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1. INTRODUCTION AND RESULTS 

We shall say that L is a slowly varying (SV) function if L is a real-valued, 
positive, and measurable function on [A, CO), A > 0, and if 

lim Lo = 1 
*+a L(x) (1.1) 

for every X > 0. The most important properties of SV functions may be 
stated as follows: 

UNIFORM CONVERGENCE THEOREM. If L is a SV function, then for every 

[u, b], 0 < a < b < CO, the relation (1.1) holds uniform@ with respect to 
x E [a, b]. 

REPRESENTATION THEOREM. If L is a SV function, then there exists a 
positive number B > A such that for all x > B we have 

L(x) = exp (~(5) + /I $ dt) , 

* The author gratefully acknowledges support by the National Science Foundation 
under grant GP-9493. 
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where q and E are bounded measurable functions on [B, cx)) such that 

r1(4--+c (I c I < 00) and e(x) -+ 0 (x --+ 03). 

The functions 7) and E in the Representation Theorem are clearly not 
uniquely determined. We shall need here the Representation Theorem with E 
defined by 

‘(cc) = -&o~(~#), x3& 
1% 43 (l-2) 

where h, is an arbitrary fixed number > 1. 
Both of these two theorems were first obtained by J. Karamata [l, 21 for 

continuous SV functions, The Uniform Convergence Theorem for measur- 
able SV functions was proved by T. van Aardenne-Ehrenfest, N. G. de Bruijn, 
and J. Korevaar [3], I-I. Delange [4], and W. Matuszewska [5, 61. In addition 
to this, a proof of the Uniform Convergence Theorem, due to A. S. Besico- 
vitch, was given in Ref. [7]. A 1 c ose examination of proofs in Refs. [5] and [7] 
shows that they are valid for continuous, but not necessarily for measurable, 
SV functions (see Refs. 161, IS], and [9]). The Representation Theorem for 
SV functions L such that log L is integrable on every compact subinterval of 
(A, co) was proved in Ref. [3]. Finally, the Representation Theorem in the 
present form, for arbitrary measurable SV functions, was established by 
N. G. de Bruijn [lo]. 

In this paper we shall give a simple and reasonably general condition for a 
SV function L in order that the asymptotic relation 

lim L(xL”(x)) = 1 

x+m L(x) (1.3) 

hold for every real number a. This relation does not hold for every SV 
function L as the following example shows: 

For x >, 1 let L(x) = exp((log x)B), 0 < ,8 < 1. Then for any real number 
a # 0 we have 

if 0</3<&, 
if /3 = +, 
if arc0 and $<8<1, 
if or>0 and %</3<1, 

The asymptotic relation (1.3) appears in a paper of A. BCkCssy [I l] in 
connection with the inversion of asymptotic relations involving SV functions. 
It is contained implicitly also in a paper of J. Karamata [12]. 
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Our first result in this direction can be stated as follows: 

THEOREM I. Let L be a SV function.1 !f 

( 
L(h,x) 
L(x) - 1 logL(x)-tO 

1 (x+ =J) (1.4) 

for a fixed A, > 1, then (1.3) holds for every real number 01. 

It is not difficult to find other conditions more special than (1.4) for the 
validity of (1.3). F or instance, (1.3) will hold for a SV function L if there 
exists &, > 1 such that 

L&4 -qq=l +o(& (x--ta). 

In this case, the condition (1.4) is satisfied since for any SV function L we have 
log L(x)/log x + 0 (x -+ CO). If L is a positive and continuously differentiable 
function such that 

XL’(X) i 1 L(x) 
log L(x) --, 0 (x-t a) 

the asymptotic relation (I .3) holds again. In this case, the condition (1.4) 
is satisfied for every h, > 1. Another even more restrictive condition for the 
validity of (1.3), 

.*zo 1 
L(x) k-1 log x (x - a), 

is mentioned in Ref. [lo]. 
In addition to Theorem 1 we shall prove here a slightly more general result. 

THEOREM 2. Let L be a SV function such that for a fixed A, > 1 

4+?4 
( -- 44 1) log T(x) ---f 0 (x - a), 

where T is a positive function. 
If xyT(x) is an eventually increasing function for some y E (0, l), we have for 

any0 <6 < l/y 

(1.6) 

1 In the first version of this paper it was assumed also that L(x) -+ co (x -+ 00). 
We are obliged to the Referee for the remark that this condition is unnecessary. 
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If, on the other hand, x-‘T(x) is an eventually decreasing function for some 
y~(O,l)wehaoeforanyO<S<l/y 

In Section 2 we shall give proofs of Theorems 1 and 2. The remaining 
Sections 3 and 4 are of complementary nature. In Section 3 we shall consider 
the problem of inversion of asymptotic relations involving SV functions and 
its applications in the theory of branching stochastic processes. In Section 4, 
by a small modification of the arguments used in Ref. [3], we shall give short 
proofs of the Uniform Convergence and Representation Theorems with E 
as in (1.2). 

2. PROOFS OF THEOREMS 1 AND 2 

We shall show first that Theorem 1 is a corollary to Theorem 2. By the 
Representation Theorem for x 3 B we have L(x) = c(x) e(x), where 

44 = exp(rl(x)) and e(x) = exp (1: $ dt) . 

Since c(x) + ec(x + co), / c 1 < OD, from (1.4) it follows that 

Jwo4 
( - 44 

- 1) log 8(x) + 0 (x --+ co). 

Moreover, since E(X) -+ 0 (x -+ co) it follows that xyL’(x) is eventually increas- 
ing and x-y/(x) is eventually decreasing for every fixed y E (0, 1). Hence, by 
Theorem 2, with T = L, we find that for every real number 01 we have 

lim L(xe”(x)) _ 1. 
.T-tm L(x) 

On the other hand, since L(x)/@) + ec(x -+ co) with 1 c 1 < co, we have, 
by the Uniform Convergence Theorem (since xd”(x) -+ co) 

Finally, 

lim L(xL”(x)) = 1 
x+m L(x&(x)) * 

and (1.3) follows. 
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Thus, it remains only to prove Theorem 2. From the Representation 
Theorem it follows that for x > B we have the inequality 

i i 
log 231) 1 < / &d!yx)) - c ) + / +) - c / + 1 ~““‘“’ $ dt I. 

m 

Since xG’(x) is increasing for x > X, 3 B and 0 < Sy < 1, we have 

XT@) > (x’T(X))* x1-6v > (X,T(X,))” x1-6v --f c9 (x --ir co). 

Hence 

lim sup log 
x-3-a i i 

We shall show next that 

v-2) 

We note first that the hypothesis (1.5) and the Representation Theorem with E 
as in (1.2) imply that 

E(X) = &log($$) =o( ,log:‘(b),) (x-+00). (2.3) 

Hence, given E > 0, we can find X, > X, such that 

’ 6(u)’ d ) logCT(u), 
for all u > X, . 

We shall show next that for all x > X, and all u between x and &P(X) we 
have the inequality 

/ c(u)i < i-L-- . 
1 - ys log T(x) (2.5) 

Suppose first that T(x) > 1 for an x >, X, . Since 0 < 6y < 1 and XYT(X) 
is increasing, we have for any u E [x, &P(X)] 

(XP(X))v T(u) > UT(U) > XV(X), 

i.e., 

Hence 

T(u) > Tl-y”(x) >, 1. 

/ log T(U)\ = log T(u) > (1 - yS) log T(x) = (1 - yS) / log T(x)\ 

and (2.5) follows from (2.4). 
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If 0 < T(x) < I for this x > X, we have, likewise, for any u E [x7’“(x), x] 

(XP(X))Y T(u) < u’T(u) < x’T(x), 

i.e., 

Hence 

T(u) < Tl-y”(x) < 1. 

11% w = 1% (&) 2 (1 - y8) log (&, = (1 - yS) j log T(x)( 

and (2.5) follows again from (2.4). 
Thus, (2.5) holds for each x 3 X, and all u between x and XT&(X). 
Next, using the inequality (2.5) we find that for x > X, we have 

and (2.2) follows. Finally, (1.6) follows in view of (2.1) and (2.2). 
If X-VT(X) is eventually decreasing, then XY( 1 /T(x)) is eventually increasing 

and (1.7) follows from (1.6). 

3. INVERSION OF ASYMPTOTIC RELATIONS AND APPLICATIONS 

The problem of inversion of asymptotic relations involving SV functions 
in its simplest form can be stated as follows: 

Suppose that L is a SV function and that there exists a positive function f 
such that f (t) -+ co (t -+ CD) and 

f(t)La( f (t)) N CP (t -+ a) 2 (3.1) 

where /3 > 0, C > 0. It is required to find conditions under which (3.1) may 
be inverted to give a simple asymptotic expression for f. This problem can be 
solved by means of the following theorem of N. G. de Bruijn [lo]: 

THEOREM. If L is a SV function, then there exists a SV function L* such that 

L*(xL(x)) L(x) -+ 1 (x - co>, (3.2) 
L(xL*(x)) L*(x) 4 1 (x + co). (3.3) 

Moreover, L* is asymptotically uniquely determined. 

‘f(x) -g(x)(x -+ a)) means that lim,,,f(x)/g(x) = 1. 



308 BOJANIC AND SENETA 

Sincef(t) ---f 00 (t -+ oo), using (3.1), (3.2) (with L replaced by L”) and the 
Uniform Convergence Theorem we find that 

1 
___ N L”( f(t)L”( f(t))) EL*(P) 
L”(f @)) 

(t--t a) 

and it follows that 

f(t) N CtBL*(t”) (1 + co). (3.4) 

De Bruijn’s theorem is an existence result and if we want to obtain more 
information about L* we have to restrict appropriately the class of SV func- 
tions. If, for instance, the function L has the property that 

then L”(xL-“(x)) L-“(x) + 1 (X -+ co) and (3.3) (with L replaced by L”) 
implies that L*(x) N L-*(x) (X + ;o). Hence the relation (3.4) can be replaced 

bY 
f(t) N ctwyty (t ---, co). (3.6) 

The asymptotic relation (3.1) can be inverted also by means of the following 
argument of A. Bekessy [ll] and J. Karamata [12]. If the SV function L 
satisfies the condition 

then (3.1), (3.7) and the Uniform Convergence Theorem imply that 

1 -N L(f WLYf w> - WE> 
L(f (t>> -L(f(t)) (t--t a) 

and (3.6) follows from (3.1). 
The results of J. Karamata [2] and A. BtkCssy [II] are of considerable 

relevance in the theory of branching stochastic processes. Part of Karamata’s 
theorem has been recently rediscovered in this context by R. S. Slack (see 
Ref. [13, Lemma 21). We shall give here a brief description of the part of 
Slack’s paper which is related to the problem of inversion of asymptotic 
relations. 

Let (2,) be the simple Galton-Watson process initiated by a single ancestor 
with offspring distribution generated by 

F(s) 1 Iqs=q = f p,s$ s E [O, 11. 
Ml 
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Herepi > 0 and ‘j$pj = 1 ( see T. E. Harris, Ref. [14, Chap. I]). Then the 
probability distribution of the number of individuals in the n-th generation 
is given by 

FJS) = E[SZ”], SE [O, 11, 

where F,(s) is the n-th functional iterate of F(s). We are concerned here with 
the critical process when F’(1 -) = 1, F(0) > 0; hence FJO) < 1 and 
F,(O) p 1 (n + co) so that the distribution of the extinction time N is given by 

P[N > n] = 1 -F,(O), n = 0, 1, 2 ,... (F,(O) = 0). 

The properties of the process depend heavily on the behavior of the gener- 
ating function F(s) as s + 1 --; in the cited paper, R. S. Slack has studied 
the particular form 

F(s) = s + (1 - s)l+@L (&) 

where 0 < 19 6 1 and L is a SV function. It follows that 

1 -F,+,(O) = 1 -F,(O) - (1 - F?z(0))‘+BL ( 1 -1F,(o) ) ’ 

n = 0, 1, 2,... (FOP) = 0) 

and consequently, 

(1 - FTI(WBL ( 1 -1F,(o) ) = t 

i.e., 

1 -lF,(o) L-W ( 1 -IF,(o) j N eww (fz -+ a), (3.8) 

(see Ref. [12, p. 521, or Ref. [13, p. 1411). This relation, however, does not in 
general enable us to obtain a simple explicit relation for 

P[N > n] = 1 -F,(O) as II+ co, 

although such an inversion is clearly desirable. 
If we assume that L satisfies the condition (3.7) with a = - l/6’ then the 

asymptotic relation (3.8) in view of (3.1) and (3.6) implies immediately that 

Hence 

1 _ F,(O) N e-l/e,-l/eL-l/e(nl/e) (?I --t co). (3.9) 
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In the example given by Slack, 

F(s) = s + (1 - s)2 (+ + f log $-) , 

we have 0 = 1, L(X) = 4 + 1 log x N i log x (X -+ co) and the condition (3.7) 
is clearly satisfied with 01 = - I/f? = - I. Hence 

1 -F?m -& (n + co). 

If we assume that SV function L satisfies the condition 

for some A, > 1, then (3.7) will hold by Theorem 1 for any real number LX and 
(3.9) will follow again. However, in this case, by Theorem 2 with T(x) = X, 
we find that for 0 < 0 < I 

WiS) - 1 --- 
L(x) 

(x --+ co). 

Consequently, the formula (3.9) can be replaced by 

1 - F,(O) N w%-l~~L-l~~(n) (n -+ co). 

Finally, it is worth remarking that precisely analogous nonexplicitness 
problems arose in the parallel treatment of the continuous parameter homo- 
geneous Markov branching processes by V. M. Zolotarev [15] and may be 
treated in exactly the same way. 

4. PROOFS OF THE UNIFORM CONVERGENCE 
AND REPRESENTATION THEOREMS 

The Uniform Convergence Theorem is equivalent to 

LEMMA 1. If L is a SV function, then for every X > 1 we have 
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In order to show this, observe first that for any 0 < a < b < CO we have, 
by Lemma 1, 

This and the inequality 1 y - 1 / < / logy 1 exp( 1 logy I) shows that 

and the Uniform Convergence Theorem follows. 
For the proof of the Representation Theorem with E defined by (1.2) in 

addition to Lemma 1, we need the following results: 

LEMMA 2. If L is a positive and measurable function on [A, co), A > 0, and 

if 

then there exists B > A such that log L is bounded and consequently integrable 
on every Jinite interval [a, b] if a 3 B. 

LEMMA 3. If L is a positive and measurable function on [A, co), A > 0, 
and if log L is integrable on every finite subinterval of [B, 03), B > A, we have 
for x 3 B 

L(x) = exp (T(X) + 11 q dt) (4.1) 

where, for arbitrary fixed A, > 1, the functions r) and E are defined on [B, a~) by 

c(x) = -L log (W) . 1% &J (4.3) 
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In order to prove the Representation Theorem, suppose that L is a SV 
function and A, > I. Then by Lemmas 1 and 2 there exists B 3 A such that 
log L is integrable on every compact interval [a, b] with a > B, and 

By Lemma 3 the relation (4.1) holds for x > B with the functions 7 and E 
defined by (4.2) and (4.3) respectively. The functions 71 and E are clearly 
bounded measurable functions on [B, co) with q(x) + c (X -+ co), / c / < co, 
c(x) -+ 0 (x -+ co). 

The proof of Lemma 1, due to P. 0. Frederickson [16], is based essentially 
on the same ideas as the proof of Theorem 3 in Ref. [3]. The Lemma 2, which 
shows that log L is integrable on every compact subinterval of [B, co), makes 
it possible to prove the Representation Theorem by methods used in Ref. [3] 
for SV functions L such that log L is integrable on every compact subinterval 
of [A, co). Finally, Lemma 3 and its proof, except for notation, are the same as 
Theorem 6 and its proof in Ref. [3]. 

Proof of Lemma 1. In order to prove Lemma 1, let L be a SV function, 
/ = log A, A > 1, and let f be defined by 

f(4 = I 
log L(e”) if x > log A, 
0 if x < log A. 

Then, as is easy to see, f is a measurable function on R and 

f(x + CL) -f(++- (x--t 60) (4.4) 

for every p E R. If we show that 

Sup If(x i I*) --f(x)1 -0 
OSLLSt 

the Lemma 1 will clearly be proved. 
Suppose that (4.4) holds and that (4.5) is not true. Then we can find 6 > 0 

and sequences (p,J and (xn) such that 

CLn E PY a x, 3 n, If h + Pn) - f c%)l 3 6, n = 1, 2,... (4.6) 

Let 0 < E < S/4 and 

n/r, = (t : sup If@ + t) -f(x)1 < E). 
r3n 
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Let m* be the outer measure of subsets of R. Since (IkIn n [0, 381) is an 
increasing sequence of subsets of R converging to [0,34], we have 

iim*(M, n [0,3t]) = 3t 

(see Ref. [17, p. 201). Hence we can find N such that m*(M, n [0,38’]) > & 8. 
Let 

s = 0 : I f(t) - fh)/ d 4 f-3 L% , x, + 403, 

T = {t : I f(t) - f(+ + ,d d 4 n [+ , xN + 481. 

Clearly, S and T are disjoint measurable subsets of [xN , xN + 4/]; if they 
had a point in common we would immediately obtain a contradiction to (4.6). 
Hence 

m(S) + m(T) < 4f. (4.7) 

On the other hand, if we denote by X and Y the set MN n [0, 3e] trans- 
lated by xN and xN + pN , respectively, i.e., if 

X = MN n P, 34 0 M, 

Y = MN n [O, 30 0 {+ + ~4, 

then it is easy to see that X _C S and Y C T. Consequently, 

$ t < m*(M, n [0,3/l) = m*(X) < m(S), 

% t < m*(M, n [0, 34) = m*(Y) < m(T), 

and so m(S) + m(T) > 5C, which is impossible in view of (4.7). 

Proof of Lemma 2. Choose B 2 A so that 

(4.8) 

Take any [a, b] with a 3 B and choose 71 such that 1 < b/a < 2”. We have 
then 

=$* I 1% -w)l = SUP I 1% W)l 1ital/a 

n-1 

< c sup ( logL(2’cat)( 
kso 1<t<2 

< y sup / log ($$) j + z ] logL(2”a)l . 
k=O I<&2 
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But if a 2 B, then 2% > B, k = 0, 1, 2 ,..., and so, by (4.Q 

n-1 

sup I logL(t)l < nc + c / logL(2”a)~ < co. 
a< t<b k=O 

Proof of Lemma 3. Let A, > 1, x 3 B, and 

s(~) = & j”” log ($#) q . 
1 

We then have 

log L(x) = 6(x) + & j:” log L(b) f . 

Since 

1”’ logL(tx) $ = jAoZ log L(t) f 
1 z 

= jAoZ log L(t) f - fr log L(i) 4 
B -B 

= j; log L(t) $ + j:“, log L(t) $ - j, logL(t) F 
0 

zzz j”+ logL(t) 9 + j: log (L$+) $ 
B 

it follows that 

1 
log L(x) = __ jAoB log L(t) + + S(x) + $x j: log (W) $ 

log A0 B 

and the lemma is proved. 
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