
Linear Algebra and its Applications 435 (2011) 1122–1130

Contents lists available at ScienceDirect

Linear Algebra and its Applications

journal homepage: www.elsevier .com/locate/ laa

The product of operators with closed range in Hilbert

C*-modules<

K. Sharifi

Department of Mathematics, Shahrood University of Technology, P.O. Box 3619995161-316, Shahrood, Iran

School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5746, Tehran, Iran

A R T I C L E I N F O A B S T R A C T

Article history:

Received 26 October 2010

Accepted 17 February 2011

Available online 10 March 2011

Submitted by C.K. Li

AMS classification:

Primary: 47A05

Secondary: 15A09, 46L08, 46L05

Keywords:

Bounded adjointable operator

Moore–Penrose inverse

Closed range

Hilbert C*-module

C*-algebra

Dixmier angle

Suppose T and S are bounded adjointable operatorswith close range

between Hilbert C*-modules, then TS has closed range if and only if

Ker(T)+ Ran(S) is an orthogonal summand, if and only if Ker(S∗)+
Ran(T∗) is an orthogonal summand. Moreover, if the Dixmier (or

minimal) angle between Ran(S) and Ker(T)∩ [Ker(T)∩ Ran(S)]⊥ is

positive and Ker(S∗) + Ran(T∗) is an orthogonal summand then TS

has closed range.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Theclosenessof rangeofoperators is anattractiveand importantproblemwhichappears inoperator

theory, especially, in the theory of Fredholm operators and generalized inverses. In this paper we will

investigate when the product of two operators with closed range again has closed range. This problem

was first studied by Bouldin for bounded operators between Hilbert spaces in [3,4]. Indeed, for Hilbert

space operators T, S whose ranges are closed, he proved that the range of TS is closed if and only if

the Dixmier (or minimal) angle between Ran(S) and Ker(T) ∩ [Ker(T) ∩ Ran(S)]⊥ is positive, where
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the Dixmier angle between subspaces M and N of a certain Hilbert space is the angle α0(M,N) in

[0, π/2] whose cosine is defined by c0(M,N) = sup{‖〈x, y〉‖ : x ∈ M, ‖x‖ � 1 , y ∈ N, ‖y‖ � 1}.
Nikaido [24,25] also gave topological characterizations of the problem for the Banach space operators.

Recently (Dixmier and Friedrichs) angles between linear subspaces have been studied systematically

by Deutsch [7], he also has reconsidered the closeness of range of the product of two operators with

closed range. In this note we use C*-algebras techniques to reformulate some results of Bouldin and

Deutsch in the framework of Hilbert C*-modules. Some further characterizations ofmodular operators

with closed range are obtained.

Hilbert C*-modules are essentially objects likeHilbert spaces, except that the inner product, instead

of being complex-valued, takes its values in a C*-algebra. Since the geometry of thesemodules emerges

from the C*-valued inner product, some basic properties of Hilbert spaces like Pythagoras’ equality,

self-duality, and decomposition into orthogonal complements do not hold. The theory of Hilbert C*-

modules, together with adjointable operators forms an infrastructure for some of the most important

research topics in operator algebras, in Kasparov’s KK-theory and in noncommutative geometry.

A (left) pre-Hilbert C*-module over a C*-algebra A is a left A-module E equipped with an A-valued

inner product 〈·, ·〉 : E × E → A , (x, y) 
→ 〈x, y〉, which is A-linear in the first variable x (and

conjugate-linear in y) and has the properties:

〈x, y〉 = 〈y, x〉∗, 〈ax, y〉 = a〈x, y〉 for all a in A,

〈x, x〉 � 0 with equality only when x = 0.

A pre-Hilbert A-module E is called a Hilbert A-module if E is a Banach space with respect to the

norm ‖x‖ = ‖〈x, x〉‖1/2. A HilbertA-submodule E of a HilbertA-module F is an orthogonal summand

if F = E ⊕ E⊥, where E⊥ := {y ∈ F : 〈x, y〉 = 0 for all x ∈ E} denotes the orthogonal complement

of E in F . The papers [9,10] and the books [19,22] are used as standard sources of reference.

Throughout thepresent paperweassumeA to be an arbitraryC*-algebra (i.e. not necessarily unital).

We use the notations Ker(·) and Ran(·) for kernel and range of operators, respectively. We denote by

L(E, F) the Banach space of all bounded adjointable operators between E and F , i.e., all bounded A-

linear maps T : E → F such that there exists T∗ : F → E with the property 〈Tx, y〉 = 〈x, T∗y〉 for all
x ∈ E, y ∈ F . The C*-algebra L(E, E) is abbreviated by L(E).

In this paperwe first briefly investigate some basic facts aboutMoore–Penrose inverses of bounded

adjointableoperatorsonHilbertC*-modulesand thenwegivesomenecessaryandsufficient conditions

for closenessof the rangeof theproductof twoorthogonalprojections. These leadus toourmain results.

Indeed, for adjointable module maps T, S whose ranges are closed we show that the operator TS has

closed range if and only if Ker(T)+Ran(S) is an orthogonal summand, if and only if Ker(S∗)+Ran(T∗)
is an orthogonal summand. The Dixmier angle between submodules M and N of a Hilbert C*-module

E is the angle α0(M,N) in [0, π/2] whose cosine is defined by

c0(M,N) = sup{‖〈x, y〉‖ : x ∈ M, ‖x‖ � 1 , y ∈ N, ‖y‖ � 1}.
If theDixmieranglebetweenRan(S)andKer(T)∩ [Ker(T)∩ Ran(S)]⊥ ispositiveandKer(S∗)+ Ran(T∗)
is an orthogonal summand then TS has closed range. Since every C*-algebra is aHilbert C*-module over

itself, our results are also remarkable in the case of bounded adjointable operators on C*-algebras.

2. Preliminaries

Closed submodules of Hilbert modules need not to be orthogonally complemented at all, but Lance

states in [19, Theorem 3.2] under which conditions closed submodules may be orthogonally comple-

mented (see also [22, Theorem 2.3.3]). Let E, F be twoHilbertA-modules and suppose that an operator

T in L(E, F) has closed range, then one has:

• Ker(T) is orthogonally complemented in E, with complement Ran(T∗),
• Ran(T) is orthogonally complemented in F , with complement Ker(T∗),
• the map T∗ ∈ L(F, E) has closed range, too.
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Lemma 2.1. Suppose T ∈ L(E, F). The operator T has closed range if and only if T T∗ has closed range. In

this case, Ran(T) = Ran(T T∗).

Proof. Suppose T has closed range, the proof of Theorem 3.2 of [19] indicates that Ran(T T∗) is closed
and Ran(T) = Ran(T T∗).

Conversely, if T T∗ has closed range then F = Ran(T T∗) ⊕ Ker(T T∗) = Ran(T T∗) ⊕ Ker(T∗) ⊂
Ran(T) ⊕ Ker(T∗) ⊂ F which implies T has closed range. �

Let T ∈ L(E, F), then a bounded adjointable operator S ∈ L(F, E) is called an inner inverse of T if

TST = T . If T ∈ L(E, F) has an inner inverse S then the bounded adjointable operator T× = STS in

L(F, E) satisfies

T T×T = T and T×T T× = T . (2.1)

The bounded adjointable operator T× which satisfies (2.1) is called generalized inverse of T . It is known

that a bounded adjointable operator T has a generalized inverse if and only if Ran(T) is closed, see e.g.

[5,31].

Let T ∈ L(E, F), then a bounded adjointable operator T† ∈ L(F, E) is called the Moore–Penrose

inverse of T if

T T†T = T, T†T T† = T†, (T T†)∗ = T T† and (T†T)∗ = T†T . (2.2)

The notation T† is reserved to denote the Moore–Penrose inverse of T . These properties imply that

T† is unique and T†T and T T† are orthogonal projections. Moreover, Ran(T†) = Ran(T†T), Ran(T) =
Ran(T T†), Ker(T) = Ker(T†T) and Ker(T†) = Ker(T T†) which lead us to E = Ker(T†T) ⊕ Ran(T†T) =
Ker(T) ⊕ Ran(T†) and F = Ker(T†) ⊕ Ran(T).

Xu and Sheng in [30] have shown that a bounded adjointable operator between two Hilbert C*-

modules admits a bounded Moore–Penrose inverse if and only if the operator has closed range. The

reader should be aware of the fact that a bounded adjointable operator may admit an unbounded

operator as its Moore–Penrose, see [13,28,29] for more detailed information.

Proposition 2.2. Suppose E, F, G are Hilbert A-modules and S ∈ L(E, F) and T ∈ L(F, G) are bounded
adjointable operators with closed ranges. Then TS has a generalized inverse if and only if T†TSS† has. In

particular, TS has closed range if and only if T†TSS† has.

Proof. Suppose first that V is a generalized inverse of TS. Then

T†TSS†(SVT)T†TSS† = T†T (SS†S) V (T T†T) SS† = T†TS V TSS† = T†TSS†.

Similarly, SVT (T†TSS†) SVT = SVT and so SVT is a generalized inverse of T†TSS†. Conversely, suppose

that U ∈ L(F) is a generalized inverse of T†TSS†. Let P = SS† and Q = T†T are orthogonal projections

onto Ran(S) and Ker(T)⊥, respectively, then QPUQP = QP. We set W = PUQ , then PWQ = W and

QWP = QP. The later equality implies that Q(1 − W)P = 0, that is, 1 − W maps Ran(P) = Ran(S)
into Ker(Q) = Ker(T). Consequently, T(1 − W)S = 0. Hence,

TS (S†WT†) TS = TPWQS = TWS = TS.

Ontheotherhand,S†WT† = S†PUQT† = S†SS†UT†T T† = S†UT† whichshows that (S†WT†) TS (S†WT†)
= S†UT† = S†WT†, i.e. S†WT† is a generalized inverse of TS. In particular, TS has closed range if and

only if T†TSS† has. �

Lemma 2.3. Let T ∈ L(E, F), then T has closed range if and only if Ker(T) is orthogonally complemented

in E and T is bounded below on Ker(T)⊥, i.e. ‖Tx‖ � c‖x‖, for all x ∈ Ker(T)⊥ for a certain positive

constant c.

The statement directly follows from Proposition 1.3 of [12].
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Lemma 2.4. Let T be a non-zero bounded adjointable operator in L(E, F), then T has closed range if and

only if Ker(T) is orthogonally complemented in E and

γ (T) = inf{‖Tx‖ : x ∈ Ker(T)⊥ and ‖x‖ = 1} > 0.

In this case, γ (T) = ‖T†‖−1 and γ (T) = γ (T∗).

Proof. The first assertion follows directly from Lemma 2.3. To prove the first equality, suppose T has

closed range, x ∈ Ker(T)⊥ = Ran(T†T) and ‖x‖ = 1, then 1 = ‖x‖ = ‖T†Tx‖ � ‖T†‖ ‖Tx‖,
consequently, ‖T†‖−1 � γ (T). Suppose x ∈ Ker(T)⊥ then γ (T)‖x‖ � ‖Tx‖. Suppose w ∈ F and

x = T†w then x ∈ Ran(T†) = Ker(T)⊥, hence,

γ (T)‖T†w‖ � ‖T T†w‖ � ‖T T†‖ ‖w‖ � ‖w‖.
We therefore have γ (T) � ‖T†‖−1. To establish the second equality just recall that T has closed range

if and only if T∗ has. It now follows from the first equality and the fact ‖T∗ †‖ = ‖T† ∗‖ = ‖T†‖. �

3. Closeness of the range of the products

Suppose F is a Hilbert A-module and T be a bounded adjointable operator in the unital C*-algebra

L(F), then σ(T) and acc σ(T) denote the spectrum and the set of all accumulation points of σ(T),
respectively. According to [17, Theorem 2.4] and [30, Theorem 2.2], a bounded adjointable operator T

in L(F) has closed range if and only if T has a Moore–Penrose inverse, if and only if 0 /∈ acc σ(T T∗),
if and only if 0 /∈ acc σ(T∗T). In particular, if T is selfadjoint then T has closed range if and only if

0 /∈ acc σ(T). We use these facts in the proof of the following results.

Lemma 3.1. Suppose F is a Hilbert A-module and P,Q are orthogonal projections in L(F). Then P − Q

has closed range if and only if P + Q has closed range.

Proof. Following the argument of Koliha and Rakočević [18], for every λ ∈ C we have

(λ − 1 + P)(λ − (P − Q))(λ − 1 + Q) = λ(λ2 − 1 + PQ), (3.1)

(λ − 1 + P)(λ − (P + Q))(λ − 1 + Q) = λ((λ − 1)2 − PQ). (3.2)

Using the above equations and the facts that σ(P) ⊂ {0, 1} and σ(Q) ⊂ {0, 1}, we obtain that

Ran(P − Q) is closed if and only if 0 /∈ acc σ(P − Q), if and only if 1 /∈ acc σ(PQ), if and only if

0 /∈ acc σ(P + Q), if and only if Ran(P + Q) is closed. �

Lemma 3.2. Suppose F is a Hilbert A-module and P,Q are orthogonal projections in L(F). Then the

following conditions are equivalent:

(i) PQ has closed range,

(ii) 1 − P − Q has closed range,

(iii) 1 − P + Q has closed range,

(iv) 1 − Q + P has closed range.

Proof. Suppose λ ∈ C \ {0, 1}. In view of the Eq. (3.2), we conclude that λ ∈ σ(P + Q) if and only if

(λ − 1)2 ∈ σ(PQ).
The above fact together with Remark 1.2.1 of [23] imply that PQ has closed range if and only if

0 /∈ acc σ(PQP), if and only if 0 /∈ acc σ(P2Q), if and only if 1 /∈ acc σ(P + Q), if and only if

0 /∈ acc σ(1− P −Q), if and only if 1− P −Q has closed range. This proves the equivalence of (i) and

(ii). The statements (ii), (iii) and (iv) are equivalent by Lemma 3.1. �
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Remark 3.3. Suppose E, F are twoHilbertA-modules then the set of all ordered pairs of elements E⊕F

from E and F is a Hilbert A-module with respect to the A-valued inner product 〈(x1, y1), (x2, y2)〉 =
〈x1, x2〉E+〈y1, y2〉F , cf. [26,Example2.14]. Inparticular, it canbeeasily seen that L is a closedsubmodule

of F if and only if L ⊕ {0} is a closed submodule of F ⊕ F .

Lemma 3.4. Suppose P and Q are orthogonal projections on a Hilbert A-module F then the following

conditions are equivalent:

(i) PQ has closed range,

(ii) Ker(P) + Ran(Q) is an orthogonal summand,

(iii) Ker(Q) + Ran(P) is an orthogonal summand.

Proof. Suppose

T =
⎛
⎝1 − P Q

0 0

⎞
⎠ ∈ L(F ⊕ F).

Then Ran(T) = (Ran(1−P)+Ran(Q))⊕{0} and Ran(T T∗) = Ran(1−P+Q)⊕{0}. Using Lemmata

2.1, 3.2 andRemark 3.3,we infer that PQ has closed range if and only if 1−P+Q has closed range, if and

only ifRan(T T∗) = Ran(1−P+Q)⊕{0} is closed, if andonly ifRan(T) = (Ran(1−P)+Ran(Q))⊕{0} is
closed, if andonly ifRan(1−P)+Ran(Q) is closed. In particular,Ran(1−P+Q) = Ran(1−P)+Ran(Q)
is an orthogonal summand. This proves that the conditions (i) and (ii) are equivalent. Now, consider

the matrix operator

T̃ =
⎛
⎝1 − Q P

0 0

⎞
⎠ ∈ L(F ⊕ F).

Asimilar argument shows that PQ has closed range if andonly ifRan(1−Q+P) = Ran(1−Q)+Ran(P)
is closed which shows that conditions (i) and (iii) are equivalent. �

Suppose M and N are closed submodule of a Hilbert A-module E and PM and PN are orthogonal

projection onto M and N, respectively. Then PM PN = PM if and only if PN PM = PM , if and only if

M ⊂ N. Beside these, the following statements are equivalent

• PM and PN commute, i.e. PM PN = PN PM ,
• PM PN = PM∩N ,• PM PN is an orthogonal projection,
• PM⊥ and PN commute,
• PN⊥ and PM commute,
• PM⊥ and PN⊥ commute,

• M = M ∩ N + M ∩ N⊥.

Proposition 3.5. Suppose P and Q are orthogonal projections on a Hilbert A-module F and

Ker(Q) + Ran(P) is an orthogonal summand in F. If R is the orthogonal projection onto the closed sub-

module Ker(Q) + Ran(P) and PQ = 0 then

γ (PQ)2 + ‖(1 − P)QR‖2 � 1. (3.3)

Proof. The inclusion Ker(Q) ⊂ Ker(Q) + Ran(P) implies that the orthogonal projection 1 − Q onto

Ker(Q) satisfies (1 − Q)R = R(1 − Q) = 1 − Q , consequently, QR is an orthogonal projection and

Ran(QR) is orthogonally complemented in F . Since

Ran(QP) ⊂ Ran(QR) ⊂ Ran(QP),
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we have Ran(QP) = Ran(QR) and so Ran(QP) is orthogonally complemented. Therefore, Ker(PQ)⊥ =
Ran(QR). Suppose x ∈ Ker(PQ)⊥ ⊂ Ran(Q) and ‖x‖ = 1. Then, since x = QR x = Qx, we have

‖PQ x‖2 + ‖(1 − P)QR‖2 � ‖PQ x‖2 + ‖(1 − P)Q x‖2

� ‖〈PQ x, PQ x〉 + 〈(1 − P)Q x, (1 − P)Q x〉‖
= ‖〈Qx,Qx〉‖ = ‖Qx‖2 = 1.

By definition, the infimum of ‖PQ x‖ is γ (PQ). Therefore, γ (PQ)2 + ‖(1 − P)QR‖2 � 1. �

Note that as we set A = C i.e. if we take F to be a Hilbert space, the inequality (3.3) changes

to an equality. In view of this notification, the following problem arises in the framework of Hilbert

C*-modules.

Problem 3.6. Suppose P and Q are orthogonal projections on a Hilbert A-module F and

Ker(Q) + Ran(P) is an orthogonal summand in F . If R is the orthogonal projection onto the closed

submodule Ker(Q) + Ran(P) and PQ = 0 then characterize those C*-algebrasA for which the follow-

ing equality holds:

γ (PQ)2 + ‖(1 − P)QR‖2 = 1. (3.4)

To solve the problem, it might be useful to know that γ (PQ) � ‖PQ x‖ for all x ∈ Ker(PQ)⊥ ⊂
Ran(Q) of norm ‖x‖ = 1, therefore

γ (PQ)2 + ‖(1 − P)Q x‖2 � ‖PQ x‖2 + ‖(1 − P)Q x‖2 = ‖Px‖2 + ‖(1 − P)x‖2.

Corollary 3.7. Suppose P andQ are orthogonal projections onaHilbertA-module F. If δ = ‖(1−P)QR‖ <

1 and R is the orthogonal projection onto the orthogonal summand Ker(Q) + Ran(P) then PQ has closed

range.

Proof. Suppose PQ = 0 (in the case PQ = 0 the result is clear). According to Proposition 3.5 and its

proof, Ker(PQ)⊥ = Ran(QR) is orthogonally complimented and γ (PQ)2 � 1 − δ 2 > 0. Therefore,

PQ has closed range by Lemma 2.4. �

Two different concepts of angle between subspaces of a Hilbert space was first introduced by

Dixmier and Friedrichs, see [8,14,1] and the excellent survey by Deutsch [7] for more historical notes

and information. We generalized Dixmier’s definition for the angle between two submodules of a

Hilbert C*-module.

Definition 3.8. The Dixmier (or minimal) angle between submodulesM andN of a Hilbert C*-module

E is the angle α0(M,N) in [0, π/2] whose cosine is defined by

c0(M,N) = sup{‖〈x, y〉‖ : x ∈ M, ‖x‖ � 1 , y ∈ N, ‖y‖ � 1}.
SupposeM andN are submodule of aHilbert C*-moduleE, then (M+N)⊥ = M⊥∩N⊥. In particular,

ifM + N is orthogonally complemented in E then

(M⊥ ∩ N⊥)⊥ = (M + N)⊥⊥ = M + N.

Theorem 3.9. Suppose S ∈ L(E, F) and T ∈ L(F, G) are bounded adjointable operators with closed

range. Then the following three conditions are equivalent:

(i) TS has closed range,

(ii) Ker(T) + Ran(S) is an orthogonal summand in F,

(iii) Ker(S∗) + Ran(T∗) is an orthogonal summand in F.
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Furthermore, if c0(Ran(S), Ker(T) ∩ [Ker(T) ∩ Ran(S)]⊥) < 1 and Ker(S∗) + Ran(T∗) is an orthogonal

summand then TS has closed range.

Proof. Taking P = T† T and Q = SS†, then

Ker(P) = Ker(T) , Ran(P) = Ran(T†) = Ran(T∗),
Ker(Q) = Ker(S†) = Ker(S∗) , and Ran(Q) = Ran(S).

Theequivalenceof (i), (ii) and (iii) directly follows fromtheaboveequalities andLemma3.4. Toestablish

the statement of the second part suppose R is the orthogonal projection onto the orthogonal summand

Ker(Q) + Ran(P) then (1 − P)R is the projection onto

M = Ker(P) ∩ [ Ran(P) + Ker(Q) ] = Ker(T) ∩ [ Ran(T∗) + Ker(S∗) ]
= Ker(T) ∩ [Ran(T∗)⊥ ∩ Ker(S∗)⊥ ]⊥
= Ker(T) ∩ [Ker(T) ∩ Ran(S)]⊥.

If neither M nor Ran(S) is {0}, by commutativity of R with P and Q , we obtain

‖(1 − P)QR‖ = ‖RQ(1 − P)‖
= ‖Q(1 − P)R‖
= sup{‖〈Q(1 − P)Rx, y〉‖ : x, y ∈ F and ‖x‖ � 1, ‖y‖ � 1}
= sup{‖〈(1 − P)Rx,Qy〉‖ : x, y ∈ F and ‖x‖ � 1, ‖y‖ � 1}
= sup{‖〈x, y〉‖ : x ∈ M, y ∈ Ran(S) and ‖x‖ � 1, ‖y‖ � 1}
= c0(M, Ran(S)).

The statement is now derived from the above argument and Corollary 3.7. �

Recall that a bounded adjointable operator between Hilbert C*-modules admits a bounded ad-

jointable Moore–Penrose inverse if and only if the operator has closed range. This lead us to the

following results.

Corollary 3.10. Suppose S ∈ L(E, F) and T ∈ L(F, G) possess bounded adjointable Moore–Penrose

inverses S† and T†. Then (TS)† is bounded if and only if Ker(T) + Ran(S) is an orthogonal summand, if and

only if Ker(S∗) + Ran(T∗) is an orthogonal summand. Moreover, if the Dixmier angle between Ran(S) and

Ker(T) ∩ [Ker(T) ∩ Ran(S)]⊥ is positive and Ker(S∗) + Ran(T∗) is an orthogonal summand then (TS)† is
bounded.

Now, it is natural to ask for the reverse order law, that is, if S ∈ L(E, F) and T ∈ L(F, G) possess

bounded adjointable Moore–Penrose inverses S† and T†, when does the equation (TS)† = S† T† hold?

We will answer this question elsewhere. Note that the above conditions do not ensure the equality.

Recall that a C*-algebra of compact operators is a c0-direct sum of elementary C*-algebrasK(Hi) of
all compact operators acting on Hilbert spaces Hi, i ∈ I, i.e. A = c0-⊕i∈IK(Hi), cf. [2, Theorem 1.4.5].

SupposeA is anarbitraryC*-algebraof compact operators.MagajnaandSchweizerhave shown, respec-

tively, that every norm closed (coincidingwith its biorthogonal complement, respectively) submodule

of every HilbertA-module is automatically an orthogonal summand, cf. [21,27]. In this situation, every

bounded A-linear map T : E → F is automatically adjointable. Recently further generic properties of

the category of Hilbert C*-modules over C*-algebras which characterize precisely the C*-algebras of

compact operators have been found in [11–13]. We close the paper with the observation that we can

reformulate Theorem 3.9 in terms of bounded A-linear maps on Hilbert C*-modules over C*-algebras

of compact operators.
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Corollary 3.11. SupposeA is an arbitrary C*-algebra of compact operators, E, F, G are HilbertA-modules

and S : E → F and T : F → G are boundedA-linear maps with close range. Then the following conditions

are equivalent:

(i) TS has closed range,

(ii) Ker(T) + Ran(S) is closed,
(iii) Ker(S∗) + Ran(T∗) is closed.

Furthermore, if c0(Ran(S), Ker(T) ∩ [Ker(T) ∩ Ran(S)]⊥) < 1 then TS has closed range.

In view of Corollary 3.11, one may ask about the converse of the last conclusion. To find a solution,

one way reader has is to solve Problem 3.6.
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