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Abstract

A peer-to-peer (p2p) system provides the networking substrate for the execution of distributed applications.
It is made of peers that interact over an overlay network. Overlay networks are highly dynamic, as peers can
join and leave at any time. Traditional process calculi, such as π-calculus, CCS and others, seem inadequate
to capture these kinds of networks, their routing mechanisms, and to verify their properties. In order to
model network architecture in a more explicit way, in [14,18,15] we have introduced the Network Conscious
π-calculus (NCPi), an extension of the π-calculus with names representing network nodes and links. In [15]
(a simpler version of) NCPi has been equipped with a coalgebraic operational models, along the lines of
Fiore-Turi presheaf-based approach [6], and with an equivalent History Dependent Automaton [13], i.e., an
(often) finite-state automaton suitable for verification. In this paper we first give a brief account of these
results. Then, our contribution is the sketch of a NCPi representation of the p2p architecture Pastry. In
particular, we give models of its overlay network and of a Distributed Hash Table built on top of it, and we
give evidence of their correctness by proving convergence of routing mechanisms.

Keywords: Peer-to-peer, routing, overlay network, distributed hash-table, pastry, verification, routing
convergence, process calculus, network conscious pi-calculus, presheaf, coalgebra, HD-automaton

1 Introduction

A peer-to-peer (p2p) system provides the networking substrate for the execution

of distributed applications. It is made of peers that interact over an application-

level overlay network, built on top of the physical one. An overlay network is highly

dynamic, as peers can join and leave it at any time, and this causes continuous

reconfigurations of its topology. A key property is that routing mechanisms should

work even after every reconfiguration.

Traditional process calculi, such as π-calculus [12], CCS [11] and others, seem

inadequate to describe these kinds of networks, their routing mechanisms, and to
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verify their properties. In fact, they abstract away from network details, as two

processes are allowed to communicate only through shared channels.

In order to model network architecture in a more explicit way, in [14,18,15] we

have introduced the Network Conscious π-calculus (NCPi), a seamless extension of

the π-calculus with a natural notion of network: nodes and links are regarded as

computational resources that can be created, passed and used to transmit, so they

are represented as names, following the π-calculus methodology. The main features

of NCPi are the following.

• There are two types of names: sites, which are the nodes of the network, and

links, named connectors between pairs of sites. Sites are just atoms, e.g. a, links

have the form lab, meaning that there is a link named l from a to b.

• The syntax can express the creation of a link through the restriction operator, and

the activation of a transportation service over a link through a dedicated prefix.

Separating these operations agrees with the π-calculus, where creating and using

a channel as subject are two distinct operations. Moreover, processes are not

required to communicate on shared channels: an extended output primitive is

introduced that specifies emission and destination sites.

• Observations of the semantics represent concurrent transmissions in the form

of multisets of routing paths. This follows the intuition that processes should

act in a truly distributed manner, without a central coordinator that imposes an

interleaving order to their actions. The associated behavioral equivalence is closed

with respect to all operators of the language, including input prefix, i.e. it is a

congruence. Moreover, the operational semantics is equipped with a mechanism

for controlling the inference of routing paths according to a user-defined strategy.

This allows for the implementation of routing algorithms.

Conveniently, in [15] we have introduced a presheaf-based coalgebraic semantics for

NCPi, in the style of [6]. The basic idea of [6] is having a model where we distinguish:

(a) a domain of resources, (b) a domain of programs and a (c) domain of “maps”

between resources and programs. In NCPi, resources of a process are its free sites

and links, describing its communication network. Therefore, (a) is a category G

of suitable graphs, representing networks, equipped with endofunctors that add

new vertices and edges, modeling network resources allocation; (b) is Set, where

some objects are regarded as sets of NCPi processes; (c) is the category of functors

G → Set (presheaves on G), associating to each network the set of NCPi processes

with such network. The operational semantics, then, is modeled as a coalgebra

[17] with states in a presheaf, thus each state is decorated with its networks: this

enables the explicit representation of network resource allocation along transitions.

Unfortunately, we still have infinitely many states, because allocated resources may

grow indefinitely, even if only a finite portion of them is actually accessible, e.g., in

recursive processes performing extrusions. However, our presheaf of states is “well-

behaved”, so, according to [1], it is always possible to deallocate the unused resources

and an equivalent History Dependent (HD) automaton [13] can be derived from the

NCPi coalgebra. HD-automata are automata with allocation and deallocation along
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transitions. They admit minimal, possibly finite state, representatives, where all

bisimilar states are identified, which can be computed as shown and implemented

in [5].

Section 2 of this paper is devoted to a recapitulation of NCPi syntax and se-

mantics. The main contribution is Section 3 where, in order to demonstrate the

expressive power of our language, we present a NCPi model of the p2p architecture

Pastry [16]. This model has been devised in the context of the FP7 Autonomic

Service-Component Ensembles (ASCENS) project, where the routing functionali-

ties of Pastry are employed in a cloud-computing case study. Details can be found

in [18, Chapter 6].

In Pastry, peers have unique identifiers, logically ordered in a ring. The main

operation is routing by key: given a message and a target key, the message is deliv-

ered to the peer whose identifier is numerically closest to the key. Pastry is typically

used for implementing Distributed Hash Tables (DHT), that are hash tables whose

entries are distributed among peers: routing by key in this context amounts to hash

table lookup. Our Pastry model is as follows. We begin by formalizing the features

of Pastry routing that ensure its convergence. These are informally stated in [16],

but we need a rigorous formulation so that we can prove the correctness of our

model. Then we give a NCPi implementation of a Pastry peer. The basic idea is

capturing identifiers as sites, and the overlay network as a collection of links between

peers. We model peers’ routing data structures and their operations, reconfigura-

tion due to joining peers, and the provision of routing functionalities to applications.

Node joins trigger a complex procedure, ending up with the creation of new links

from/to the joining peer. We show that the resulting overlay still guarantees rout-

ing convergence. Finally, we model a simple DHT, where lookups are represented

as routing paths from the peer that invoked the lookup to the one responsible for

the target key. These paths are derived by composing atomic forwarding services

offered by peers, employing the mechanism provided by the model to implement

routing protocols. We prove that we have routing convergence also in this scenario,

i.e., lookups always reach the correct peer.

2 Network Conscious π-calculus

2.1 Illustrative example

In order to have a closer look at the calculus, consider the system in Fig. 1. Its

aim is modeling a network whose topology is determined at run-time. We have a

network manager M, capable of creating new links and granting access to them, and

two processes P and Q, which access the network through a and b respectively; they

are willing to communicate, but no links exists between a and b, so P will ask M

to create such link. Finally, we have a link server L which which is able to offer a

transportation service over a given link.

The actual definition says that M can receive two sites at m, create a new link

between them and send it from m to the first of the received sites. Notice that the

output prefix has three components, from left to right: emission site, destination
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M
def
= m(x).m(y).(lxy)(mxlxy.M)

P
def
= ama.amb.a(l(xy)).(abc.P

′ | L(lxy))
Q

def
= b(x).Q′

L(lxy)
def
= lxy.L(lxy)

S
def
= P | M | Q | L(lam) | L(l′ma)

Fig. 1. Example system.

site and datum.

The process P can first send a and b from a to m and then wait for a link at a.

This link is received together with its endpoints, as a and b are bound in (l(ab)). The

process then becomes the parallel composition of two components: the first one can

send c from a to b; the second one invokes the process L, whose function is activating

the link lab. This activation is expressed as the link prefix lab. in the definition of L:

when consumed, it spawns a transportation service over lab, which can be used by the

execution context (i.e.,, by other processes in parallel) to forward a datum from a to

b. The link prefix expresses a single activation of the link, as input/output prefixes

in the π-calculus express a single usage of their subject channel. This explains the

recursive definition of L, which is intended to model a persistent connection.

The process Q simply waits for a datum at b. Finally, the whole system S is the

parallel composition of P, Q, M and two processes modeling a bidirectional persistent

connection between a and m.

Before showing some steps of computation, we briefly introduce observations by

comparison with the π-calculus. As in the π-calculus, we have observations repre-

senting inputs, output and complete communications. However, since NCPi allows

for remote communications, they all include the (possibly empty) sequence of links

that are traversed in the communication. For instance, the process P can emit a at

a, with destination m, as follows

P
•;ama−−−−→ amb.a(l(xy)).(abc.P

′ | L(lxy))

The label •; ama is a zero-length (i.e., with empty sequence of links) output path.

The symbol • is syntactic sugar, indicating where the path starts. In general, there

may be a list of links W between • and ama, meaning that a went through W

before being emitted.

Symmetrically, M can receive the datum a, with destination m, at m

M
mma;•−−−−→ m(y).(lay)malay.M

where mma; • is a (zero-length) input path. The first two sites in mma, namely
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reception and destination site respectively, coincide because the path represents a

local input, analogous to the early π-calculus input action ma. Here the presence

of a list W of links between m′ma, for any m′, and • would mean that W can be

employed to reach the destination m from m′.
Before introducing paths denoting complete communications, we introduce ser-

vice paths, which have no counterpart in the π-calculus. A service path has the form

a;W ; b, where W is a sequence of links. It represents a transportation service that

can be used by the execution context to route a datum from a to b. For instance we

have

L(lam)
a;lam;m−−−−−→ L(lam)

where a; lam;m is a transportation service from a to m over lam.

Finally, we have complete communication, denoted by a complete path •;W ; •.
Unlike the π-calculus τ -action, this observation is not silent, as we allow the path

W of the transmitted datum to be observed; the datum itself remains unobservable.

Another difference is that a complete path is usually produced by more than one

synchronization, each one concatenating a compatible pair of paths. For instance,

in order for P to communicate a to M, there must be a first synchronization between

P and L(lam)

P | L(lam)
•;lam;mma−−−−−−−→ . . .

where •; lam;mma is the concatenation of •; ama and a; lam;m. These paths are

compatible because the former emits its datum at the site from which the latter

forwards data, namely a. Their concatenation represents the forwarding of a from

a to m using lam (the new emission site, in fact, is m). Here the continuation is the

parallel composition of the continuations shown above. A complete path is produced

by another, final synchronization between P | L(lam) and M

P | L(lam) | M •;lam;•−−−−→ . . .

meaning that a complete communication over lam has happened.

Now we overview the steps the entire system S can perform:

(i) P communicates to M the endpoints a and b of the link to be created: it

is observed as two consecutive occurrences of •; lam; •. The state of the system

after this interaction is

a(l(xy)).(abc.P
′ | L(lxy)) | (lab)(malab.M) | Q | L(lam) | L(l′ma) .

(ii) malab.M communicates lab to a(l(xy)).(abc.P
′ | L(lxy)): the observation is

•; l′ma; •, and the resulting state is

(lab)(abc.P
′ | L(lab) | M) | Q | L(lam) | L(l′ma)

where the scope of lab has been extended.

(iii) abc.P′ communicates c to Q: in this case, despite lab is used for the transmis-

sion, only •; • can be observed, because such link is restricted. This is analogous

U. Montanari, M. Sammartino / Electronic Notes in Theoretical Computer Science 312 (2015) 3–17 7



to the π-calculus τ action. The continuation is

(lab)(P
′ | L(lab) | M) | Q′[c/x] | L(lam) | L(l′ma) .

2.2 Overview of the calculus

Here we give a brief overview of the calculus. We assume to have two enumerable

sets S and L of sites and links, respectively; L is equipped with two functions

s, t : L → S, telling source and target of each link. We denote by lab a link l such

that s(l) = a and t(l) = b.

Definition 2.1 NCPi processes are defined as follows, for a, b ∈ S, lab ∈ L:

p ::= 0 | π.p | p+ p | p | p | (r)p | A(r1, r2, . . . , rn)

r ::= a | lab s ::= a | l(ab) π ::= abr | a(s) | lab | τ

A(s1, s2, . . . , sn)
def
= p i �= j =⇒ n(si) ∩ n(sj) = ∅

where n(a) = {a} and n(lab) = n(l(ab)) = {lab, a, b}.
The syntax of NCPi processes extends the π-calculus one as follows. A restriction

(r)p can bind either a site (r ∈ S) or a link (r ∈ L). The output prefix abr, besides

the emission site a and the datum r, also specifies a destination site b. Inputs a(l(ab))

can express the reception of a link and its endpoints. The link prefix lab.p means

that this process can offer to the execution context the service of transporting a

datum from a to b through l and then can continue as p. Formal parameters of

process definitions must not share names.

The free names fn(p) are defined by recursion as expected. We briefly describe

some interesting cases. If lcd is not argument of a top level restriction or input

binder in p, namely p is of the form ablcd.p
′ or lcd.p′, then fn(p) includes {lcd, c, d};

otherwise, lcd is bound but its endpoints may be free, for instance fn((lcd)p
′) =

{c, d} ∪ fn(p′) \ {lcd}. The case of bound sites, for instance p = (a)p′, requires some

care, because free links in p′ with endpoint a become implicitly bound in p; to avoid

this, we rule out some non-well-formed processes (see [15, 3.1] for details).

Structural congruence for processes include usual commutative monoidal laws

for | and +, α-conversion w.r.t. both bound sites and links, and unfolding of process

definitions.

In the previous section we have seen single routing paths as observations, but

the semantics allows observing several paths in parallel, in the form of multisets

of paths. For instance, we can observe S in Fig. 1 doing •; ama | a; lam;m |mma; •,
which represents a three-element multiset.

Definition 2.2 Paths (denoted α) and multisets of paths (denoted Λ) are defined
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as follows:

α ::= a;W ; b (Service path)

| •;W ; • (Complete path)

| •;W ; abr (Output path)

| abr;W ; • (Free input path)

| ab(s);W ; • n(s) ∩ (n(W ) ∪ {a, b}) = ∅ (Bound input path)

r ::= a | lab s ::= a | l(ab) W ::= lab | W ;W | ε

Λ ::= 1 | α | Λ1|Λ2 | (r)Λ

Besides paths presented in the previous section, we have a bound input path,

representing the reception of a bound name. Multisets of paths can be: the empty

multiset 1; the singleton α; the union Λ1 |Λ2 and the extrusion (r)Λ. Notice that we

do not have a bound output path; instead, an extrusion restriction (r) can have a

whole multiset Λ in its scope, because we allow many output paths in Λ to extrude

r.

We have some structural congruence axioms for paths and multisets: paths α are

strings, i.e., they form a monoid with multiplication ; and unit ε; Λ are multisets,

i.e., they form a commutative monoid with multiplication | and unit 1; extrusion

restrictions can be swapped and their scope can be extended to include multisets

where restricted names do not occur free.

The NCPi LTS is the smallest one derived from a collection of SOS rules. We

describe the most interesting rules, namely those implementing process synchro-

nization. Synchronization is performed in two steps:

Paths collection: paths of parallel processes are collected through the following

rule

p1
Λ1−→ q1 p2

Λ2−→ q2

p1 | p2 Λ1 |Λ2−−−−→ q1 | q2
where bound names in Λ1 are required to be fresh w.r.t. p2 and Λ2 (the same for

Λ2, p1 and Λ1);

Paths concatenation: other rules pick two compatible paths from the multiset

produced by the previous step and replace them with their concatenation, with-

out modifying the source process; in other words, these rules synchronize two

subprocesses of the source process. For instance, an output path and a service

path with a common endpoint can be concatenated using the following rule, re-

sulting in an extended output path

p
(R) (•;W ;abr | a;W ′;c |Θ)−−−−−−−−−−−−−−−→ q

p
(R) (•;W ;W ′;cbr |Θ)−−−−−−−−−−−−−→ q

where (R) is a sequence of restrictions and Θ is a concurrent path without extru-

sion restrictions (they have all been brought at the top level using scope extension
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of path multisets).

The bisimilarity for the NCPi LTS is defined as follows. Its simple definition

resembles the π-calculus early bisimulation because, as mentioned in section 2.1, we

adopt early style inputs.

Definition 2.3 A binary, symmetric and reflexive relation R is a network con-

scious bisimulation if (p, q) ∈ R and p
Λ−→ p′, with bn(Λ) fresh w.r.t. q, implies that

there is q′ such that q
Λ−→ q′ and (p′, q′) ∈ R. The bisimilarity is the largest such

relation and is denoted by ∼NC .

The relation ∼NC enjoys the following important property.

Theorem 2.4 ∼NC is a congruence with respect to all NCPi operators.

Intuitively, this property holds because observations Λ allow distinguishing pro-

cesses with different level of parallelism (e.g., a parallel process and its sequential

interleavings).

NCPi has a built-in mechanism to control the inference of paths. In fact, SOS

rules derive all possible paths, non-deterministically. In order to select only specific

paths, e.g. according to a specific routing strategy, one can define a forwarding

predicate

ϕ : L × S × Proc → {true, false}
and then use it as an additional side condition for rules that perform the path

concatenation step: if ϕ(lab, c, p) returns true then a path of p, with destination

c, can be concatenated with lab. In this way, for instance, we could exclude non-

optimal links according to some metric (cost, latency, distance, and others). See [15,

6] for a forwarding predicate modeling the Border Gateway Protocol.

3 Pastry model

In this section we use NCPi to model Pastry overlay networks and Distributed Hash

Tables (DHTs).

3.1 Pastry overview

Pastry is a peer-to-peer architecture where peers and keys have identifiers, regarded

as arranged in clockwise order on a ring. The main service provided by Pastry is

routing by key : given a key k, Pastry delivers the message to the peer which is

responsible for k, i.e. the one whose identifier is numerically closest to k than all other

peers. Routing is implemented as follows. Each peer with identifier id maintains two

data structures: a routing table and a leaf-set. The routing table contains peers that

share a prefix with id. The leaf-set contains peers (leaves) with numerically closest

smaller and larger identifiers, relative to id. Whenever id receives a message with

target key k, it checks whether k belongs to the leaf-set range. If so, the message is

forwarded to the leaf numerically closest to k (if such leaf is not id itself). Otherwise,

the routing table is used: the next hop is the peer sharing the longest prefix with k.

An example system is shown in Fig. 2, where identifiers are binary strings.
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Fig. 2. Pastry example system.

Example 3.1 Consider the peer with identifier 1010 in Fig. 2, and suppose 1100

is responsible for the key 1101. A message from 1010 with target key 1101 is routed

as follows. Since 1101 does not belong to the interval [1000, 1011] spanned by the

leaf-set of 1010, the routing table is used: the longest prefix shared by 1010 and 1101

is 1, so the message is forwarded to the peer in the cell (1, 1), namely 1111. Once

1111 receives the message, it discovers that 1101 is in its leaf-set range (the leaf-set

has 1111 itself as upper bound, as there are no peers with larger identifiers), so it

forwards the message to the leaf closest to 1101, that is 1100.

One important property of Pastry routing procedure is convergence: the message

eventually gets to its destination. This property is stated [16, 2.2], but only in

informal terms. Here we provide a formal, mathematical account of it, in order

to prove the correctness of our model. Let x, y two identifiers. We define the ring

distance dr between x and y as the number of identifiers between x and y on the

ring. Formally, if I is the size of the space of identifiers, we have

dr(x, y) =

{
I − |x− y| |x− y| > 	I/2

|x− y| otherwise

The first case happens when x and y have numerical distance greater than half the

ring: then we must consider the complementary arc.

Property 3.2 (Routing convergence) The routing procedure always converges:

given a message with target key k and a peer id, either id is responsible for k or it

can forward the message to id′ such that dr(id
′, k) < dr(id, k).

3.2 Peer model

The key idea is modeling identifiers as sites, and the routing table and the leaf-

set of a peer as two collections of links LRT and LLS , which form the overlay

network of a peer. Notice that these links are logical, not physical connections: the
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overlay network is an abstraction of the underlying physical one. When proving

convergence of routing, we assume that failures happening at the physical level are

handled locally.

We denote by a� b a link to b in a’s routing table and by a� b a link to b in a’s

leaf-set. A peer with identifier a is modeled as the process

Peer(a,LRT ,LLS)
def
= (ORT )(OLS) Control(a,ORT ,OLS)

| RT(LRT ,ORT ) | LS(LLS ,OLS)

Control(a,ORT ,OLS)
def
= JoinH(a) + Route(ORT ,OLS)

Processes RT and LS allow querying and modifying routing table and leaf-set. These

operations are called internally via the names inORT andOLS . The process Control

implements the control logic of a peer.

JoinH executes the distributed protocol for node joins as follows. When a peer b

is willing to join the network, it sends a join message including its identifier trough

a “bootstrap” peer. This message is routed through the overlay as a message with

target key b, i.e., the target peer is the one with identifier closest to b. More precisely,

at each hop the peer c receiving the join message checks whether b is in its leaf-set

range: if so, c forwards the join message to the leaf l closest to b using c�l; otherwise,

it looks for the peer r in its routing table that has the longest common prefix with

b, and uses c � r to forward the join message to r. Finally, c sends the content of

its routing table to b. The last peer to receive the join message, namely the one

closest to b, also sends its leaf-set, because some of its leaves will become leaves of

b. Upon receiving these messages, b creates new links towards the peers referred by

the messages. These links form the routing table and leaf-set of b. Finally, b notifies

its existence to the peers in its data structures; these peers update their routing

information accordingly. Now b is part of the overlay network. In [18, Theorem

6.3.1] we give a detailed implementation of the join procedure and we prove that

reconfiguration of the overlay network due to node joins preserves Property 3.2.

The process Route makes the overlay network of a available to applications. To

do this, we introduce a special service path a; a� b ↑; b (� ∈ {�,�}), which is

observed when Route consumes a link prefix, where the link belongs to a’s routing

table or leaf-set. The symbol ↑ means that the link is intended to be used by the

applications running on top of Pastry.

A Pastry system is modeled as the parallel composition of peer processes. For

the system in Fig. 2 we have

Sys
def
= Peer(1000) | Peer(1010) | Peer(1011) | Peer(1100) | Peer(1111)

3.3 DHT model

Now we want to model routing behavior for a simple Distributed Hash Table (DHT),

where observations are routing paths of DHT lookups. In order to do this, we
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ϕPastry(lab, k, p) = case lab of

if a� b ⇒

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∀b′ �= b : p
a;a�b′↑;b′−−−−−−→ p′ =⇒ dr(k, b) < dr(k, b

′)

∧

∃b1, b2 :

⎛
⎜⎜⎜⎝

p
a;a�b1↑;b1−−−−−−→ p1, p

a;a�b2↑;b2−−−−−−→ p2

∧
b1 � a � b2 ∧ b1 ≺ k ≺ b2

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

if a� b ⇒

⎛
⎜⎜⎜⎝

∀b′ �= b : p
a;a�b′↑;b′−−−−−−→ p′ =⇒ dr(k, b) < dr(k, b

′)

∧
shl(b, k) > shl(a, k)

⎞
⎟⎟⎟⎠

if a� b ⇒ b = k

Fig. 3. Pastry forwarding predicate.

introduce a new type of link: a�k means that the peer with identifier a is responsible

for the key k.

The Pastry routing strategy is implemented through the forwarding predicate

ϕPastry, shown in Fig. 3. We denote by shl(x, y) the length of the longest prefix

shared by x and y, and by ≺ the order relation on identifiers, seen as natural

numbers. The first case allows forwarding a message with target k from a to b, via a

link in a’s leaf-set, provided that: (i) there is no other leaf b′ which is closer to k than

b; (ii) a has two leaves b1 and b2, on opposite sides of (but not necessarily distinct

from) a, and (iii) k is between them, i.e. k is within the leaf-set range. The second

case allows a forwarding through a link in the routing table whenever there is no

better link in the leaf-set and the identifier b of the reached peer shares (at least) one

more digit with k than a. The third case treats links that allow reaching a key k via

the peer responsible for it: it is required that the the link’s target is indeed k. Notice

that the routing mechanism is the same as the join procedure. There observations

are single hops, because some operations need to be performed at each forwarding.

Here, instead, a single observation describes all the routing steps.

We can model a Distributed Hash Table over a Pastry system made of peers

a1, . . . , an as follows. Suppose the DHT has m key-value pairs 〈ki, vi〉, and let aki be
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the identifier of the peer responsible for ki, i.e. the closest to ki among a1, . . . , an.

DHT
def
= Peer(a1) | . . . | Peer(an) | H

H
def
= Entry(k1, v1, ak1) | . . . | Entry(km, vm, akm)

Entry(k, v, a)
def
= a� k | k(b).abv.Entry(k, v, a)

Here H represents the DHT content as the parallel composition of processes that

handle the table’s entries. The idea is implementing a DHT lookup request for a key

k as a message with destination k, carrying the identifier b of the sender. Upon re-

ceiving this message, the handler Entry(k, v, a) for 〈k, v〉 replies to b with a message

containing v. Notice that node joins in Pastry may introduce new key-value pairs

in the DHT. However, for simplicity, we assume that the DHT is fixed. The addition

of a key k with value v could be modeled by using the routing mechanism to find

the peer with id ak closest to k, and then spawning a new process Entry(k, v, ak).

We provide an account of Property 3.2 in this scenario.

Lemma 3.3 For every peer a and key k there is DHT
a;a�b;b−−−−→ DHT′, where � ∈

{�,�}, such that either b = k or b is closer to k than a, i.e. a, b, k satisfy Prop-

erty 3.2.

The following result is an immediate consequence of Lemma 3.3 and of the

definition of ϕPastry. It says that, given a key k and a peer a, there always is a path

from a routing a lookup request for k.

Theorem 3.4 Let k be a key in the DHT and ak the peer responsible for it. Then,

for every peer a, there exists a transition

DHT
a;a�a1;...;an�ak;ak�k;•−−−−−−−−−−−−−−−→ DHT′

with � ∈ {�,�} and n ≥ 0.

As an example, we show how to compute a routing path in the system of Fig. 2.

For simplicity, let us consider a DHT with only one key-value pair (1101, v) located

at 1100:

H
def
= 1100� 1101 | 1101(a).1100 a v.H DHT

def
= Sys | H

where Sys is defined in section 3.2. Consider the following process, representing a

user application running at 1010

App
def
= 1010 1101 1010.1010(v′).App′(v′) .

This process sends a lookup request for the key 1101, receives the result and uses

it for some computations. So we have

App
•;1010 1101 1010−−−−−−−−−−→ 1010(v′).App′(v′) .

The routing steps for this request are those of Example 3.1. In this context, they
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1010

1011

1111

1000

1100

1101

Fig. 4. Routing path from 1010 for the key 1101 in the system of Fig. 2.

become the following ones, depicted in Fig. 4

Peer(1010)
1010;1010�1111;1111−−−−−−−−−−−−−→ Peer(1010)

Peer(1111)
1111;1111�1100;1100−−−−−−−−−−−−−→ Peer(1111)

The predicate ϕPastry, applied to Peer(1010) and 1010 � 1111, and to Peer(1111)

and 1111 � 1100, for the key 1101, holds true, so we can use the SOS rules to

concatenate the three paths shown so far (see the concatenation step described in

section 2.2). The result is

•; 1010� 1111; 1111� 1100; 1100 1101 1010

The complementary input path can be inferred

H
1100 1101 1010;1100�1101;•−−−−−−−−−−−−−−−−−→ 1100 1010 v.H .

Finally, we can concatenate all these paths and get

App | DHT •;1010�1111;1111�1100;1100�1101;•−−−−−−−−−−−−−−−−−−−−−−−→ 1010(v′).App(v′) | Sys | 1100 1010 v.H

which exhibits the whole routing path from 1010 to 1100. Finally, assuming that

the overlay network has a path back to 1010, the following configuration is reached

App(v) | DHT .

4 Conclusions

In this paper we presented NCPi, an extension of π-calculus with an explicit notion

of network. To achieve this, we enriched the syntax with named connectors and

defined a LTS semantics whose observations are multisets of routing paths. The

concurrent nature of the semantics makes bisimilarity a congruence. We used NCPi

to model the peer-to-peer architecture Pastry. The advantage is that it is possible to

observe routing paths for DHT lookup operations as whole routing paths through

the overlay, resulting from multiple synchronizations among peers.
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Future work includes using NCPi to model other networking scenarios, for in-

stance social networks. We also plan to extend our Pastry scenario by modeling

a real-life application, for instance file-sharing, that employs DHT operations. We

could also add quantitative information to links, e.g., costs, bandwidth, etc., in order

to capture QoS or similar requirements.

The works most closely related to ours are [7] and [3] where network-aware exten-

sions of Dπ [10] and Klaim [2], called respectively DπF and tKlaim, are presented.

Their network representations are quite different from ours: in DπF locations are ex-

plicitely associated with their connectivity via a type system, tKlaim has a special

process to represent connections, while in our calculus connections are just names,

so the available network nodes and connections correspond to the standard notion

of free names. This brings simpler primitives, but also a higher level of dinamicity:

connections can be created and passed among processes, as shown in the illustrative

example. As for our Pastry model, it would not be easily implementable in DπF
and tKlaim: network is always available in these calculi, whereas we control the

activation of leaf-set and routing table links via the link prefix; DπF and tKlaim

do not allow observing multi-hop paths, whereas we are able to represent DHT

lookups as routing paths through the overlay. We can also cite [8,9,4] as examples

of calculi where resources carry some extra information. See [18, 7.1.1] for a detailed

comparison.
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