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Abstract

Solid modelling and computational geometry are based on classical topology and geometry
in which the basic predicates and operations, such as membership, subset inclusion, union and
intersection, are not continuous and therefore not computable. But a sound computational frame-
work for solids and geometry can only be built in a framework with computable predicates and
operations. In practice, correctness of algorithms in computational geometry is usually proved
using the unrealistic Real RAM machine model of computation, which allows comparison of
real numbers, with the undesirable result that correct algorithms, when implemented, turn into
unreliable programs. Here, we use a domain-theoretic approach to recursive analysis to develop
the basis of an e3ective and realistic framework for solid modelling. This framework is equipped
with a well de5ned and realistic notion of computability which re6ects the observable proper-
ties of real solids. The basic predicates and operations on solids are computable in this model
which admits regular and non-regular sets and supports a design methodology for actual robust
algorithms. Moreover, the model is able to capture the uncertainties of input data in actual CAD
situations. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The current frameworks for solid modelling and computational geometry are based,
on the one hand, on discontinuous predicates and Boolean operations, and, on the other
hand, on comparison of real numbers. These essential foundations of the existing theory
and implementations are both unjusti5ed and unrealistic.

Topology and geometry, as mainstream mathematical disciplines, have been devel-
oped to study continuous transformations on spaces. It is therefore ironical that the
main building blocks of these subjects, namely the membership predicate of a set, the
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subset inclusion predicate and the basic operations such as union and intersections, are
generally not continuous and therefore non-computable. For example, in any Euclidean
space the membership predicate of any proper subset is discontinuous at the boundary
of the subset; whereas the binary intersection, as an operator on compact subsets, is
discontinuous with respect to the Hausdor3 metric whenever the two input compact
subsets touch each other. This non-continuity creates a foundational problem in com-
putation, which has so far been essentially neglected. In fact, in order to construct a
sound computational model for solids and geometry, one needs a framework in which
these elementary building blocks are continuous and computable.

In practice, correctness of algorithms in computational geometry is usually proved
using the Real RAM machine [23] model of computation, in which comparison of
real numbers is considered to be decidable. Since this model is not realistic, correct
algorithms, when implemented, turn into unreliable programs. In CAGD modelling
operators, the e3ect of rounding errors on consistency and robustness of actual im-
plementations is an open question, which is handled in industrial software by various
unreliable and expensive “up to epsilon” heuristics that remain very unsatisfactory.

The solid modelling framework provided by classical analysis, which allows discon-
tinuous behaviour and comparison of exact real numbers, is not realistic as a model of
our interaction with the physical world in terms of measurement and manufacturing.
Nor is it realistic as a basis for the design of algorithms implemented on realistic ma-
chines, which can only deal with 5nite data. Industrial solid modelling software used
for computer aided geometric design (CAGD), computer aided manufacturing (CAM)
or robotics is therefore infected by the disparity between the classical analysis paradigm
and feasible computations. This disparity, as well as the representation of uncertainties
in the geometry of the solid objects, is handled case by case, by various expensive
and unsatisfactory “up to epsilon” ad hoc heuristics. It is diHcult, if at all possible,
to improve and generalize these techniques, since their relatively poor success depends
on the skill and experience of software engineers rather than on a well formalised
methodology. In practice, the maintenance cost of some central geometric operators
such as the Boolean operations or some speci5c variants of the Minkowski sum has
always remained critical.

The authors claim that a robust algorithm is one whose correctness is proved with
the assumption of a realistic machine model [20]. Recursive analysis de5nes precisely
what it means, in the context of the realistic Turing machine model of computation,
to compute objects belonging to non-countable sets such as the set of real numbers.
There are various approaches to computable analysis, including the Type 2 theory of
e3ectivity (TTE) [19, 31, 32], based on a computation with a machine, the algebraic
domain approach [29, 30], based on embedding classical spaces into algebraic domains,
the continuous domain approach [9–12], based on embedding classical spaces into the
set of maximal elements of continuous domains, and the more recent approach by
Equilogical Spaces [27, 4, 5], based on taking quotients of T0 topological spaces. In
recent years, Brattka and Weihrauch have also studied the question of computability
of closed and compact subsets of Euclidean spaces in the context of TTE [6].
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In this paper, which is based on [33], we use a domain-theoretic approach to recursive
analysis to develop the foundation of an e3ective framework for solid modelling. We
introduce the continuous domain of solid objects which gives a concrete model of
computation on solids close to the actual practice by CAD engineers. In this model,
the basic predicates, such as membership and subset inclusion, and operations, such
as union and intersection, are continuous and computable. The set-theoretic aspects
of solid modelling are revisited, leading to a theoretically motivated model that shows
some interesting similarities with the Requicha solid model [24, 25]. Within this model,
some unavoidable limitations of solid modelling computations are proved and a sound
framework to design speci5cations for feasible modelling operators is provided. Some
consequences in computation with the boundary representation paradigm are sketched
that can incorporate existing methods [14, 28, 17, 15, 16] into a general, mathematically
well-founded theory. Moreover, the model is able to capture the uncertainties of input
data [7, 21] in actual CAD situations.

We need the following requirements for the mathematical model:
(1) the notion of computability of solids has to be well de5ned,
(2) the model has to re6ect the observable properties of real solids,
(3) it has to be closed under the Boolean operations and all basic predicates and

operations have to be computable,
(4) non-regular sets 1 have to be captured by the model as well as regular solids,
(5) the model has to support a design methodology for actual robust algorithms.

A general methodology for the speci5cation of feasible operators and the design of
robust algorithms should rely on a sound mathematical model. This is why the authors
believe that the domain-theoretic approach is a powerful framework both to model
partial or uncertain data and to guide the design of robust software.

The paper is organized as follows. In Section 2, we introduce the solid domain, a
mathematical model for computable rigid solids, which satis5es the above properties.
Section 3 shows that the basic predicates and Boolean operations are continuous in
this model. Using a standard theory of computability for domains, Section 4 presents a
computability theory for our model, which is consistent with computing solids with a
realistic machine. Sections 5 and 6 enrich the domain-theoretic notion of computability
with a quantitative measure of convergence with respect to the Hausdor3 metric and the
Lebesgue measure, respectively. Section 7 presents our conclusion and sketches the out-
line of future work including the implementation of this framework. Finally, in the ap-
pendix, we collect together the basic notions of domain theory that we use in this paper.

2. The solid domain

In this section, we introduce the solid domain, a mathematical model for representing
rigid solids. We focus here on the set-theoretic aspects of solid modelling as Requicha

1 An open set is regular if it is the interior of its closure.
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did in introducing the r-sets model [24]. Our model is motivated by requirements
(1)–(5) given in the introduction.

For any subset A of a topological space, NA, A◦, @A and Ac denote, respectively, the
closure, the interior, the boundary and the complement of A. Recall, for example from
[8, p. 92], that an open set is regular if it is the interior of its closure; dually, a closed
set is regular if it is the closure of its interior. The complement of a regular open
set then is a regular closed set and vice versa. The interior of a regular closed set is
a regular open set, whereas the closure of a regular open set is a regular closed set.
Finally, the intersection of two regular open sets is regular. The regularization of an
open set is the interior of its closure; the regularization of a closed set is the closure
of its interior. Therefore, the regularized binary union of open sets O1 and O2 is the
set (O1 ∪O2)◦.

De�nition 2.1. The solid domain (SX; � ) of a topological space X is the set of or-
dered pairs (A; B) of disjoint open subsets of X endowed with the information order:
(A1; B1)� (A2; B2)⇔A1 ⊆A2 and B1 ⊆B2.

An element (A; B) of SX is called a partial solid: A and B are intended to capture,
respectively, the interior and the exterior (interior of the complement) of a solid object,
possibly, at some 5nite stage of computation. Note that (SX; � ) is a directed complete
partial order; the least upper bound (lub) of a directed family of partial solid objects
(Ai; Bi)i∈I is given by

⊔
i∈I (Ai; Bi) = (

⋃
i∈I Ai;

⋃
i∈I Bi). The solid domain is isomor-

phic with the function space X →{tt; ff}⊥, i.e., the collection of continuous functions
f :X →{tt; ff}⊥ ordered pointwise. Here, {tt; ff}⊥ is the lift of {tt; ff} equipped with
its Scott topology. By duality of open and closed sets, (SX; � ) is also isomorphic with
the collection of ordered pairs (A; B) of closed subsets of X with A∪B=X with the
information ordering: (A1; B1)� (A2; B2)⇔A2 ⊆A1 and B2 ⊆B1.

In fact, S is a contravariant functor on the category TOP of topological spaces and
continuous maps. Given a continuous function f :X →Y of topological spaces X and
Y , we have a continuous function Sf :SY →SX de5ned by (Sf)(A; B)=(f−1A; f−1B).

Proposition 2.2. The partial solid (A; B)∈ (SX; � ) is a maximal element i7 A=Bc◦

and B=Ac◦.

Proof. Let (A; B) be maximal. Since A and B are disjoint open sets, it follows that
A⊆Bc◦. Hence, (A; B)� (Bc◦; B) and thus A=Bc◦. Similarly, B=Ac◦. This proves the
“only if” part. For the “if part”, suppose that A=Bc◦ and B=Ac◦. Then, any proper
open superset of A will have non-empty intersection with B and any proper open
superset of B will have non-empty intersection with A. It follows that (A; B) is maximal.

Corollary 2.3. If (A; B) is a maximal element; then A and B are regular open sets.
Conversely; for any regular open set A; the partial solid (A; Ac◦) is maximal.
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Proof. For the 5rst part, note that A is the interior of the closed set Bc and is, therefore,
regular; similarly B is regular. For the second part, observe that Ac◦ c◦=(Ac◦ c)◦=( NA)◦

=A.

We de5ne (A; B)∈SX to be a classical solid object if NA∪ NB=X .

Proposition 2.4. Any maximal element is a classical solid object.

Proof. Suppose (A; B) is maximal. Then X =A∪ @A∪Ac◦ = NA∪ NB, since NA=A∪ @A
and Ac◦ ⊆Ac◦ = NB.

We need the following lemma on regular open sets for later results.

Lemma 2.5. If A is a regular open set of a topological space; then @A= @(Ac◦).

Proof. Suppose x∈ @A. Then any neighbourhood of x contains an element of A⊆Ac◦ c.
Assume now that O is a neighbourhood of x which does not contain any element of
Ac◦. Then O⊆ NA, and hence by regularity of A, we have O⊆A which contradicts
x∈ @A. This shows that @A⊆ @(Ac◦). By symmetry we also get @A ⊇ @(Ac◦), since Ac◦

is also a regular open set with Ac◦ c◦ =A.

We next show that the solid domain is continuous for a suitable class of topological
spaces.

Theorem 2.6. Let X be a locally compact Hausdor7 space. Then the solid domain
(SX; � ) is a bounded complete continuous domain and (A1; B1)�(A2; B2) i7 A1 and
B1 are compact subsets of A2 and B2; respectively. If X is second countable; then
(SX; � ) is !-continuous.

Proof. This is a simple exercise which can be proved directly or it can be deduced
from more general results as follows. From [13, p. 129, II.4.6], it follows that (SX; � )
is a continuous domain with (A1; B1)�(A2; B2) i3 there are pairs (A3; B3) of compact
sets such that A1 ⊆A3 ⊆A2 and B1 ⊆B3 ⊆B2, which gives us the desired condition
since a closed subset of a compact set in a Hausdor3 space is compact. If X is second
countable, then it will have a countable basis, which contains the empty set, is closed
under binary intersection and regularized binary union, and consists of regular open
sets whose closures are compact. The collection of pairs of disjoint elements of this
basis will provide a countable basis for (SX; � ).

Proposition 2.7. Any classical solid object (A; B)∈SX; with A 
= ∅ 
=B; of a connected;
locally compact Hausdor7 space X is maximal with respect to the way-below relation.

Proof. If (A; B)�(A′; B′)∈SX , then we must have NA⊆A′ and NB⊆B′. Therefore,
A′ ∪B′ =X with A′ 
= ∅ 
=B′. This contradicts the connectedness of X , since A′ and
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B′ are disjoint open sets. Hence, (A; B) is maximal with respect to the way-below
relation.

Remark 2.8. In fact if the lattice of open sets of a topological space X is continuous,
then [13, II.4.6, p. 129] implies that (SX; � ) is a continuous domain. In particular,
it follows that one does not need X to be Hausdor3: the solid domain of any locally
compact space is continuous. In that case we have: (A1; B1)�(A2; B2) i3 there are pairs
(A3; B3) of compact saturated sets 2 such that A1 ⊆A3 ⊆A2 and B1 ⊆B3 ⊆B2. In this
paper, however, we will restrict our attention to locally compact Hausdor3 spaces only.

In practice, we are often interested in the subdomain SbX of bounded partial solids
which is de5ned as SbX = {(A; B)∈SX |Bc is compact}∪ {(∅; ∅)}, ordered by inclu-
sion. It is easy to see that SbX is a subdcpo of SX .

Proposition 2.9. If X is a (second countable) locally compact Hausdor7 space; SbX
is (!)-continuous with the way-below relation given by (A1; B1)�(A2; B2) i7 A1 is a
compact subset of A2 and Bc

2 ⊆Bc◦
1 .

From now on, unless otherwise stated, X is a locally compact second countable
Hausdor3 space.

3. Predicates and operations on solids

We will next de5ne the membership predicate on SX . In order to motivate our
de5nition, assume for the discussion below that X =Rd. Given any proper subset of
S ⊆Rd, the classical membership predicate ∈S :Rd →{tt; ff} is continuous except on
@S. In fact, if S is an open or closed set, then its boundary has empty interior and
it is not decidable that a point is on @S. For example, if X =R and S is the set of
positive numbers, then a real number x∈R is on the boundary of S i3 x = 0 which
is not decidable in computable analysis [22, p. 23]. It therefore makes sense from a
computational viewpoint to rede5ne the membership predicate as the continuous func-
tion: ∈′

S :Rd →{tt; ff}⊥ where the value ⊥ is taken on @S. We call this the continuous
membership predicate. Then, two subsets are equivalent if and only if they have the
same continuous membership predicate, i.e., if they have the same interior and the
same exterior (interior of complement). By analogy with general set theory for which
a set is completely de5ned by its membership predicate, the solid domain can be seen
as the collection of subsets that can be distinguished by their continuous membership
predicates. The de5nition of the solid domain is then consistent with requirement (1)
since a computable membership predicate has to be continuous.

Our de5nition is also consistent with requirement (2) in a closely related way. We
consider the idealization of a machine used to measure mechanical parts. Two parts

2 A set is saturated if it is upper closed with respect to the specialization ordering.
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Fig. 1. The membership predicate of a partial solid object of the unit square.

corresponding to equivalent subsets cannot be distinguished by such a machine. More-
over, partial solids, and, more generally, domain-theoretically de5ned data types allow
us to capture partial, or uncertain input data [7, 21] encountered in realistic CAD situ-
ations. In order to be able to compute the continuous membership predicate on X , we
extend it to the upper space UX by de5ning −∈− :UX ×SX →{tt; ff}⊥ with:

C ∈ (A; B) =



tt if C ⊆ A;

ff if C ⊆ B;

⊥ otherwise:

Note that we use the in5x notation for predicates and Boolean operations. When
X =Rd, it is more convenient to use the interval domain IRd instead of the upper
space and de5ne the membership predicate as: −∈− : IRd ×SRd →{tt; ff}⊥ (Fig. 1).

We de5ne the predicate −⊆− :SbX ×SX →{tt; ff}⊥, by

(A; B) ⊆ (C;D) =



tt if B ∪ C = X;

ff if A ∩ D 
= ∅;
⊥ otherwise:

The restriction to SbX will ensure that −⊆− is continuous, as we will see below.
Starting with the continuous membership predicate, the natural de5nition for the com-
plement would be to swap the values tt and ff. This means that the complement of
(A; B) is (B; A), cf. requirement (3).

As for requirement (4), the 5gure below represents a subset S of X = [0; 1]2 that is
not regular (Fig. 2). Its regularization removes both the external and internal “dangling
edge”. This set can be captured in our framework but not in the Requicha model. Here
and in subsequent 5gures, the two components A and B of the partial solid are, for
clarity, depicted separately below each picture.

Next we consider the Boolean operators. First note that the regularization opera-
tor R :SX →SX de5ned by R((A; B)) = (( NA)◦; ( NB)◦) is not continuous, and hence not
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Fig. 2. Representation of a non-regular solid.

computable. To see this, suppose X =R and consider the partial solid (R\{0}; ∅). Then

⊔
n¿1

(
R
∖[

−1
n
;
1
n

]
; ∅

)
= (R\{0}; ∅);

but

⊔
n¿1

R
(
R
∖[

−1
n
;
1
n

]
; ∅

)
=

⊔
n¿1

(
R
∖[

−1
n
;
1
n

]
; ∅

)

= (R\{0}; ∅) 
= (R; ∅) = R((R\{0}; ∅)):

Furthermore, the regularized union [24, 25] of two adjacent three dimensional boxes
(i.e., product of intervals) is not computable, since, to decide whether the adjacent
faces are in contact or not, one would have to decide the equality of two real numbers
which is not computable. Requirements (1) and (3) entail the existence of Boolean
operators which are computable with respect to a realistic machine model (e.g., the
Turing machine).

In order to de5ne Boolean operators on the solid domain, we obtain the truth table
of logical Boolean operators on {tt; ff;⊥}. Consider the logical Boolean operator “or”,
which, applied to the continuous membership predicates of two partial solids, would
de5ne their union.

∨ tt ff ⊥
tt tt tt tt
ff tt ff ⊥
⊥ tt ⊥ ⊥

This is indeed the truth table for parallel or in domain theory; see [2, p. 133]. One can
likewise build the truth table for “and”. Note the similarities with the (In, On, Out)
points classi5cations used in some boundary representation based algorithms [26, 3].
From these truth tables, we can deduce the de5nition of Boolean operators on partial
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Fig. 3. The union operation on the solid domain.

solids:

(A1; B1) ∪ (A2; B2) = (A1 ∪ A2; B1 ∩ B2);

(A1; B1) ∩ (A2; B2) = (A1 ∩ A2; B1 ∪ B2):

One can likewise de5ne the n-ary union and the n-ary intersection of partial solids.
Note that, given two partial solids representing adjacent boxes, their union would not
represent the set-theoretic union of the boxes, as illustrated in Fig. 3

Theorem 3.1. The following maps are continuous:
(i) The predicates; −∈− :UX ×SX →{tt; ff}⊥ and −∈− : IRd ×SRd →{tt; ff}⊥.
(ii) The binary union −∪− :SX ×SX →SX and more generally the n-ary union⋃

: (SX )n →SX for any topological space X .
(iii) The binary intersection −∩− :SX ×SX →SX and more generally the n-ary

intersection
⋂

: (SX )n →SX for any topological space X .
(iv) −⊆− :SbX × SX →{tt; ff}⊥; for any Hausdor7 space X .

Proof. (i) The proof is similar in both cases. A function of two variables on domains
is continuous i3 it is continuous in each variable separately when the other variable
is 5xed [2, p. 12]. From this, we obtain the required continuity, in both cases, by
observing that a non-empty compact set is contained in the union of an increasing
sequence of open sets i3 it is contained in one such open set.

(ii) This follows from the distributivity of ∪ over ∩.
(iii) Follows from (ii) by duality.
(iv) The function ⊆ is clearly monotone. To see that it is continuous in the 5rst

argument when the second argument (C;D) is held 5xed, let (Ai; Bi)i∈I be a directed
family in SbX . Then, (

⋃
i∈I Bi)∪C =X i3

⋂
i∈I B

c
i ⊆C i3 there exists i∈ I such that

Bc
i ⊆C, by compactness of Bc

i [8, p. 226]. On the other hand (
⋃

i∈I Ai)∩D 
= ∅ i3
there exists i∈ I such that Ai ∩D 
= ∅. To show that it is continuous in the second
argument when the 5rst argument (A; B) is held 5xed, let (Ci; Di)i∈I be a directed
family in SX . Then, B∪ ⋃

i∈I Ci =X i3 Bc ⊆ ⋃
i∈I Ci i3 there exists i∈ I such that

Bc ⊆Ci, by compactness of Bc. Moreover, A∩ (
⋃

i∈I Di) 
= ∅ i3 there exists i∈ I such
that A∩Di 
= ∅.
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We can also show the stability of classical solids under Boolean operations.

Theorem 3.2. In any topological space; classical solid objects are stable under the
Boolean operations.

Proof. We show that −∩− preserves classical solids; the case of −∪− follows
by duality. Let (A1; B1) and (A2; B2) be two classical solids of the topological space X ,
so that Ai ∪Bi =X for i = 1; 2. To show that (A1 ∩A2)∪ (B1 ∪B2) =X , assume x∈X ,
with x =∈B1 ∪B2. Then, there exist open neighbourhoods Di of x with Di ∩Bi = ∅,
i = 1; 2. Hence, D1 ∩D2 ⊆A1 ∩A2. Let O be any neighbourhood of x. We will
show that O∩A1 ∩A2 
= ∅. Put D =O∩D1 ∩D2. From D⊆A1 ∩A2, it follows that
there exists a non-empty open set D′ ⊆D with D′ ⊆A1. Since D′ ⊆A2, there exists
a non-empty open set D′′ ⊆D′ with D′′ ⊆A2. We conclude that O∩A1 ∩A2 ⊃ D′′ 
= ∅,
as required.

3.1. Minkowski sum

We now introduce the Minkowski sum operation for partial solids of X =Rd. Recall
that the Minkowski sum of two subsets S1; S2 ⊆Rd is de5ned as

S1 ⊕ S2 = {x + y | x ∈ S1; y ∈ S2};

where x + y is the vector addition in Rd. For convenience, we will use the same
notation ⊕ for the Minkowski sum on the solid domain, which is de5ned as a function
−⊕− : (SbRd) × (SRd)→SRd by

(A1; B1) ⊕ (A2; B2) = ((A1 ⊕ A2); (Bc
1 ⊕ Bc

2)c):

Lemma 3.3. −⊕− : (SbRd)× (SRd)→SRd is well de=ned.

Proof. Since the Minkowski sum of an open set with any other set is always open,
A1 ⊕ A2 is open. We show that the Minkowski sum K ⊕ L of any compact set K and
any closed set L is always closed. It is suHcient to show that K ⊕ L contains all its
limit points. Let xn + yn with xn ∈K and yn ∈L be a convergent sequence with limit
z ∈Rd. Since K is compact, xn has a convergent subsequence xnk with limit a∈K .
Since the subsequence xnk + ynk converges to z, it follows that limk→∞ xnk = z− a∈L,
as L is closed. Hence z = a + (z − a)∈K ⊕ L and, thus, K ⊕ L is closed. Since, by
assumption, Bc

1 is compact, we conclude that (Bc
1 ⊕ Bc

2)c is open. It remains to show
that (A1 ⊕ A2) and (Bc

1 ⊕ Bc
2)c are disjoint. This follows easily as A1 ⊆Bc

1 and A2 ⊆Bc
2

implies (A1 ⊕ A2)⊆ (Bc
1 ⊕ Bc

2).

Corollary 3.4. The Minkowski sum operation restricts to a map:

−⊕− : (SbRd) × (SbRd) → SbRd:
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Proof. This follows immediately from the fact that the Minkowski sum of two compact
sets is bounded as well as closed.

Note that the Minkowski sum of two closed sets is not necessarily closed; for ex-
ample, in R2, the set S = {(x; y)|y ¿ 0} ⊕ {(x; y)|y ¿ exp x} is not closed as the
sequence (−n; exp(−n)) + (n; 0) = (0; exp(−n)) converges to (0; 0) =∈ S. That is why
we need to restrict the second argument of the Minkowski operator to SbRd.

Theorem 3.5. The map −⊕− : (SbRd) × (SRd)→SRd is continuous.

Proof. Clearly ⊕ is monotonic in the 5rst argument and also, because of two com-
plementation operations, in the second argument. We check the continuity in the
5rst argument when the second is 5xed as (C;D). Let (Ai; Bi)i∈! be an increasing
chain of partial solids with lub (A; B). We have to show the following two relations:⋃

i∈!(Ai ⊕ C)⊇ (
⋃

i∈! Ai) ⊕ C and
⋃

i∈!(Bc
i ⊕ Dc)c ⊇ ((

⋃
i∈! Bi)c ⊕ Dc)c. The 5rst

is trivial; as for the second we need to show that:
⋂

i∈!(Bc
i ⊕ Dc)⊆ (

⋂
i∈! Bc

i ) ⊕ Dc.
Let z ∈ ⋂

i∈! (Bc
i ⊕ Dc), which, being the intersection of closed sets, is closed.

Then, for each natural number i, there exists xi ∈Bc
i and yi ∈Dc such that z = xi + yi.

Since Bc
0 is compact, there exists a subsequence (xin)n∈! which converges to x∈Bc.

Hence (yin)n∈! converges to z− x which must belong to Dc. Therefore, z = x+ (z− x)
∈ (

⋂
i B

c
i )⊕Dc. The continuity of −⊕− when the 5rst argument is 5xed is proved in

a similar way.

Unlike the two Boolean operations, the Minkowski operation does not preserve clas-
sical solid objects. For example, in S[0; 4]

([0; 1); (1; 4]) ⊕ (∅; [0; 4]\{2}) = (∅; [0; 2) ∪ (3; 4]);

which is not a classical solid. However, we have the following.

Proposition 3.6. The map − ⊕ − : (SbRd) × (SRd)→SRd takes any two maximal
elements to a classical solid.

Proof. Let (A; B)∈SbRd and (C;D)∈SRd be maximal elements. Then, Bc = NA and
Dc = NC. We show that A⊕ C = NA⊕ NC. Since Bc⊕Dc is closed, we have A⊕ C ⊆ NA⊕ NC.
On the other hand, let a + c∈ NA⊕ NC. Then, there are sequences (an)n∈! and (cn)n∈!,
with an ∈A and cn ∈C, for all n∈!, such that a= lim an and c= lim cn. Therefore,
a + c= lim an + lim cn = lim(an + cn)∈A⊕ C. It follows that Bc ⊕ Dc =A⊕ C, and
we conclude that (A; B) ⊕ (C;D) = (A⊕ C; (A⊕ C)c) is a classical solid.

4. Computability on the solid domain

Let X be a second countable locally compact Hausdor3 space. Then UX and SX are
both !-continuous bounded complete dcpo’s. We will now de5ne e3ective structures for
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UX and SX . Let O be a countable basis of regular open sets with compact closure for
X , which contains the empty set, is closed under regularized binary unions and under
binary intersections. Consider an e3ective enumeration, i.e., a surjection, O :N→O,
such that there is an e3ective procedure to obtain O(i) for any i∈N. For convenience,
we write Oi for O(i) and often denote the enumeration O by (Oi)i∈!. Here, we assume
that O0 = ∅ and stipulate that, for any n¿ 1, the relation Oi ⊆

⋃
16m6n Ojm is decidable.

This, by the way, means that, in the continuous lattice of open subsets of X , the way-
below relation on the basis O is decidable. Since Oi = ∅ i3 Oi ⊆O0, it follows that the
equality relation Oi = ∅ is decidable and we can assume, by rede5ning the enumeration
O, that Oi = ∅ i3 i = 0. Furthermore, we assume that the binary intersection and the
regularized binary union of basis elements are computable, i.e., there exist two total
recursive functions  ;  :N×N→N such that (Oi ∪Oj)

◦ =O (i; j) and Oi ∩Oj =O (i; j).
In particular, this implies that the relation Oi ∩Oj = ∅ is decidable.

De�nition 4.1. Let (Oi)i∈! be an e3ective enumeration of a basis of a second countable
locally compact Hausdor3 space X; consisting of regular open sets with compact clo-
sure. Assume further that the basis is closed under binary intersection and regularized
binary union. We say that the e3ective enumeration (Oi)i∈! is an e3ective structure
for X; if the following conditions hold:
• Oi = ∅ i3 i = 0.
• For any n¿ 1, the relation Oi ⊆

⋃
16m6n Ojm is decidable.

• There exist total recursive functions  ;  :N×N→N such that (Oi ∪Oj)
◦ =O (i; j)

and Oi ∩Oj =O (i; j).
If X is compact, we will assume the further condition that, for each positive integer
n, the relation

⋃
16m6n Oim =X is decidable.

Note that the closure of the basis under binary intersection and regularized union
implies its closure under 5nite intersections and regularized 5nite unions. For example,
if A, B and C are open sets then it is easy to check that (A∪B∪C)◦ = ((A∪B)◦ ∪C)◦.
From the e3ective enumeration O of the basis O, we can obtain an e3ective enumeration
of the basis S of SX , consisting of pairs of disjoint elements of O. In fact, there are
total recursive functions "; # :N→N such that S :N→S, with Sn = (O"(n); O#(n)), gives
an e3ective enumeration of S, with the relation Si�Sj decidable.

The collection C= { NO |O∈O}∪ {⊥} is a countable basis for the !-continuous do-
main UX , with an e3ective enumeration C :N→C de5ned by C0 =⊥ and Ci =Oi

for i ¿ 1. Notice that, we have Cj�Ci in UX i3 Oi ⊆Oj; therefore, the way-below
relation, Ci�Cj, on C is decidable.

Having equipped SX and UX with the above e3ective structure, we can now deduce
the computability of the basic predicates and operations.

Theorem 4.2. The following functions are computable with respect to the e7ective
structures on UX and SX .
(i) The membership predicate; −∈− :UX × SX →{tt; ff}⊥.



A. Edalat, A. Lieutier / Theoretical Computer Science 284 (2002) 319–345 331

(ii) The binary union −∪− :SX × SX →SX and more generally the n-ary union
∪ : (SX )n →SX .

(iii) The binary intersection; −∩− :SX × SX →SX and more generally the n-ary
intersection ∩ : (SX )n →SX .

(iv) −⊆− :SX × SX →{tt; ff}⊥; where X is assumed to be compact.

Proof. (i) We have to show that the relations (Ci ∈ Sn) = tt and (Ci ∈ Sn) = ff are both
r.e. The 5rst reduces to Ci ⊆O"(n), in other words, Oi ⊆O"(n), which is in fact decidable
by assumption. The second is similarly decidable.

(ii) We have to show, in the binary case, that the relation Sn�Si ∪ Sj is r.e. Writ-
ing this relation in detail, it reduces to (O"(n); O#(n))�(O"(i) ∪O"(j); O (#(i); #(j))), i.e.,
O"(n) ⊆O"(i) ∪O"(j) and O#(n) ⊆O (#(i); #(j)), which are both decidable. The n-ary case
is similar.

(iii) Dual to (ii).
(iv) The relations (Si ⊆ Sj) = tt and (Si ⊆ Sj) = ff reduce to O#(i) ∪O"(j) =X and

O ("(i); #(j)) 
= ∅, which are both decidable.

Remark 4.3. If X is a compact second countable Hausdor3 space, one can actually
work with a simpler basis of UX consisting of Ki = Oc

i for each i ¿ 0. Then, we
have Ki�Kj in UX i3 Oi ⊆ Oj. In this case, the e3ective structure on the lattice of
open subsets of X , gives the e3ective structure on UX as well as on SX .

4.1. E7ective structure over SRd

In order to endow SRd with an e3ective structure, we introduce two di3erent count-
able bases that are recursively equivalent, but correspond to di3erent types of algorithms
in use. The 5rst basis, made of partial dyadic voxel sets, corresponds to the discrete
geometry approach, while the second one, made of partial rational polyhedra, is more
consistent with the computational geometry point of view and will be the basis for
eHcient algorithms. The computability of Boolean and Minkowski operators is easier
to prove using the partial dyadic voxel sets representation.

4.1.1. Partial dyadic voxel sets
A dyadic number is a rational number whose denominator is a power of 2. Given a

natural number n, we divide the cube [−2n; 2n]d into 2(2n+1)d small cubes each of length
2−n, the coordinates of the 2d vertices of each small cube will then be integer multiples
of 2−n, that is, dyadic numbers. We consider these small cubes as closed cubes: two
adjacent cubes overlap along their common face (or k-edge, 0 6 k 6 d− 1).

A dyadic voxel set of order n is the interior of a 5nite union of these small cubes.
We have then 22(2n+1)d

distinct dyadic voxel sets of order n, including the trivial ones,
that is the empty set and the whole cube [−2n; 2n]d itself. Notice that dyadic voxel
sets of order n are regular open sets with compact closure (Fig. 4).
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Fig. 4. Voxel sets of di3erent orders.

Of course, if n¡m, the dyadic voxel sets of order n are dyadic voxel sets of order
m. We say that a voxel set V has strict order n if V is of order n but is not of order
k for k¡n.

The set V of all the dyadic voxel sets of any order n= 0; 1; 2; : : : can be e3ectively
enumerated by V :N→V as follows. We put V0 = ∅ and then start by 5rst enumerating,
in a given prescribed way, the dyadic voxel sets of strict order 0, then those of strict
order 1, and so on. Then, there exists a total recursive function r :N→N such that,
for each i∈N, Vi will be a voxel set of strict order r(i), which would be explicitly
given as the interior of the union of its small cubes.

Clearly, Vi = ∅ i3 i = 0 and the relations Vi ⊆
⋃

16m6n Vj and Vi ⊆
⋃

16m6n Vj are
decidable for each n¿ 1.

The intersection and the regularized union of dyadic voxel sets of order n are dyadic
voxel sets of order n and computing the index of the binary intersection and the
regularized binary union of dyadic voxel sets from their indices is a 5nite procedure.
This therefore gives an e3ective structure for Rn in the sense of De5nition 4.1. From
the e3ective enumeration (Vi)i∈! one can construct an e3ective enumeration (Vi)i∈!

of the partial dyadic voxel sets, that is the pairs Vi = (V"(i); V#(i)), with " and # total
recursive functions, such that V"(i) ∩V#(i) = ∅, with V0 = (∅; ∅). Then, (Vi)i∈! provides
us with a basis of SRd and a partial solid (A; B) ∈ SRd is computable if and only if the
set {i ∈ N |Vi�(A; B)} is r.e. We can endow S[−a; a]d, where a¿0 is a computable
real number, with an e3ective structure by using the intersection of voxel sets with the
cube S[−a; a]d:

One can then apply the results of the previous section to deduce:

Corollary 4.4. The following functions are computable with respect to the e7ective
structures on IRd; SRd and S[−a; a]d.
(i) − ∈ − : IRd ×SRd →{tt; ff}⊥:
(ii) − ∪− : SRd ×SRd →SRd:
(iii) − ∩− : SRd ×SRd →SRd:
(iv) − ⊆ − : S[−a; a]d ×S[−a; a]d →{tt; ff}⊥:
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In order to study the computability of the Minkowski sum, we need a basis for the
domain SbRd of bounded partial solids. Recall that the non-bottom elements of SbRd

are of the form (A; B), with A and B open and Bc bounded, and therefore compact.
The second component, B, will be approximated by the interiors of complements of
dyadic voxel sets.

From the e3ective enumeration (Vi)i∈! one can obtain an e3ective enumeration
(Wi)i∈! of the partial bounded dyadic voxel sets. There are total recursive functions
' and ( such that W0 = (∅; ∅) and, for i¿0; Wi = (V'(i); V c◦

((i)) where V'(i) ⊆V((i), which
is decidable. This provides us with a basis for SbRd.

Proposition 4.5. Given basis elements Wi and Vj of SbRd and SRd; respectively; there
is a total recursive function  : N×N→N such that V (i; j) =Wi ⊕Vj. Given ba-
sis elements Wi and Wj of SbRd; there is a total recursive function  such that
W (i; j) =Wi ⊕Wj.

Proof. The computation reduces to computing either the Minkowski sum of two dyadic
voxel sets, or the Minkowski sum of a dyadic voxel set and the complement of a dyadic
voxel set. This is clearly a 5nite procedure.

Corollary 4.6. The following maps are computable

• − ⊕− : (SbRd)× (SRd)→SRd;
• − ⊕− : (SbRd)× (SbRd)→SbRd;
• − ⊆ − : (SbRd)× (SRd)→{tt; ff}⊥.

4.1.2. Partial rational polyhedra
A rational d-simplex in Rd is the convex hull of d+1 points with rational coordinates

that do not lie on the same hyper-plane. An open rational polyhedron is the interior
of a 5nite union of rational d-simplexes. Starting with an e3ective enumeration of
the rational d-simplexes, one can obtain an e3ective enumeration (Pi)i∈! of the set
of open rational polyhedra with Pi = ∅ i3 i = 0. The relations Pi ⊆

⋃
16m6n Pj and

Pi ⊆
⋃

16m6n Pj are decidable for each n¿ 1. Rational polyhedra are closed under the
binary intersection and the regularized binary union. These operations are computable
as they rely only on rational arithmetic and comparison of rational numbers.

A partial open rational polyhedron is a pair of disjoint open rational polyhedra.
From the e3ective enumeration (Pi)i∈! of open rational polyhedra, one can obtain an
e3ective enumeration (Pi)i∈! of the partial open rational polyhedra.

Partial dyadic voxel sets are trivially partial open rational polyhedra. Moreover, they
de5ne the same notion of computability, in other words.

Proposition 4.7. Pi�Vj and Vi�Pj are decidable in i and j.

From this equivalence, it follows that a partial solid object, or a map, is com-
putable with respect to the e3ective structure by partial open rational polyhedra if
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and only if it is computable with respect to the e3ective structure by partial dyadic
voxel sets.

One can de5ne a basis of SbRd exactly in the same way as with partial dyadic voxel
sets.

Our domain-theoretic notion of computability so far has the essential weakness of
lacking a quantitative measure for the rate of convergence of basis elements to a com-
putable element. This shortcoming can be redressed by enriching the domain-theoretic
notion of computability with an additional requirement which allows a quantitative de-
gree of approximation. We will see in the next two sections that this can be done in
at least two di3erent ways.

5. Hausdor, computability

In this section we will enrich the notion of computability with convergence with
respect to the Hausdor3 metric. Let X be a compact metric space, with its solid do-
main SX e3ectively given by a basis (Si)i∈!, with Si = (O"(i); O#(i)). Let dH denote
the Hausdor3 distance between compact sets with the convention that dH(∅; ∅) = 0
and for Y 
= ∅; dH(∅; Y ) =∞ of real numbers. We assume that the three double se-
quences (dH(Oi; Oj))i; j∈!; (dH(Oi; Oc

j ))i; j∈! and (dH(Oc
i ; O

c
j ))i; j∈! of real numbers are

computable.

De�nition 5.1. A partial solid (A; B) is Hausdor7 computable if there is a total recur-
sive function f such that:
• A=

⋃
i∈! O"(f(i)) with dH( NA;O"(f(i)))¡2−i and dH(Ac; Oc

"(f(i)))¡2−i.
• B=

⋃
i∈! O#(f(i)) with dH( NB;O#(f(i)))¡2−i and dH(Bc; Oc

#(f(i)))¡2−i.

Lemma 5.2. Let (Ai)i∈! be a decreasing sequence of compact subsets of a compact
metric space X and

⋂
i∈! Ai =A. Then dH(Ai; A)→ 0 and dH(Ac

i ; Ac)→ 0.

Proof. Let B* be the open ball of radius * centred at the origin. Consider

A⊕ B* = {x ∈ X | ∃a ∈ A: d(x; a) ¡ *}:

Then, there exists i∈! such that Ai ⊆A⊕B* [8, p. 226]. It follows that dH(Ai; A) 6 *.
Furthermore, we have Ac ⊆ ⋃

i∈! Ac
i ⊕B*. It follows that there exists i∈! such that

Ac ⊆Ac
i ⊕B*, and hence, dH(Ac

i ; Ac) 6 *.

Proposition 5.3. A computable maximal element of SX is Hausdor7 computable.

Proof. Let (A; B) be a computable maximal element of SX . From the regularity of A
and B, we get NA=Bc and NB=Ac. From the computability of (A; B) in SX , it follows



A. Edalat, A. Lieutier / Theoretical Computer Science 284 (2002) 319–345 335

Fig. 5. Intersection does not preserve Hausdor3 computability.

that there exists a total recursive function + such that

(A; B) = (
⋃
i∈!

O"◦+(i);
⋃
i∈!

O#◦+(i));

where the two sequences of basis elements are both increasing. For convenience, put
Ai =O"◦+(i) and Bi =O#◦+(i). We have, Ac =

⋂
i∈! Ac

i and Bc =
⋂

i∈! Bc
i . Since X is

compact, Ac; Ac
i ; Bc and Bc

i are also compact.
Applying Lemma 5.2, we get: dH(Ac

i ; A
c)→ 0; dH(Ai; NA)→ 0; dH(Bc

i ; B
c)→ 0, and

dH(Bi; NB)→ 0. Using NA=Bc and the triangular inequality we deduce: dH(Ai; Bc
i )→ 0

and similarly dH(Bi; Ac
i )→ 0.

Since "; # and + are total recursive functions, (dH(Ai; Bc
i ))i∈!, i.e. (dH(O"◦+(i);

Oc
#◦+(i)))i∈! and (dH(Bi; Ac

i ))i∈!, i.e. (dH(O#◦+(i); Oc
"◦+(i)))i∈!, are computable

sequences of real numbers. Therefore, we can e3ectively 5nd the 5rst integer k(i)∈N
such that: dH(Ak(i); Bc

k(i))¡2−i and dH(Bk(i); Ac
k(i))¡2−i. Now, given three subsets E; F

and G, with E⊆F ⊆G, we can check easily that: dH(E; F) 6 dH(E;G) and dH(F;G)
6 dH(E;G). Applying this to Ak(i) ⊆ NA=Bc ⊆Bc

k(i) and Bk(i) ⊆ NB=Ac ⊆Ac
k(i), it follows

that:

dH(Bk(i); NB) ¡ 2−i ; dH(Bc; Bc
k(i)) ¡ 2−i ;

dH(Ak(i); NA) ¡ 2−i ; dH(Ac; Ac
k(i)) ¡ 2−i ;

which completes the proof.

From the de5nition, it is clear that the complement (B; A) of a partial solid (A; B) is
Hausdor3 computable if and only if (A; B) is Hausdor3 computable. However, Boolean
operators do not preserve Hausdor3 computability in general, as we will show in the
following example (Fig. 5).

Example 5.4. We will construct Hausdor3 computable maximal elements (A; B) and
(A′; B′) of S([0; 1]× [−1; 1]) which have a non-Hausdor3 computable intersection. Let
(an)n∈! be a computable, increasing sequence of rational numbers, with a0¿0, whose
limit is a non-computable, left-computable real number l¡1.
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Let gn : [0; 1]→ [0; 1], for n∈N, be de5ned by

gn(t) =

{
2−n(1 − t

an
) if t ¡ an;

0 if t ¿ an:

Then, put fn = max{gi | 0 6 i 6 n}; An = {(x; y)∈ [0; 1]× [−1; 1] |fn(x) + 2−n¡y}
and Bn = {(x; y)∈ [0; 1]× [−1; 1] |y¡fn(x)}.

The sets A=
⋃

i∈! Ai and B=
⋃

i∈! Bi are regular and (A; B) is a Hausdor3 com-
putable, maximal element of S([0; 1]× [−1; 1]). The partial solid (A′; B′) with A′ = [0; 1]
× [−1; 0) and B′ =A′ c = [0; 1]× (0; 1] is Hausdor3 computable. Consider the intersec-
tion (A; B)∩ (A′; B′) = (A∩A′; B∪B′). We have A∩A′ = ∅ and B∪B′ = ([l; 1]×{0})c.

If the last component were Hausdor3 computable, there would be a computable
sequence of basis elements (Xi)i∈! such that dH(X c

i ; [l; 1]×{0})¡2−i. But this is in
contradiction with the non-computability of l.

6. Lebesgue computability

We now consider the notion of measure-theoretic computability which is closed under
Boolean operations and can be expressed for solids on locally compact spaces as well.
Suppose we have the e3ective structure, introduced in Section 4, on the solid domain
SX of a second countable locally compact space X , given in terms of the countable
basis O. Let 2 be a 5nite Borel measure on X , such that (2(Oi))i∈! is a computable
sequence of real numbers. If (A; B)∈SX is computable then

(A; B) =
⊔
i∈!

S((i) =
⊔
i∈!

(O"(((i)); O#(((i)))

for a total recursive function ( :N→N such that (S((i))i∈! is an increasing chain. It
follows that (2(O"(((i))))i∈! and (2(O#(((i))))i∈! are computable increasing sequences
of real numbers which converge to 2(A) and 2(B), respectively. Hence, 2(A) and 2(B)
are left-computable real numbers. We say that the computable partial solid (A; B) is 2-
computable if 2(A) and 2(B) are both computable real numbers. It follows that (A; B) is
2-computable i3 there exists a total recursive function ( such that 2(A)−2(O"(((i)))¡ 1

2i

and 2(B)−2(O#(((i)))¡ 1
2i , for all i∈N. The de5nition extends naturally to computable

elements of (SX )m for any positive integer m.

Proposition 6.1. If 2(X ) is a computable real number and (A; B) ∈ SX is computable
with 2(X \(A∪B)) a left-computable real number; then (A; B) is 2-computable.

Proof. We have the disjoint union X =A∪B∪ (X \(A∪B)). Since 2(B) and 2(X \(A
∪B)) are left-computable, it follows that 2(A) = 2(X ) − 2(B) − 2(X \(A∪B)) is also
right-computable, and, hence, computable. Similarly 2(B) is computable.
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Corollary 6.2. If 2(X ) is a computable real number and (A; B)∈SX is a computable
maximal element with 2(@A) = 0; then (A; B) is 2-computable.

Proof. By Lemma 2.5, @A= @B. Hence 2(X \(A∪B)) = 2(@A) = 0.

We say that a computable sequence of partial solids ((An; Bn))n∈! is 2-computable
if (2(An))n∈! and (2(Bn))n∈! are computable sequences of real numbers. As for com-
putable elements, the de5nition extends naturally to computable sequences of (SX )m

for any positive integer m. If ((An; Bn))n∈! is a computable sequence of partial solid
objects, then there exist total recursive functions a and b with (An; Bn) =

⊔
i∈!(Oa(n; i);

Ob(n; i)) where the sequences of open sets are increasing.

Lemma 6.3. Suppose ((An; Bn))n∈! is a computable sequence of partial solids; with
(An; Bn) =

⊔
i∈!(Oa(n; i); Ob(n; i)) for total recursive functions a and b where the se-

quences of open sets are increasing. Then; ((An; Bn))n∈! is 2-computable i7 there
exist total recursive functions r; s : N×N→N such that

2(An) − 2(Oa(n;r(n;i))) 6 2−i ; 2(Bn) − 2(Ob(n;s(n;i))) 6 2−i :

Proof. Since (2(Oj))j∈! is a computable sequence of real numbers, it follows that
(2(Oa(n; j)))n; j∈! is a computable double sequence of real numbers. Since
(2(Oa(n; j)))n; j∈! converges monotonically upwards to the sequence (2(An))n∈! as j→∞,
it follows by [22, Proposition 2, p. 20], that the convergence is e3ective in both n and
j, i.e. the recursive function r, with the required property exists, i3 (2(An))n∈! is
a computable sequence of real numbers. Similarly, the recursive function s with the
required property exists i3 (2(Bn))n∈! is a computable sequence of real numbers.

A computable function f : (SX )m →SX is said to be 2-computable if it takes any
2-computable sequence of m-tuples of partial solids to a 2-computable sequence of
partial solids.

Theorem 6.4. The binary operations − ∪ − and − ∩ − are 2-computable. More
generally; the n-ary operations of ∪ and ∩ are 2-computable.

Proof. Let ((An; Bn))n∈! and ((Cn; Dn))n∈! be 2-computable sequences of partial solids
with (An; Bn) =

⊔
i∈!(Oa(n; i); O(n; i)) and (Cn; Dn) =

⊔
i∈!(Oc(n; i); Od(n; i)), where the se-

quences of open sets are increasing and a–d are total recursive functions.
Since, by Theorem 4.2, −∪− is computable, it sends computable sequences to com-

putable sequences. Hence ((An ∪Cn; Bn ∩Dn))n∈! is a computable sequence of partial
solids. We show that (2(An ∪Cn))n∈! and (2(Bn ∩Dn))n∈! are computable sequences
of real numbers.

Let r and s be total recursive functions, given by Lemma 6.3, such that

2(An) − 2(Oa(n; r(n; i))) 6 2−i ; 2(Cn) − 2(Oc(n; s(n; i))) 6 2−i :
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Then, for the total recursive function u de5ned by u(n; i) = max(r(n; i); s(n; i)), we have

2(An ∪ Cn) − 2(Oa(n; u(n; i)) ∪ Oc(n; u(n; i))) = 2((An ∪ Cn)\(Oa(n; u(n; i)) ∪ Oc(n; u(n; i))))

6 2((An\Oa(n; u(n; i))) ∪ (Cn\Oc(n; u(n; i))))

6 2(An\Oa(n; u(n; i))) + 2(Cn\Oc(n; u(n; i)))

6 2−i+1:

We have

2(Oa(n; u(n; i)) ∪ Oc(n; u(n; i))) = 2(Oa(n; u(n; i))) + 2(Oc(n; u(n; i)))

−2(Oa(n; u(n; i)) ∩ Oc(n; u(n; i))):

Since Oa(n; u(n; i)) ∩Oc(n; u(n; i)) =O (a(n; u(n; i)); c(n; u(n; i))), it follows that 2(Oa(n; u(n; i)) ∩
Oc(n; u(n; i)))n; i∈! is a computable double sequence of real numbers. Therefore
(2(Oa(n; u(n; i)) ∪Oc(n; u(n; i)))n; i∈! is the linear sum of three computable double sequences
of real numbers. Hence (2(Oa(n; u(n; i)) ∪Oc(n; u(n; i)))n; i∈! is itself a computable double
sequence of real numbers, which converges, as i→∞, to (2(An ∪Cn))n∈! e3ectively
in i and n, as the above calculation shows. Therefore, by [22, Proposition 1, p. 20],
(2(An ∪Cn))n∈! is a computable sequence of real numbers. Similarly, (2(Bn ∩Dn))n∈!

is a computable sequence of real numbers. This establishes the 2-computability of
− ∪ −. The case of − ∩ − follows by duality. The case of the n-ary operations of ∪
and ∩ is similar.

Now suppose 2 is a locally 5nite Borel measure, i.e., one which is 5nite on any
compact subset of X , such that (2(Oi))i∈! is a computable sequence of real numbers.

We say that a partial solid object (A; B)∈SX is 2-computable if
2(A∩On)n∈! and 2(B∩On)n∈! are computable sequences of real numbers. The se-
quence of partial solids ((An; Bn))n∈! is 2-computable if (2(An ∩Om))n;m∈! and (2(Bn ∩
Om))n;m∈! are computable sequences of real numbers. These de5nitions extend natu-
rally to computable elements and to sequences of elements of (SX )k for any positive
integer k. We say that a computable map P :SX →SY is 2-computable if it takes
any 2-computable sequence of partial solids of to a 2-computable sequence of partial
solids. We say that a map P :SXm →SX is 2-computable if it takes any 2-computable
sequence of m-tuples of partial solids to a 2-computable sequence of partial solids.

Lemma 6.5. Suppose ((An; Bn))n∈! is computable; with (An; Bn) =
⊔

i∈!(Oa(n; i); Ob(n; i))
for total recursive functions a and b where the sequences of open sets are increasing.
Then ((An; Bn))n∈! is 2-computable if and only if there exists total recursive functions
r and s such that

2(An ∩ Om) − 2(Oa(n; r(n;m; i)) ∩ Om) 6 2−i ;

2(Bn ∩ Om) − 2(Ob(n; s(n;m; i)) ∩ Om) 6 2−i :
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Fig. 6. A non-Lebesgue computable regular solid.

Proof. Since 2(Oa(n; i) ∩Om) = 2(O (a(n; i); m)), it follows that (2(Oa(n; i) ∩Om))n; i;m∈! is
a computable triple sequence of real numbers. This sequence converges monotonically
upwards to the sequence (2(An ∩Om))n;m∈! as i→∞. Hence, by [22, Proposition 2,
p. 20], the recursive function r with the required property exists if and only if the
sequence (2(An ∩Om))n;m∈! is computable. Similarly, the recursive function s exists if
and only if the sequence (2(Bn ∩Om))n;m∈! is computable.

As in the case of 5nite measures, the binary operations −∪− and −∩−, and, more
generally, the n-ary operations ∪ and ∩ are 2-computable. The proof is similar to that
of Theorem 6.4, this time using Lemma 6.5.

Next, we consider the most important case, namely, when 2 is the Lebesgue measure
6 on Rd. We show that there are computable partial solids which are not Lebesgue
computable. In fact, we will provide an example of a computable maximal element of
S[−1; 1] which is not Lebesgue computable.

Example 6.6. This example uses a modi5cation of a construction, due to Reinhold
Heckmann, of a regular open set of the real line which has a boundary with non-zero
Lebesgue measure. The construction is similar to that of the standard Cantor set except
that at each stage two open intervals, rather than just one, are removed. Let (an)n∈!

be a strictly increasing computable sequence of rational numbers an¿0 converging to
the non-computable real number a¡1. Put b0 = a0 and bn+1 = an+1 − an for n ¿ 0.
Start with the closed interval [−1; 1] and remove two open intervals each of length b0

such that three closed intervals of equal length are left. In each of these three closed
intervals, remove two open intervals, each of length b1=3, and so on. At the nth stage,
there are 3n closed intervals, in each we remove two open intervals each of length
bn=3n, resulting in a total of 2×3n open intervals (Fig. 6). For 1 6 m6 3n, we denote
by Bnm and Cnm, respectively, the left and the right open intervals removed in the mth
closed interval. Let Bn =

⋃
16m63n Bnm; Cn =

⋃
16m63n Cnm. Finally, put B=

⋃
n∈! Bn

and C =
⋃

n∈! Cn. It is straightforward to check that 6(B) = 6(C) = a and that B and C
are regular open sets, with B=Cc◦ and C =Bc◦. By construction (B; C)∈S[−1; 1] is
a computable, maximal solid object, which is not Lebesgue computable. This example
can be lifted to Rd by taking the product of (B; C) with [−1; 1]d−1.



340 A. Edalat, A. Lieutier / Theoretical Computer Science 284 (2002) 319–345

One can also use a construction of a fractal Jordan curve by Ker-I-Ko and
Weihrauch [18] in R2 to show that there is even a computable but non-Lebesgue com-
putable maximal solid object (B; C)∈SR2 such that the common boundary @B= @C is
a Jordan curve.

We conjecture that the Minkowski operation is computable on the maximal ele-
ments, i.e., if (A; B); (C;D)∈S[−a; a]d are Lebesgue computable maximal elements
then (A; B)⊕ (C;D) is Lebesgue computable. However, the Minkowski operation is not
Lebesgue computable on non-maximal elements as the following example shows.

Example 6.7. Let 0¡l¡1 be a right computable, non-computable real number and
consider the non-maximal element (∅; ([0; l] × {0})c)∈S[−2; 2]2, which is Lebesgue
computable. Let B1 be the open ball of radius 1 around the origin. Then, the Minkowski
sum

(∅; ([0; l] × {0})c) ⊕ (B1; Bc◦
1 ) = (∅; (B1 ⊕ ([0; l] × {0}))c)

is not Lebesgue computable, since the second component has measure 16 − (7 + 2l)
which is not a computable real number.

A computable partial solid (A; B), with 2(X \(A∪B)) = 0, can be manufactured with
an error that can be made as small as we want in volume, assuming an idealized
manufacturing device.

Despite their di3erences, the notions of Hausdor3 computability, which measures
the visual proximity of objects e3ectively, and that of Lebesgue computability, which
measures the area or volume of objects e3ectively, both correspond to observable
properties of solids and are therefore both useful in practice.

7. Conclusion

As stated in Section 1, the solid domain described here is based on a realistic notion
of computability which corresponds to the observable properties of solids; it is also
closed under Boolean operations which are computable in the model as are the basic
predicates. Furthermore, the model admits non-regular as well as regular sets.

In order to design reasonably eHcient algorithms based on our model, one should
carefully choose the representation for partial solids. Representations used in industrial
applications are generally polyhedra or boundary representation (B. Rep.), that is a
set of faces (surfaces), edges (curves) and vertices, connected by an adjacency graph
featuring the boundary of the solid.

The dyadic voxel set representation can be made reasonably eHcient using recursive
binary space subdivision, i.e., octree-like structure. For solids which have, as always
in applications, a boundary with a bounded curvature almost everywhere, partial ratio-
nal polyhedra will provide a more eHcient representation. The performance of these
representations can be formally compared by the growth rate, as a function of n, of
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the volume of data (the number of bits) needed to represent a partial solid up to the
Hausdor3 or Lebesgue accuracy of 2−n.

However, using partial rational polyhedra in a chain of successive Boolean operations
would entail a prohibitive growth of the number of digits necessary to represent the
rational coordinates of the vertices. An e3ective way to overcome this problem would
be to use “dyadic polyhedra” together with a rounding process. The idea is to use
polyhedra whose vertex coordinates are dyadic numbers. Then, since these polyhedra
are not closed under Boolean operators, one can round the exact result to some best
approximation in terms of dyadic polyhedra. This process is similar to rounding in
5xed or 6oating point arithmetic. It is also related to some recent works dealing with
robustness in computational geometry.

Our future work will focus on realistic implementations based on these ideas as
well as theoretical de5nitions of complexity allowing a formal comparison between
algorithms and representations. Also, in order to apply this work to actual CAGD,
one needs to capture more information on solids and geometric objects. In particular,
we have to deal more generally with the boundary representation and the di3erential
properties of curves and surfaces.
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Appendix

We give here the formal de5nitions of a number of notions in domain theory used
in the paper; see [1, 2, 22] for more detail. We think of a partially ordered set (poset)
(P;�) as the set of output of some computation such that the partial order is an order
of information: in other words, a� b indicates that a has less information than b. For
example, the set {0; 1}∞ of all 5nite and in5nite sequences of bits 0 and 1 with a� b
if the sequence a is an initial segment of the sequence b is a poset and a� b simply
means that b has more bits of information than a. Any T0 topological space has an
inherent information ordering, called the specialization ordering, de5ned by a� b i3
a∈O⇒ b∈O, for all open subsets O. A non-empty subset A⊆P is directed if for
any pair of elements a; b∈A there exists c∈A such that a� c and b� c. A directed
set is therefore a consistent set of output elements of a computation: for every pair of
output a and b, there is some output c with more information than a and b. A directed
complete partial order (dcpo) or a domain is a partial order in which every directed
subset has a least upper bound (lub). We say that a dcpo is pointed if it has a least
element which is denoted by ⊥ and is called bottom.
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For two elements a and b of a dcpo we say a is way-below or approximates b,
denoted by a�b, if for every directed subset A with b� ⊔

A there exists c∈A with
a� c. The idea is that a is a 5nitary approximation to b: whenever the lub of a
consistent set of output elements has more information than b, then already one of the
input elements in the consistent set has more information than a. In {0; 1}∞, we have
a�b i3 a� b and a is a 5nite sequence. The closed subsets of the Scott topology of a
domain are those subsets C which are downward closed (i.e., x∈C & y� x⇒y∈C)
and closed under taking lub’s of directed subsets (i.e., for every directed subset A⊆C
we have

⊔
A∈C).

A basis of a domain D is a subset B⊆D such that for every element x∈D of the
domain the set Bx = {y∈B |y�x} of elements in the basis way-below x is directed
with x =

⊔
Bx. An (!)-continuous domain is a dcpo with a (countable) basis. In other

words, every element of a continuous domain can be expressed as the lub of the
directed set of basis elements which approximate it. In a continuous dcpo D, subsets
of the form ↑↑a= {x∈D | a�x}, for a∈D, forms a basis for the Scott topology. A
domain is bounded complete if every bounded subset has a lub; in such a domain
every non-empty subset has an in5mum or greatest lower bound.

It can be shown that a function f :D→E between dcpo’s is continuous with respect
to the Scott topology if and only if it is monotone (i.e., a� b⇒f(a)�f(b)) and
preserves lub’s of directed sets, i.e., for any directed A⊆D, we have

f(
⊔

a∈A
a) =

⊔
a∈A

f(a):

Moreover, if D is an !-continuous dcpo, then f is continuous i3 it is monotone
and preserves lub’s of increasing sequences (i.e., f(

⊔
i∈! xi) =

⊔
i∈! f(xi), for any

increasing (xi)i∈!).
The interval domain I[0; 1]n of the unit box [0; 1]n ⊆Rn is the set of all non-empty

n-dimensional sub-rectangles in [0; 1]n ordered by reverse inclusion. A basic Scott open
set is given, for every open subset O of Rn, by the collection of all rectangles contained
in O. The map x �→ {x} : [0; 1]n → I[0; 1]n is an embedding onto the set of maximal
elements of I[0; 1]n. Every maximal element {x} can be obtained as the least upper
bound (lub) of an increasing chain of elements, i.e., a shrinking, nested sequence of
sub-rectangles, each containing {x} in its interior and thereby giving an approximation
to {x} or equivalently to x. The set of sub-rectangles with rational coordinates provides
a countable basis. One can similarly de5ne, for example, the interval domain IRn of Rn.

An important feature of domains, in the context of this paper, is that they can be
used to obtain computable approximations to operations which are classically non-
computable. For example, comparison of a real number with 0 is not computable.
However, the function N : I[−1; 1]→{tt; ff}⊥ with

N ([a; b]) =



tt if b¡0;

ff if 0¡a;

⊥ otherwise;
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is the computable approximation to the comparison predicate. Here {tt; ff}⊥ is the three
element pointed domain with two incomparable maximal elements tt and ff.

The upper space UX of a compact metric space X is the set of all non-empty
compact subsets of X ordered by reverse inclusion. In fact, UX is a generalization
of the interval domain and has similar properties; for example a basic Scott open set
is given, for every open subset O⊆X , by the collection of all non-empty compact
subsets contained in O. As with the interval domain, the map x �→ {x} :X →UX is an
embedding onto the set of maximal elements of UX . The upper space gives rise to a
computational model for fractals and for measure and integration theory [10]. The idea
of the solid domain of [0; 1]n (see Section 2), represented by pairs of closed subsets,
is closely linked with U[0; 1]n.

An !-continuous domain D with a least element ⊥ is e7ectively given wrt an ef-
fective enumeration b :N→B of a countable basis B if the set {〈m; n〉 | bm�bn} is
decidable, where 〈:; :〉 :N × N→N is the standard pairing function i.e., the isomor-
phism (x; y) �→ (x + y)(x + y + 1)=2 + x. This means that for each pair of basis ele-
ments (bm; bn), it is possible to decide in 5nite time whether or not bm�bn. We say
x∈D is computable if the set {n | bn�x} is r.e. This is equivalent to say that there is
a master programme which outputs exactly this set. It is also equivalent to the exis-
tence of a recursive function g such that (bg(n))n∈! is an increasing chain in D with
x =

⊔
n∈! bg(n). If D is also e3ectively given wrt to another basis B′ = {b′0; b′1; b′2; : : :}

such that the sets {〈m; n〉 | bm�b′n} and {〈m; n〉 | b′m�bn} are both decidable, then x will
be computable wrt B i3 it is computable wrt B′. We say that B and B′ are recursively
equivalent.

We can de5ne an e3ective enumeration 9 of the set Dc of all computable elements
of D. Let :n, n∈!, be the nth partial recursive function. It can be shown [12] that
there exists a total recursive function ; such that 9 :N→Dc with 9n :=

⊔
i∈! b:;(n)(i),

with (b:;(n)(i))i∈! an increasing chain for each n∈!, is an e3ective enumeration of Dc.
A sequence (xi)i∈! is computable if there exists a total recursive function h such that
xi = 9h(i) for all i∈!.

We say that a continuous map f :D→E of e3ectively given !-continuous domains
D (with basis {a0; a1 : : :}) and E (with basis {b0; b1 : : :}) is computable if the set
{〈m; n〉 | bm�f(an)} is r.e. This is equivalent to say that f maps computable sequences
to computable sequences. Computable functions are stable under change to a recursively
equivalent basis. Every computable function can be shown to be a continuous func-
tion [31, Theorem 3.6.16]. It can be shown [12] that these notions of computability
for the domain IR of intervals of R induce the same class of computable real numbers
and computable real functions as in the classical theory [22].

We also need the following classical de5nitions of sequences of real numbers. A
sequence (ri)i∈! of rational numbers is computable if there exist three total recursive
functions a, b, and s such that b(i) 
= 0 for all i∈! and

ri = (−1)s(i)
a(i)
b(i)

:
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A computable double sequence of rational numbers is de5ned in a similar way. A
sequence (xi)i∈! of real numbers is computable if there exists a computable double
sequence (rij)i; j∈! of rational numbers such that

|rij − xi|6 2−j for all i and j:

A computable double sequence of real numbers is de5ned analogously. If (xnk)n; k∈! is
a computable double sequence of real numbers which converges to a sequence (xn)n∈!

e3ectively in k and n (i.e., there exists a total recursive function e :N×N→N such
that |xnk−xn|6 2−N for all k ¿ e(n; N )), then the sequence (xn)n∈! is computable [22,
p. 20].
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