1 �0 u2(x) dx+& ��0 |v1(s)&1| ds=O(&+;_,�(_+,)) in
the limit (1.16) (see (2.40)), as stated. And we only need to apply Gronwall's
lemma to obtain (2.41) with B2=�0v1(x)2 dx��0 [v(x, 0)&V(0)]2 dx (see
(2.12) and (2.32)). According to (2.40), B2=O(1+;_,�(_+,)&)2 in the
limit (2.16), and the step is complete.

Step 2. The following inequality holds

&v&V&C(0� )_[{, {+1]�#2 [B3+&v&V&L2(0_]{&1, {+1[ ] (2.45)

for all {>1, where #2>0 depends only on the domain 0 and B3>0 depends
on (0 and) the quantities (2.32), and satisfies B3=O(&+;_,�(_+,)) in the
limit (1.16).

In order to obtain (2.45) we decompose v&V as

v&V=&&V.+w1+w2 , (2.46)

where . and w1 are uniquely defined by the linear problems

2.=. in 0, �.��n+&.=1 at �0,

�w1 ��{=2w1&w1+;,2f (u, v) in 0, if {>0, (2.47)

�w1 ��n+&w1=0 at �0, if {�0, w1=0 in 0� , if {=0,
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and w2 satisfies, for all {�0,

�w2 ��{&2w2=&&V.+w1+(&.&1) V&1
0

__;,2 |
0

f (u, v) dx+& |
�0

(1&v) ds& in 0, (2.48)

�w2 ��n+&w2=& at �0.

Now, . and w1 are such that

.>0 in 0, &.&C(0� )=O(1) as & � 0, (2.49)

0�w1�(2k2 �k1) ;(1+B4.) in 0� if {�0, (2.50)

where k1 and k2 and u2 are as defined in assumption (H.4) (at the end of
Section 1) and Lemma 2.2, and B4 is given B4=_ max[1&u2(x): x # �0]�
min[.(x) : x # �0] and satisfies (see (2.39))

B4=O(,_�(,+_)), in the limit (1.16). (2.51)

In order to obtain (2.49) we only need to apply maximum principles to
(2.47), and take into account that & � 0 is a regular limit of (2.47).
Similarly, (2.50) follows when taking into account that if either w=w1 or
w=(2k1 �k2);(1&u2+B4 .)&w1 then �w��{&2w+w�0 in 0� , �w��n+
&w�0 at �0 if {�0, and w�0 in 0� if {=0, and applying maximum
principles.

Finally, (2.34), (2.39)�(2.40), and (2.49)�(2.51) imply that the sup norm
of the right side of (2.48) is bounded above by a constant B5>0 that
depends only on the quantities (2.32) and satisfies

B5=O(&+;_,�(,+_)), in the limit (1.16). (2.52)

Then, local parabolic estimates [14, p. 355] readily imply that for each
p�2 there is a constant $p , depending only on the domain 0, such that

&w2&Wp
2, 1(0_]{, {+1[)�$p(B5+&+&w2&L2(0_]{&1, {+1[))

for all {�2. If p�2 is taken such that p>(m+2)�2 (m=dimension of 0),
then imbedding theorems [14, p. 80] imply that there is a constant $$p ,
depending only on 0, such that

&w2&C(0� )_[{, {+1]�$$p &w2&Wp
2, 1(0_]{, {+1[) .

These two inequalities and (2.46), (2.49)�(2.52) readily imply the stated
result, and the step is complete.
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Step 3. The result in the statement of this lemma holds.

For each positive integer k, let Pk�0 and Qk�0 be defined as

Pk=&v&V&C(0� _[k, k+1]) , Qk=&v&V&L2(0_]k, k+1[) . (2.53)

Then, according to (2.12), (2.34) and (2.40), we have

P0+P1�B6 , (2.54)

where B6 depends only on the quantities (2.32) and satisfies

B6=O(1+;,_�(,+_)&), in the limit (1.16), (2.55)

and, according to the results in steps 1 and 2,

Q2
k�|

k+1

k _B2+2#1B1 |
k&1

0
&v( } , !)&V(!)&C(0� ) exp(2#1!) d!&

_exp(&2#1{) d{ (2.56)

�(2#1)&1 exp(2#1) _B2+B1 :
k

q=0

Pq exp(2#1q)& exp(&2#1k), (2.56)

Pk�#2(B3+Qk&1+Qk), (2.57)

for all k�1. Also, if (2.57) is substituted into (2.56) and (2.54) is taken into
account, then we obtain

Q2
k�B7 Qk+\2B7 :

k&1

s=1

Qs exp(2#1s)+B8+ exp(&2#1k) for all k�2,

(2.58)

where the constants B7 and B8 depend only on the quantities (2.32) and
satisfy

B7=O(&+;_,�(_+,)), B8=O(1+;_,�(_+,)&)2, in the limit (1.16).

(2.59)

The inequalities (2.54) and (2.58) imply that

Qk�5B7+(1+B6+B1�2
8 ) exp[&#1(k&1)] for all k�1,

as readily seen by means of an induction argument. Then we only need to
take into account (2.35), (2.53), (2.55), (2.57) and (2.59) to complete this
step and the proof of the lemma.
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2.2. Derivation of the Asymptotic Model

Let us define the function U as the unique solution of the following semi-
linear parabolic problem

�U��t=2U&,2f (U, V) in 0 if t>0, (2.60)

�U��n=_(1&U) at �0, if t>0; u=u0 in 0� , if t=0,

(2.61)

where V is the spatially averaged temperature, defined in (2.34), that
satisfies (see (2.35)�(2.36))

(V0�L)(dV�dt)=& |
�0

(1&v) ds+;,2 |
0

f (u, v) dx. (2.62)

In order to derive the asymptotic model (1.8)�(1.9) we shall first prove that
there is a constant T" such that if t�T" then the following properties
hold: (i) v>1 in 0� , V>1 and U is very small except in a boundary layer
near the boundary of 0 (Lemma 2.4); (ii) |u&U| is appropriately small in
the boundary layer (Lemma 2.5); and (iii) |{� U | is appropriately small in
the boundary layer, where {� is the spatial gradient along the hypersurfaces
parallel to �0 (Lemma 2.8). Then the asymptotic model will be obtained
in Theorem 1.1 as follows. As a consequence of property (iii), U depends
only on the distance to �0 in first approximation and thus U satisfies a
1-D parabolic equation in first approximation. In addition, since |v&V| is
appropriately small (Lemma 2.3), u and v can be replaced by U and V in
Eq. (2.62) in first approximation, and the model (1.12)�(1.14) follows. Let
us begin with property (i).

Lemma 2.4. Under the assumptions (H.1)�(H.4) and (H.6) (at the end of
Section 1) there is a constant T"1�2T $ such that T"1&2T $ depends only on
the quantities (2.32) and satisfies T"1&2T $=O(&L)&1 log[2+&(,+_)�
;,_] in the limit (1.16), and

V>1, v>1 and u1�U�u2 in 0, for all t�T"1 , (2.63)

where u1 , u2 and T $ are as defined in Lemmas 2.2 and 2.3.

Proof. According to the results in Lemmas 2.1�2.3, if t�T $ then

;,2 |
0

f (u, v) dx�;k2 S0_,�2[,+_- m�2k1],
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where S0=��0 1ds. As a consequence V is such that (see also (2.33)�(2.34)
and (2.62))

(V0�L)(dV�dt)�&S0(1&V&+)+;S0 k2_,�2[,+_- m�2k1],

where + is as defined in Lemma 2.3. Then we only need to apply
Gronwall's lemma and take into account that & � 0 in the limit (1.16) and
Eq. (2.33) to obtain the first two inequalities (2.63) for t�T"1 , with T"1 as
stated. Finally, the last two inequalities (2.63) readily follow by the argu-
ment in the proof of Lemma 2.2, step 4. Thus the proof is complete.

Now, we show that |u&U| is conveniently small.

Lemma 2.5. Under the assumptions (H.1)�(H.6) (at the end of Section 1),
let + and T"1 be as defined in Lemmas 2.3 and 2.4. Then there is a constant
T"2�T"1 such that T"2&T"1 depends only on the quantities (2.32) and satisfies
T"2&T"1=O(,&1) log(1+1�+) in the limit (1.16), and

|U&u|�4k5+u2 �k3 in 0� , for all t�T"2 , (2.64)

where k3 , k5 and u2 , are as defined in assumption (H.5) and Lemma 2.2.

Proof. Since, according to Lemma 2.1, u2�_�(_+,- k2 �2m), when
using assumption (H.5) (at the end of Section 1) and the results in Lemmas
2.2�2.4, and applying the mean function theorem, we have

f (u, v)& f (U, v)=h(x, t)(u&U), with h(x, t)�k3 ,

| f (U v)& f (U, V)|�k5 +u2

in 0� , for all t�T"1 . As a consequence, the functions

w\=2k5+u2 �k3+[_�(_+,- k2 �2m)] exp[&k3,2(t&T"1)�2]\(u&U)

are readily seen to satisfy

�w\ ��t&2w\+,2h(x, t) w\�0 in 0,

�w\ ��n+_w\>0 at �0, if t�T"1 ,

w\=0 in 0� if t=T"1 ,

and maximum principles imply that w\�0 in 0� for all t�T"1 . Since, in
addition, u2�[_�(_+$1)] exp(&$1D�2), where D is the diameter of the
domain 0 and |$1&- k2 �2 ,|=O(,&1) as , � � (Lemma 2.1), the result
follows. Thus, the proof is complete.
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The following result gives a bound on the spatial derivatives of the
solution of (2.60)�(2.61).

Lemma 2.6. Under the assumptions of Lemma 2.4, there is a constant
+1>0, depending only on the quantities (2.32), such that +1=O(_,�(,+_))
in the limit (1.16) and

|{U(x, t)|

�+1 exp[&,d1(x) - k2 �2m] if x # 0� and t�T"1+2�,2, (2.65)

where d1(x)=min[\1 , d(x)], d(x) is the distance from x to �0 and \1 , k1

and T"1 are as defined in assumptions (H.1) and (H.4) (at the end of
Section 1) and in Lemma 2.4.

Proof. According to assumption (H.4) and the results in Lemmas 2.1
and 2.4, we have

0� f (U, V)�k1U,
(2.66)

0�U�[2_�(_+, - k2 �2m)] exp[&,d1(x) - k2 �2m],

0�1&U�[1+_d(x)] $1 �(_+$1), (2.67)

in 0� , if t�T"1 , where $1 depends only on the quantities (2.32) and satisfies
|$1&- 2k1 ,|=O(1�,) in the limit (1.16).

In order to bound |{U(x0 , t0)|, with x0 # 0� and t0�T"1+2�,2, we shall
distinguish three cases, depending on the relative values of d(x0), 1�,
and 1�_.

Case 1. d(x0)�min[1�_, 1�,]. In this case we introduce the new
variables w, ! and { defined as

w=1&U, x=x0+=! and t=t0+=2{, (2.68)

where ==min[1�_, 1�,], to rewrite (2.60)�(2.61) as

�w��{=2!w+(=,)2 f (U, V) in 0= , �w��n+=_w=0 at �0= . (2.69)

Now if B and B$ are the balls with center at the origin and radii 1 and 2
respectively, local Lp estimates up to the boundary [14, p. 355] and imbed-
ding theorems [14, p. 80] imply that there is a fixed constant K such that

&{!w&C(B� =_[0, 1])�K[(=,)2 & f (U, V)&Lp(B$=_]&1, 1[)+&w&L1(B$=_]&1, 1[)],

where B==B & 0= , B$==B$ & 0= and p=(m+3)�2. Notice that although
�0= & B$ and the coefficient =_ in the boundary condition depend on =, the
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constant K may be chosen to be independt of = because = is bounded above
(see (1.16)) and, as = � 0, �0= & B$ converges to a part of a hyperplane and
=_ remains bounded above. Now, when using (2.66) and (2.67) and taking
into account that =,�1 we obtain

&{! w&C(B� =_[0, 1])

�2K[(2#m)1�p k1=,_�(_+,- k2 �2m)+2#m(1+2=_) $1 �(_+$1)],

where #m is the measure of the unit ball of Rm, or when coming back to
the original variables,

|{U(x0 , t0)|

�2K[(2#m)1�p k1,_�(_+,- k2 �2m)+2#m(max[,, _]+2_) $1 �(_+$1)].

(2.70)

Case 2. _>, and 1�_<d(x0)�1�,. In this case we take ==d(x0)�2
and use the variables (2.68). Thus (2.69) holds again. But now B$ & �0= is
void and local interior estimates and imbedding theorems yield

&{!w&C(B� _[0, 1])�K[(=,)2 & f (U, V)&Lp(B$_]&1, 1[)+&w&L1(B$_]&1, 1[)],

where K is a fixed constant and p=(m+3)�2 as above. When using (2.66)
and (2.67) and taking into account that =,�1�2, we obtain

&{!w&C(B� _[0, 1])

�K[(2#m)1�p k1=,_�(_+,- k2 �2m)+2#m(1+2=_) $1 �(_+$1)],

or, when coming back to the original variables,

|{U(x0 , t0)|

�K[(2#m)1�p k1,_�(_+,- k2 �2m)+2#m_3$1 �(_+$1)]. (2.71)

Case 3. d(x0)>1�,. Now we take ==1�, and use the variables ! and
{ defined in (2.68) to rewrite (2.60) as

�U��{=2U& f (U, V) in 0= .

Since B$ & 0= is void, local interior estimates and imbedding theorems yield

&{!U&C(B� _[0, 1])�K[& f (U, V)&L p(B$_]&1, 1[)+&U&L1(B$_]&1, 1[)],
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where again K is a fixed constant and p=(m+3)�2, or when using (2.67)

&{!U&C(B� _[0, 1])

�2K(2#m)1�p k1[_�(_+,- k2 �2m)] exp[&,(d1(x0)&=) - k2 �2m].

Then we only need to come back to the original variables to obtain

|{U(x0 , t0)|�2K(2#m)1�p k1[,_�(_+,- k2 �2m)]

_exp[&,(d1(x0)&1�,)- k2 �2m], (2.72)

where we have taken into account that d1(x0&=)�d1(x0)&==d1(x0)&1�,.
Finally, since one of the cases 1�3 above necessarily holds, Eqs. (2.70)�

(2.72) yield the stated result, and the proof is complete.

In order to bound the gradient of U along the hypersurfaces parallel to
�0 (i.e., orthogonal to the normals to �0 at each point) we first collect
some facts from differential geometry. Let 01 be defined as

01=[x # 0 : d(x)<\1 �2] (2.73)

where \1 is defined as in assumption (H.1) (at the end of Section 1) and,
as above, d(x) is the distance from x to �0. According to assumption
(H.1), the hypersurfaces parallel to �0 are of class C4, and simply cover
0� 1 . Notice that if x=x0('2, ..., 'm) is a C4-regular parametric representa-
tion of a part of one of these hypersurfaces, H, and n=n('2, ..., 'm) is the
outward unit normal to H, then

x='1n('2, ..., 'm)+x0('2, ..., 'm) (2.74)

defines a local C3-coordinate system of Rm such that the hypersurfaces '1=
constant are precisely those parallel to H (and to �0). Also, the covariant
components of the metric tensor associated with these co-ordinate system
are such that

g11=n } n#1 and g1k=n } ('1n'k+x0'k)#0 if k{1, (2.75)

where the dot stands for the inner product of Rm. Then the contravariant
components of the metric tensor satisfy

g11#1, g1k#0 if k{1. (2.76)

With these facts in mind we can prove the following result.
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Lemma 2.7. Let t~ 0 be a unit vector that is tangent to a hypersurface, H,
parallel to �0, at p # 0� 1 . Then there are a neighborhood N of p in Rm,
a C3-vector field t~ : N � R3, two vectors a1 and a2 and two scalars, b1 and b2 ,
such that the following properties hold :

(i) a1 , a2 , b1 and b2 depend continuously on p and t~ 0 .

(ii) t~ =t~ 0 at p, t~ } t~ =1 in N and, for each q # N & 0� 1 , t~ (q) is tangent
to the hypersurface parallel to �0 passing through q .

(iii) If I/R is an open interval and U : (N & 0� 1)_I � R is a
C3, 1-function satisfying

�U��t=2U+. in (N & 0� 1)_I (2.77)

then the C2, 1-function w={U } t~ satisfies

�w��t=2w+a1 } {w+a2 } {U+b1w+{. } t~ at p, for all t # I, (2.78)

�w��n={(�U��n) } t~ +b2w at p, for all t # I, (2.79)

where n is the outward unit normal to H at p.

Proof. Let H be the hypersurface parallel to �0 passing through p
and let x=x0('2, ..., 'm) be a C3-parametric representation of H in a
neighborhood of p, where ('2, ..., 'm) are Fermi geodesic coordinates defined
as follows. The first coordinate '2 is an arclength along the geodesic of
H, C, that is tangent to t0 at p. If m>2, then the remaining coordinates
are arclengths along m&2 geodesics that are tangent at each point of C to
e3 , ..., em , where [e2 , ..., em] is an orthonormal frame moved along C by
parallelism on H, such that e2=t~ 0 at p. In addition, ('2, . . ., 'm) are chosen
with origin at p and such that the line '3= } } } ='m=0 is the geodesic C.
That coordinate system is well defined in a neighborhood of p and such
that

x0'i } x0' j=$ij if '3= } } } ='m=0, x0'2=t~ 0 at p, (2.80)

where $ij is the Kronecker symbol (see, e.g., [15, p. 335]). Then (2.74)
defines a C3-coordinate system of Rm in a neighborhood N of p, whose
metric tensor satisfies (see (2.75)�(2.76) and (2.80))

gij= gij=$ij for all i, j=1, ..., m, if '1='3= } } } ='m=0. (2.81)

Also, (2.77) may be written as

�U
�t

= :
m

i, j=1
_ gij �2U

�'i�' j+G&1�2 �
�'i (G1�2gij)

�U
�' j&+.,
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where G is the determinant of the m_m matrix (gij). If this equation is
derivated with respect to '2 and it is taken into account that, according to
(2.81), �gij��'2=�G��'2=0 at p, then the following equation results

�w1 ��t=2w1+A } {U+{. } t~ 0 , �w1 ��n={(�U��n) } t~ 0 at p,

where w1=�U��'2#{U } ('1n'2+x0'2) and A is the vector field whose
contravariant components are

A j= :
m

i=1

�
�'2 _G&1�2 �

�'i (G1�2gij)& , (2.82)

and w={U } ('1n' 2+x0' 2)�- g22#w1 �- g22 is readily seen to satisfy (2.78)
and (2.79) at p with

a1=2( g22( p))&1�2 {(- g22( p)), a2=( g22( p))&1�2 A,

b1=( g22( p))&1�2 2(- g22( p)), b2= &( g22( p))&1�2 �- g22( p)��n (2.83)

and t~ =('1n' 2+x0' 2)�- g22 .

Notice that t~ is a unit vector tangent to the hypersurfaces '1=constant
(that are parallel to H) along the parametric lines associated with the coor-
dinate '2. Finally, a1 , a2 , b1 and b2 depend continuously on p and t~ 0 (see
(2.82)�(2.83) and take into account that gij , gij and their first and second
order derivatives depend continuously on p and t~ 0). Thus the proof is
complete.

A bound to the gradient of U along the hypersurfaces parallel to �0 is
given in the following result

Lemma 2.8. Under the assumptions (H.1)�(H.6) (at the end of Section 1),
let \1 , k1 , k3 , T"1 and +1 be as defined in assumptions (H.1), (H.4), and (H.5)
and in Lemmas 2.4 and 2.6. Then there are two constants, T"�T"1+1�,2 and
+2>0, depending only on the quantities (2.32) such that T"&T"1=
O(,&2) log , and +2=O(_�(,+_),) in the limit (1.16), and

|{� U|�+2 exp[&- k,d(x)] if x # 0� 1 , and t�T", (2.84)

where U is a solution of (2.60)�(2.61), {� U is the gradient of U along the
hyper-surfaces parallel to �0,

k=min[k2�4m, k3 �3]>0, (2.85)

01 is as defined in (2.73) and, as above, d(x) is the distance from x to �0.
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Proof. Let us consider the function

w1=[+2 �2++1 exp(&k,2(t&1�,2&T"1))] exp(&- k,d(x)), (2.86)

where +1>0 is as defined in Lemma 2.6 and +2>0 is to be defined below
(see Eq. (2.88)). When taking into account that 0� 1 may be covered by a
finite number of coordinate systems such as that in (2.74), with '1=&d(x),
it is readily seen that

2w1�(k,2+k6,) w1 , |{w1 |=- k,w1 in 01 ,
(2.87)

�w1 ��n=- k,w1 at �0, for all t,

where k6=- kmax[ |G' 1 �G| in 0� 1]. Let the continuous functions a1 ,
a2 : 0� 1 � Rm and b1 , b2: 0� 1 � R be as defined in Lemma 2.7, and let k7>0
be a common upper bound of |a1 |, |a2 |, and |b1 | in 01 , and of |b2 | on �0.
Notice that k7 depends only on �0. If

,>max[k7 �- k, 6(1+k6+k7) - k�k3 , - 6k7�k3]

(recall that , � � in the limit (1.16)) and +2 is defined as

+2=(4+1 �,2) max[k7 ,2�[k3 ,2�3&(k6+k7) - k ,&k7],

,2 exp(&- k,\1 �4)] (2.88)

then +2>0 and w1 satisfies

�w1 ��t>2w1+a1 } {w1+a2 } {U+b1w1&k3 ,2w1 at p, for all p # 01 ,

(2.89)

w1>|{U| if d(x)=\1 �2, (2.90)

�w1 ��n&b2w1>0 at p, for all p # �0, (2.91)

provided that t�T"1+1�,2, as readily seen when taking into account (2.65)
and (2.85)�(2.87).

Now, if we show that

|{� U|�w1 in 0� 1 for all t�T"1+1�,2 (2.92)

then (2.84) follows with +2 as given by (2.88) and T"=T"1+1�,2+
(k,2) &1 log(1++1 �+2). In order to show that (2.92) holds first notice that,
since |{� U|�|{U| , according to (2.86) and the result in Lemma 2.6,
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w1>|{� U| in 0� 1 if t=1�,2+T"1 . Assume for contradiction that there is a
first value of t, T0 , and a point p # 0� 1 such that

|{� U( p, T0)|=w1 , |{� U|�w1 in 0� 1 if t�T0 . (2.93)

Let H be the hypersurface parallel to �0 at p. According to the definition
of {� , there is a unit vector, t~ 0 , that is tangent to H at p and such that

|{� U( p, T0)|={� U( p, T0) } t~ 0={U( p, T0) } t~ 0 ,

and if t~ and N are as given in Lemma 2.7, then

{U } t~ ={� U } t~ �|{� U| in 0� 1 & N, for all t. (2.94)

As a consequence, w={U } t~ satisfies (see (2.93))

w=w1 at (x, t)=( p, T0), w�w1 in 0� 1 & N if t�T0 . (2.95)

Also, the result (iii) in Lemma 2.7 implies that

�w��t�2w+a1 } {w+a2 } {U+b1w&,2k3 w

at (x, t)=( p, T0) if p # 01 , (2.96)

�w��n=&_w+b2w�b2 w at (x, t)=( p, T0) if p # �0, (2.97)

where we have taken into account (2.60)�(2.61) and that, according to
Lemmas 2.1 and 2.4 and to assumption (H.5) (at the end of Section 1),
fU (U, V)>k3 and w=w1>0 at (x, t)=( p, T0). In order to get contradic-
tion, we shall distinguish three cases:

(i) If p # 01 then w2=w1&w satisfies {w2( p, T0)=0, 2w2( p, T0)�0
and �w2( p, T0)��t�0 (see (2.95)) and this is in contradiction with the
inequality that is obtained upon substraction of (2.89) and (2.96).

(ii) If p # �0 then w2=w1&w satisfies �w2( p, T0)��n�0=b2w2( p, T0)
(see (2.95)) and this is again in contradiction with the inequality that is
obtained upon substraction of (2.91) and (2.97).

(iii) Finally, if d( p)=\1 �2 then w1={U } t~ �|{� U|�|{U| at (x, t)=
( p, T0) (see (2.94) and (2.95)), and this is in contradiction with (2.90).

But, according to the definition of 01 , in (2.73), one of the three cases,
(i), (ii), or (iii) above, necessarily holds. Then a contradiction has been
obtained and the proof is complete.

Now we have the ingredients to derive the model (1.17)�(1.19). The
remainder �, in (1.19), is such that |�(t)| is appropriately small, and U� and
V are appropriately close to u and v respectively, as stated in Theorem 1.1.

92 MANCEBO AND VEGA



File: 505J 321026 . By:CV . Date:22:01:97 . Time:07:59 LOP8M. V8.0. Page 01:01
Codes: 2479 Signs: 1295 . Length: 45 pic 0 pts, 190 mm

Proof of Theorem 1.1. If 0�d(x)�\1 �2, let '=&d(x) be a coordinate
along the outward unit normal to �0, and for each '0 let H('0) be the
hypersurface parallel to �0, defined by '='0 . Notice that the Laplacian
operator may be written as

2U=G&1 �
�' \G

�U
�' ++2� U. (2.98)

Here, for each x # 0 such that d(x)�\1�2, 2� is the Laplace�Beltrami operator
on the hypersurface H(&d(x)), and G=|(1&k1 ') } } } (1&km&1 ')|, where
k1 , ..., km&1 are the principal curvatures of �0 at the point of �0 that
shares with x the normal to �0. Notice also that

G, G&1, |G' | and |G'' | are bounded if &\1 �2�'�0. (2.99)

Now, let U=U(x, t) be as defined by (2.60)�(2.61), and let U1=U1(', t)
be as given by

U1=S(')&1 |
H(')

U(s, t) ds, where S(')=|
H(')

ds (2.100)

is the measure of the hypersurface H('). If, for each ' # ]&\1 �2, 0[ we
integrate (2.60) on H(') and divide by S('), then after some manipulations
we obtain

�U1 ��t=�2U1 ��'2&,2f (U1 , V)+.1(', t) in &\1 �2<'<0, (2.101)

where we have taken into account that �H(') 2� Uds=0 and

.1(', t)=,2 _f (U1 , V)&
1

S(') |H(')
f (U, V) ds&+

2S$(')
S(')

�U1

�'

+
S"(')
S(')

U1&
1

2S(')
�
�' |

H(')

U
G

�G
�'

ds. (2.102)

Similarly, if we integrate the boundary condition (2.60) in �0=H(0) and
divide by S0=S(0), then we obtain

�U1 ��'=_(1&U1)+.2(t) at '=0, (2.103)

where

.2(t)=
1

2S(0) |H(0)

U
G

(�G��') ds&[S$(0)�S(0)] U1(0, t). (2.104)
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Now, when taking into account assumptions (H.1) and (H.5) and the
results in Lemmas 2.1, 2.4�2.6, and 2.8, we obtain

|U1 |�2[_�(,- k2 �2m+_)] exp(&- k2�2m,d(x)), (2.105)

, |U1(&d(x), t)&U(x, t)|

�+3 exp(&- k,d(x)) if x # 0 and d(x)�\1 �2, (2.106)

|.1(', t)|�,+3 exp(&- k,') if &\1 �2�'�0, |.2(t)|�+3 , (2.107)

for all t�T", where T", k and k1 are as defined in Lemma 2.8 and assump-
tion (H.4) and +3>0 depends only on the domain 0 and on the quantities
(1.20) and satisfies +3=O(_�(_+,)) in the limit (1.16).

Now, let U� be the unique solution of

�U� ��t=�2U� ��'2&,2f (U� , V) in &�<'<0,
(2.108)

�U� ��'=_(1&U� ) at '=0,

if t�T", with initial conditions

U� (', T")=U1(', T") if &\1 �2�'�0,

U� (', T")=U1(&\1 �2, T") exp[- k1 �2m ,('+\1 �2)] (2.109)

if &�<'<&\1 �2.

Since f(U� , V)�k1U� (assumption (H.4)) and U� (', T")�2[_�(,- k2�2m+_)]
exp(&- k2 �2m ,d(x)) (see (2.105)), maximum principles readily imply that

0<U� (', t)<2[_�(, - k2 �2m+_)] exp(- k2 �2m ,')

if &�<'�0 and t�T", (2.110)

and assumption (H.5) and the mean function theorem readily imply that

f (U1 , V)& f (U� , V)=h(x, t)(U1&U� ), with h(x, t)�k3

if &\1 �2�'�0. (2.111)

Then if

*=- k�2 and $=max[8+3�k,, 4+3 �- k,,

[4_�(_+,- k2 �2m)] exp(&- k,\1 �4)],
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the functions w\=$ exp(*,')\(U1&U� ) are readily seen to satisfy

�w\ ��t&�2w\ ��'2+,2h(x, t) w\>0 in &\1 �2�'�0, if t�T",

w\>0 at '=&\1 �2, �w\ ��'+_w\>0 at '=0, if t�T",

w\>0 in &\1 �2�'�0, if t=T",

and maximum principles readily imply that w+�0, i.e., that

|U1&U� |�$ exp(*,') in &\1 �2�'�0, if t�T". (2.112)

If, in addition, we take into account (2.64) and (2.106), then (1.23) follows.
In order to obtain (1.24) we only need to take into account that V satisfies
(2.62), and that u, v&V and u&U satisfy (2.12), (2.33) and (1.23). Thus
the proof is complete.

Remark 2.10. In the following, we shall ignore the initial transient
0�t�T� , where T� is as given in Theorem 1.1. Then the estimates (1.23)�(1.24)
and (2.110) will be assumed to hold for all {�0.

3. ANALYSIS OF THE ASYMPTOTIC MODEL

The asymptotic model (1.17)�(1.19) will be considered now. We shall
first analyze, in Section 3.1, the distinguished limit when all terms are of
the same order and then we shall consider, in Section 3.2, other sub-limits
leading to still simpler sub-models. Finally, in Section 3.3 we shall analyze
the particular case when the non-linearity is as given by one of the expres-
sions (1.4)�(1.6), and the activation energy # is large.

3.1. The Distinguished Limit

Let us consider the following sub-limit of (1.16)

_�, � s, &L�,2 � V0 l�S0 , ;,�& � *, (3.1)

where

s>0, l>0 and *>0 are bounded, and , � �, L � �, & � 0.

(3.2)
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Then the model (1.17)�(1.19) may be written as

�U� ��{=�2U� ��! 2& f (U� , V) in &�<!<0, (3.3)

U� =0 at !=&�, �U� ��!=s(1&U� ) at !=0, (3.4)

l &1 dV�d{=1&V+* |
0

&�
f (U� , V) d!+�1({), (3.5)

where

!=,', {=,2t, �1=��& (3.6)

and, according to Remark 2.10,

0<U� <[2s�(- k2�2m+s)] exp(- k2 �2m !) if &�<!<0 and {�0,

(3.7)

|�1({)|�=1=O(&) uniformly in 0�{<�. (3.8)

Two remarks concerning this model are in order:

(a) According to Theorem 1.1, the attractors as { � � of (3.3)�(3.5)
are close to the attractors of the original model (1.1)�(1.2), in the sense of
the estimates (1.23)�(1.24).

(b) If we ignore the remainder �1 then (3.5) may be rewritten as

l &1 dV�d{=1&V+* |
0

&�
f (U� , V) d!. (3.5$)

Notice that condition (3.7) defines an invariant set of both (3.3)�(3.5) and
(3.3)�(3.4), (3.5$) (that is, if the first two inequalities in (3.7) hold at {={0 ,
then they also hold for all {�{0), as readily seen when applying a
maximum principle. Then we may consider only those solutions of both
(3.3)�(3.5) and (3.3)�(3.4), (3.5) that satisfy (3.7) and (for comparison of
the solutions of both problems) define the distance associated with the
norm

&(U� ( } , {), V({))&=sup[U� (!, {) exp(&- k2 �2m !) : &�<!<0]+|V({)|.

(3.9)

With that distance, the solution of both problems remain close to each
other in finite time intervals, as readily seen by the argument leading to
Eq. (2.112), in in the proof of Theorem 1.1. As a consequence, (with the
distance associated with (3.9)) the exponential attractors, as { � �, of both
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(3.3)�(3.5) and (3.3)�(3.4), (3.5$) are close to each other; of course, non-
exponential attractors need not be close. This is the sense in which the
asymptotic behavior as { � � of (3.3)�(3.5) (or that of (1.1)�(1.3),
according to Remark (a) above) may be approximated by that of
(3.3)�(3.4), (3.5').

Even with a fairly simple nonlinearity, such as that in (1.4), with p=1,
the model (3.3)�(3.4), (3.5$) exhibits at least multiple steady states and
Hopf bifurcations, see [2].

3.2. Some Particular Sub-limits of (3.1)�(3.2)

Let us now consider the model (3.3)�(3.5) in the particular sub-limits
s � 0, s � � and l � 0. As

s � 0 (3.10)

U� is small (see (3.7)) and, according to assumption (H.5), at the end of
Section 1, the nonlinearity f may be written as

f (U� , V)= fu(0, V) U� +O( |U� | 2). (3.11)

If * is fixed then the right-hand side of (3.5) equals 1&V in first
approximation and the dynamics of the resulting model is trivial. If,
instead, * is large, such that

s* � *1 {0, �, with 0{l=fixed, (3.12)

then the model (3.3)�(3.5) may be rewritten as

�U� 1 ��{=�2U� 1 ��!2&U� 1 f1(V)+�2(!, {) exp(- k2 �2m !) in &�<!<0,

(3.13)

U� 1=0 at !=&�, �U� 1 ��!=1+�3({) at !=0,
(3.14)

l &1 dV�d{=1&V+*1 f1(V) |
0

&�
U� 1d!+�1({)+�4({), (3.15)

where

U� 1=U� �s, f1(V)= fu(0, V) (3.16)

and, according to (3.7) and (3.11), the remainders �2 , �3 and �4 are such
that

|�2(!, {)|+|�3({)|+|�4({)|=O(s) uniformly in &�<!<0, {�0

(3.17)
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in the limit (3.10), (3.12). Then, if the remainders �1 , ..., �5 are ignored in
(3.13)�(3.15), we obtain an asymptotic model that is seen to approximate
the large time behavior in a sense similar to that described in Remarks (a)
and (b), at the end of Section 3.1.

In the limit

s � �, with l{0 and *{0 fixed, (3.18)

we have

|�U� (0, {)��!|=uniformly bounded in {�0, (3.19)

as readily seen by an argument similar to that in the proof of Lemma 2.6,
Case 1. Then the boundary conditions (3.4) may be written as

U� =0 at !=&�, U� =1+�5({) at !=0, (3.4$)

where the remainder �5 is given by

�5({)=s&1 �U� (0, {)��! (3.20)

and, according to (3.19), satisfies

|�5({)|=O(s&1) uniformly in {�0, (3.21)

in the limit (3.18). Again, if the remainders �1 and �5 are ignored in the
model (3.3), (3.4$), (3.5), then we obtain an asymptotic model that
approximates the large time behavior of (1.1)�(1.2), in a sense similar to
that described in Remarks (a) and (b), at the end of Section 3.1.

In the limit.

l � 0, with s and * fixed, (3.22)

let us replace Eq. (3.3) by

0=�2U� ��!2& f (U� , V) in &�<!<0. (3.3$)

For each function V=V({) the problem (3.3$) (3.4) is readily seen to
uniquely define

U� =H(!, V) (3.23)

and, according to assumptions (H.4) and (H.5) at the end of Section 1, the
following estimates are seen to hold

0<H exp(&- k2!)=O(1), |�H��V| exp(&- k!)=O(1) (3.24)
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uniformly in &�<!<0, {>0, V>1�2, in the limit (3.22), where O(1)
stands for a bounded quantity. If (U� , V) is a solution of (3.3)�(3.5) and
U� 1=H(!, V({)) is the associated solution of (3.3$), (3.4), then |dV�d{|=
O(l ) uniformly in {>0, as readily seen from (3.5) when taking into account
assumption (H.4) and Eq. (3.7), and (3.24) implies that

|�U� 1 ��{| exp(&- k2 !)=O(l ) uniformly in &�<!<0, {>0,

(3.25)

in the limit (3.22). Then we only need to apply maximum principles, as in
the argument leading to Eq. (2.108), in the proof of Theorem 1.1, to obtain

|U� &U� 1 |=O(1) exp(&k{+- k !)+O(l ) exp(- k !)

uniformly in &�<!<0, {>0, where k=min[k2 , k2]�2 (see assumptions
(H.4) and (H.5)), and consequently

|U� &U� 1 | exp(&- k !)=O(l )

uniformly in &�<!<0, {>{0=O( |log l | ). (3.26)

Then we only need to replace U� by U� 1 in (3.5) to obtain

dV�d{~ =1&V+* |
0

&�
f (H(!, V), V) d!+�1({)+�6({), (3.27)

where H is as given in (3.23); the new time variable {~ and the remainder
�6 are given by

{~ =lt, �6({)=* |
0

&�
[ f (U� , V)& f (U� 1 , V)] d!

and, according to (3.26) the remainder is small, i.e.,

|�6({)|=O(l ) uniformly in &�<!<0, {>{0 , (3.28)

in the limit (3.22). If the remainders �1 and �6 are ignored in (3.27) then
an autonomous ODE is obtained that may exhibit multiple steady states
and yields trivial dynamics (namely, V({) converges to a steady state as
{ � �). As above, this implies that the dynamics of (1.1)�(1.2) is essentially
trivial in first approximation.

Similarly, as l � � one could try to prove that the time derivative in the
left hand side of (3.5) may be just omitted in first approximation. Then,
after solving the resulting equation and replacing its solutions into (3.3),
a non-local semilinear equation would be obtained. Unfortunately, this
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would require the non-linearity f to be such that fv<0, while fv is usually
positive (see (1.4)�(1.6)). In this case, when the time derivative is omitted
in (3.5), the resulting equation may possess multiple solutions and, as a
consequence, the complete problem may possess relaxation oscillations
whose analysis is beyond the scope of this paper (see, e.g., Hastings [16]
and Grasman [17] for a formal analysis of these oscillations in related
problems).

3.3. Large Activation Energies

As mentioned in Section 1, the activation energy # may be fairly large
(1.4)�(1.6). Let us now consider the limit

# � � (3.29)

in (1.4) (with p=1 for assumptions (H.4) and (H.5) to hold); the analysis
of the non-linearities (1.5) and (1.6) is completely similar.

In the limit (3.29) we shall consider two distinguished limits. In a first
extinction limit we rescale ,2, ;, and v as

,2
1=,2 exp(&#), ;1=;�# and v1=v�#, (3.30)

to rewrite (1.1)�(1.2), (1.4) as

�u��t=2u&,2
1u exp(&1�v1) in 0,

�u��n=_(1&u) at �0, (3.31)

L&1�v1 ��t=2v1+;1,1
2u exp(&1�v1) in 0,

�v1 ��n=&(1�#&v1) at �0. (3.32)

In the limit

# � �, ,2
1 � �, ;1 ,1_�(,1+_) � 0, & � 0, _&1=O(1) (3.33)

the results in Section 2 (and, in particular, Theorem 1.1) apply to yield the
asymptotic model

�U� ��t=�2U� ��'2&,2
1 U� exp(&1�V1) in &�<'<0, (3.34)

U� =0 at '=&�, �U� ��'=_(1&U� ) at '=0, (3.35)

(V0�S0 L) dV1�dt=&&V1+;1,2
1 exp(&1�V1) |

0

&�
U� d!+&�#+�(t),

(3.36)
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where V1 is the spatial average of v1 and |�(t)+&�#|, |u&U� | and |v1&V1 |
are appropriately small, according to Theorem 1.1. Notice that (3.34)�(3.36)
is essentially (except for the constant & on the right-hand side of (1.19)) a
particular case of the model (1.17)�(1.19), and thus the analysis in Sec-
tions 3.1�3.2 above applies to this new asymptotic model.

In a second ignition limit, ; and v&1 are rescaled as

;2=#; and v2=#(v&1), (3.37)

to rewrite (1.1)�(1.2), (1.4) as

�u��t=2u&,2u exp[v2 �(1+v2 �#)] in 0,

�u��n=_(1&u) at �0, (3.38)

L&1�v2��t=2v2+;2,2u exp[v2 �(1+v2 �#)] in 0,

�v2 ��n=&&v2 at �0. (3.39)

Notice that now the non-linearity is not bounded (as v2 � �) in the limit
(3.29), as required by assumption (H.3) and thus the results in Section 2 do
not apply to (3.38)�(3.39). But the boundedness assumption was used in
Section 2 only to prove (in Lemma 2.2) that v is bounded. Then, if we only
consider those solutions of (3.38)�(3.39) such that |v2(t)| is bounded in
0<t<�, then Theorem 1.1 still applies (after slight changes to account
for the fact that the non-linearity depends on the small parameter 1�#) in
the limit

# � �, ,2 � �, ;2 ,_�(,+_) � 0, & � 0, _&1=O(1), (3.40)

to obtain the asymptotic model

�U� ��t=�2U� ��'2&,2U� exp(V2) in &�<'<0, (3.41)

U� =0 at '=&�, �U� ��'=_(1&U� ) at '=0, (3.42)

(V0�S0L) dV2 �dt=&&V2+;2,2 exp(V2) � 0
&� U� d'+�(t), (3.43)

where V2 is the spatial average of v2 and |�| , |u&U� | and |v2&V2 | are
appropriately small. Again, the analysis in Section 3.1 and 3.2 above still
applies to (3.41)�(3.43).

In addition, (3.38)�(3.39) possess solutions that are not bounded, but
become very large in finite time. This phenomenon is known as ignition in
the Combustion literature and its analysis in connection with (3.38)�(3.39)
is (again) beyond the scope of this paper.
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4. CONCLUDING REMARKS

We have considered the model (1.1)�(1.2) in the limit (1.16). The spatial
domain, the non-linearity and the initial data have been assumed to satisfy
assumptions (H.1)�(H.6). Some of these assumptions could be relaxed as
explained at the end of Section 1, and have been imposed for the sake of
both brevity and clarity. The assumption fu>k3>0 (in (H.5)) instead, is
necessary for some of the ideas in the paper to apply, but perhaps it is not
necessary for the main result to hold.

In Section 2 we have first obtained some estimates on the solutions of
(1.1)�(1.2) implying that, after an initial transient (i) the reactant concen-
tration u becomes quite small except in a boundary layer, near the bound-
ary of the domain, �0, (ii) the temperature v becomes approximately
spatially constant, and (iii) the gradient of u along the hypersurfaces
parallel to �0 becomes small. Then the asymptotic model (1.17)�(1.19) was
obtained. The 1-D parabolic semilinear equation (1.17) yields the reactant
concentration in the above-mentioned boundary layer, and the ODE (1.19)
gives the spatial average of the temperature.

The asymptotic model was analyzed (in Section 3.1) in the distinguished
limit when all terms are comparable (except for the remainder �, that is
smaller) and in some representative sub-limits (in Section 3.2). Namely, (i)
when s � 0 (i.e., when chemical reaction is much faster than material
exchange through the boundary) and s � � the mixed boundary condition
at '=0 (in (1.18)) can be replaced by Neumann and Dirichlet boundary
conditions respectively, and (ii) when l � 0 (i.e., when diffusion is much
faster that thermal exchange through the boundary) the reactant concen-
tration becomes quasi-steady and the asymptotic model is reduced to an
ODE; the opposite limit, l � �, is much more subtle, as explained at the
end of Section 3.2. Finally, in Section 3.3 we considered the case when the
chemical reaction obeys a first-order Arrhenius kinetic law and the activa-
tion energy is large.

Let us point out that the asymptotic model was derived in a quite
realistic limit, and that it is much simpler than the original reaction�
diffusion system. Thus we expect this model to be useful in the analysis of
the dynamics of catalytic pellets, which are of great interest in chemical
reactor theory.
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