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SUMMARY

Human colony-stimulating factor 1 receptor (hCSF-
1R) is unique among the hematopoietic receptors
because it is activated by two distinct cytokines,
CSF-1 and interleukin-34 (IL-34). Despite ever-
growing insights into the central role of hCSF-1R
signaling in innate and adaptive immunity, inflamma-
tory diseases, and cancer, the structural basis of the
functional dichotomy of hCSF-1R has remained
elusive. Here, we report crystal structures of ternary
complexes between hCSF-1 and hCSF-1R, including
their complete extracellular assembly, and propose a
mechanism for the cooperative human CSF-1:CSF-
1R complex that relies on the adoption by dimeric
hCSF-1 of an active conformational state and homo-
typic receptor interactions. Furthermore, we trace
the cytokine-binding duality of hCSF-1R to a limited
set of conserved interactions mediated by function-
ally equivalent residues on CSF-1 and IL-34 that
play into the geometric requirements of hCSF-1R
activation, and map the possible mechanistic conse-
quences of somatic mutations in hCSF-1R associ-
ated with cancer.

INTRODUCTION

The hematopoietic colony-stimulating factor 1 receptor (CSF-

1R) Sherr et al. (1985), a class III receptor tyrosine kinase (RTKIII)

(Lemmon and Schlessinger, 2010), is pivotal to the survival,

proliferation, and differentiation of mononuclear phagocytic

cells such as monocytes, tissue macrophages, muscularis

macrophages, microglia, osteoclasts, Paneth cells, and myeloid

dendritic cells (Muller et al., 2014; Stanley and Chitu, 2014;

Verstraete and Savvides, 2012). CSF-1R is activated by two

distinct cytokines, colony-stimulating factor 1 (CSF-1) and inter-

eukin-34 (IL-34) (Lin et al., 2008) which, despite their disparate

sequences, adopt similar four-helix bundle folds (Ma et al.,

2012; Pandit et al., 1992). While CSF-1 and IL-34 share similar
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biological activities (Wei et al., 2010), they differ in their signaling

patterns through CSF-1R (Chihara et al., 2010) and in terms of

spatiotemporal expression levels (Nandi et al., 2012; Wei et al.,

2010).

Binding of CSF-1 or IL-34 to the extracellular segment of CSF-

1R elicits dimerization and intracellular autophosphorylation

of CSF-1R to initiate intracellular signaling. Such an activation

theme is common among all other RTKIII family members,

including KIT, Fms-like tyrosine kinase 3 receptor (Flt3) and

platelet-derived growth factor receptor a/b (PDGFR a/b) (Ver-

straete and Savvides, 2012). RTKIIIs share a common architec-

ture consisting of five extracellular immunoglobulin-like domains,

a transmembrane helix, and an intracellular autoinhibitory juxta-

membrane domain linked to split tyrosine kinase domains. The

involvement of RTKIIIs in a plethora of cellular processes central

to innate and adaptive immunity has inevitably linked aberrant

RTKIII signaling to numerous inflammatory diseases and cancer.

For instance, altered CSF-1R signaling is implicated in wide-

spread human pathologies such as rheumatoid arthritis, athero-

sclerosis, tumor growth, and metastasis (Chitu and Stanley,

2006; Masteller and Wong, 2014; Pollard, 2009; Stanley and

Chitu, 2014; Verstraete and Savvides, 2012).

Due to the emerging dichotomy of CSF-1R signaling via two

distinct cytokines with restrictive species cross-reactivity and

the rising therapeutic importance of CSF-1R signaling (Hume

and MacDonald, 2012; Ries et al., 2014; Stanley and Chitu,

2014), the need to dissect the structural and mechanistic princi-

ples underlying cytokine-CSF-1R assemblies has been more

acute than ever. Recent structural undertakings focusing on

crystallographic structures of partial CSF-1R complexes (Chen

et al., 2008; Liu et al., 2012; Ma et al., 2012) have provided signif-

icant momentum in this direction and have fueled the modeling

of complete extracellular assemblies mediated by human IL-34

(hIL-34) and CSF-1 (hCSF-1) via electron microscopy (EM) and

small-angle X-ray scattering (SAXS) (Elegheert et al., 2011; Felix

et al., 2013). In addition, structural insights into the allosteric

inactivation of hCSF-1 by the viral decoy receptor BARF1

(Elegheert et al., 2012) highlighted the possible relevance of in-

ter-subunit plasticity of CSF-1 in CSF-1R activation. However,

structures of hCSF-1 in complex with hCSF-1R at high resolution

had remained as the missing link to a robust mechanistic pro-

posal for hCSF-1 driven activation of human CSF-1R.
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In this study, we present a series of structural insights derived

from crystal structures of ternary complexes of hCSF-1 with its

cognate receptor that, together with a plethora of available

structure-function studies, lead to a stepwise delineation of the

mechanistic principles underlying the assembly of the extracel-

lular hCSF-1:CSF-1R complex. In particular, we show that the

inherent structural plasticity of dimeric hCSF-1 is critical for the

assembly of the cooperative hCSF-1:CSF-1R signaling complex,

offering new insight into the role of cytokine-mediated activation

of hematopoietic receptors. In addition, our work provides a

structural platform to rationalize the possible impact of somatic

mutations in the ectodomain of hCSF-1R and sets the stage

for further mechanistic and therapeutic interrogation of hCSF-

1R and hCSF-1.

RESULTS

Structure of the Ternary Encounter Complex Mediated
by hCSF-1
Structural characterization of complexes between hematopoi-

etic cytokines and truncated constructs of the extracellular seg-

ments of their cognate RTKIII have served as key puzzle pieces

to dissect the structural and mechanistic principles underlying

the assembly of their signaling complexes (Verstraete and Savvi-

des, 2012). However, in the case of CSF-1R, crystal structures of

mouse CSF-1RD1–D3 in complex with mouse CSF-1 (Chen et al.,

2008) and hIL-34 in complex with hCSF-1RD1–D3 (Ma et al., 2012)

revealed binary (1:1) cytokine-receptor complexes wherein the

dimeric cytokine was bound by a single receptor molecule.

Such a stoichiometry was inconsistent with ternary assemblies,

in which the dimeric cytokine is bound by two molecules of the

receptor, as revealed by orthogonal structural studies (Elegheert

et al., 2011; Felix et al., 2013) and biochemical and biophysical

methods (Elegheert et al., 2011; Felix et al., 2013; Ma et al.,

2012). As was elegantly shown for the hIL-34:CSF-1RD1–D3 com-

plex, this discrepancy could be traced to the crystallization pro-

cess whereby one molecule of hCSF-1RD1–D3 disengages from

the ternary complex, leading to a binary complex in the ensuing

crystal form (Ma et al., 2012).

Toobtain diffraction-quality crystals thatwould enable elucida-

tion of the hitherto elusive ternary complex of hCSF-1with hCSF-

1RD1–D3 and the cytokine-receptor interfaces at high resolution,

weengineeredpointmutations at eachof the four knownN-linked

glycosylation sites in hCSF-1RD1–D3 (Ma et al., 2012) (N73, N153,

N240, N275) and initially expressed the four hCSF-1RD1–D3

variants in HEK293T and HEK293S GnTI�/� cells (Reeves et al.,

2002). In addition, we employed the recently developed

HEK293S-GlycoDelete cell line, which produces proteins with

homogeneous N-linked glycans of the form GlcNAc-Gal-Sia

(Meuris et al., 2014). Ternary hCSF1:CSF-1RD1–D3 complexes

were reconstituted and purified aftermixing amolar excess of re-

combinant hCSF-1 (Elegheert et al., 2011; Verstraete et al., 2009)

with hCSF-1RD1–D3 glycosylation variants and were further

confirmed in terms of stoichiometry by size-exclusion chroma-

tography (SEC) combined with multi-angle light-scattering mea-

surements (Elegheert et al., 2011; Felix et al., 2013).

The crystal structure of the hCSF-1:CSF1RD1–D3 ternary com-

plex was determined to 2.8 Å resolution from crystals grown

using hCSF-1RD1–D3 carrying the N240Q point mutation pro-
1622 Structure 23, 1621–1631, September 1, 2015 ª2015 Elsevier Lt
duced in HEK293S-GlycoDelete cells (Table 1; Experimental

Procedures). The best diffracting crystals were obtained from

hCSF-1RD1–D3 expressed in the GlycoDelete cell line (Meuris

et al., 2014), highlighting the possible advantages of short and

homogeneous N-linked glycans for lattice formation and crystal

growth. Indeed, the crystal asymmetric unit contains a ternary

complex with one hCSF-1 dimer bound by two hCSF-1RD1–D3

molecules 65 Å apart at the two ends of the hCSF-1 dimer

(Figure 1A). Human CSF-1RD1–D3 employs a nearly linear

arrangement of D2 and D3 to form the binding site for hCSF-1,

while D1 adopts a collapsed conformation about the D1-D2

linker region to interact with D2, in contrast to the extended

conformation observed in solution via SAXS and EM (Elegheert

et al., 2011; Felix et al., 2013). Generating a ternary complex

for human IL-34:CSF-1RD1–D3 based on the crystal structure of

the binary complex (Ma et al., 2012) reveals that the two

complexes are macroscopically indistinguishable (Figure 1B),

consistent with recent comparative studies of the two com-

plexes at low resolution (Felix et al., 2013) and the structure of

mouse IL-34 in complex with CSF-1RD1–D3 (Liu et al., 2012).

Each hCSF-1RD1–D3 molecule in the hCSF-1:CSF1RD1–D3 com-

plex is decorated by four N-linked GlcNAc-Gal-Sia glycans,

three at the expected sites (N53, N153 and N275) and one at a

newly identified site (N45) (Figure 1A). We note that the absence

of N-linked glycosylation at position 240 due to the N240Q

mutation enables crystal-packing contacts between symmetry-

related D3 domains, while the glycans at N153 and N275 interact

via van der Waals contacts with the corresponding glycan

trees in symmetry-related receptor molecules. Moreover, we

observed a a1-6 linked fucose on the GlcNAc glycan residue

at N73. The presence of core fucosylation had been previously

anticipated for proteins produced in the GlycoDelete cell line

(Meuris et al., 2014) but had hitherto not been observed

experimentally.

Thus, we nowprovide direct structural evidence at high resolu-

tion that hCSF-1 is able to establish a ternary complexwith hCSF-

1RD1–D3, thereby corroborating biophysical (Elegheert et al.,

2011; Ma et al., 2012) and structural studies in solution at low

resolution (Elegheert et al., 2011; Felix et al., 2013). Importantly,

we can now conclude that D4 and D5, the membrane-proximal

domains of hCSF-1R, are not a requisite for the formation of a

ternary complex with either of its cognate cytokines. This pro-

vides insights into a central mechanistic role for an initial ternary

encounter complex mediated by hCSF-1 and hIL-34 to nucleate

receptor dimerization and a signaling complex.

Structural Basis of the Cytokine-Binding Duality of
hCSF-1R
The herein presented structural details of the hCSF-1:CSF-1R

binding interface and the previously determined hIL-34:CSF-

1R interaction landscape (Ma et al., 2012) allow tracing of the

functional dichotomy of hCSF-1R to structural considerations

and rationalization of available mutagenesis data.

The hCSF-1:CSF-1R interface buries �1900 Å2 of solvent-

accessible surface area distributed over two almost equally

extensive epitopes on hCSF-1R, termed hereafter as site I and

site II (Figure 1C; Table S1). The two interaction epitopes are

physically divided by the D2-D3 linker, which does not partici-

pate in hCSF-1 binding. Site I is hosted by D2 in hCSF-1R and
d All rights reserved



Table 1. Crystallographic Data Collection and Refinement Statistics

hCSF-1:CSF-1RD1–D3 N240Q hCSF-1:CSF-1RD1–D5

hCSF-1:CSF-1RD1–D5

Corrected for Anisotropya

Data Collection

Beamline ID23-1 (ESRF, France) PXI (SLS, Switzerland) PXI (SLS, Switzerland)

Space group I41 P6122 P6122

Cell dimensions

a, b, c (Å) 143.00, 143.00, 138.323 281.47, 281.47, 91.17 281.47, 281.47, 91.17

a, b, g (�) 90, 90, 90 90, 90, 120 90, 90, 120

Resolution (Å) 49.71–2.80 (2.97–2.80) 48.75–6.80 (7.21–6.80) 48.75–6.83 (7.01–6.83)

Unique reflections 34,125 (5,448) 3,953 (610) 3,285 (38)

Rmeas (%) 6.4 (81.5) 7.1 (102.8) 5.9 (30.8)

<I/s(I)> 20.73 (2.32) 21.33 (2.89) 25.71 (6.67)

Completeness (%) 99.8 (99.2) 99.5 (100) 83.8 (13.1)

Multiplicity 6.9 (6.8) 10.2 (10.4) 9.9 (7.8)

Wilson B factor (Å2) 82.3 463.7 238.5

Refinement

Resolution (Å) 49.71–2.80 48.75–6.80 48.75–6.80

Rwork/Rfree (%) 22.31/26.13 34.29/36.19b 32.93/35.93

No. of atoms

Total 6,657 4,524 4,524

Protein 6,370 4,524 4,524

Glycan 287 – –

Average B factor (Å2) 100.3 313.7 313.7

Protein B factor (Å2) 97.4 313.7 313.7

Glycan B factor (Å2) 164.6 – –

Root-mean-square deviations

Bonds (Å) 0.006 0.008 0.008

Angles (�) 1.094 1.200 1.200

Ramachandran favored (%) 95.6 96.1 96.1

Ramachandran outliers (%) 0 0 0

PDB 4WRL 4WRMb 4WRM

Values in parentheses correspond to the highest-resolution shell.
aEllipsoidal truncation and anisotropic scaling of the data were performed using the Diffraction Anisotropy Server (Strong et al., 2006).
bStructure PDB: 4WRM (refined against anisotropy corrected data) validated against full data range.
comprises the CD and EF loops, which interact with helices B en

C on hCSF-1. On the other hand, site II localizes on D3 of hCSF-

1R and is defined by the BC loop and b strands D and E, which

engage helix A and the N-terminal loop of hCSF-1. Site I is domi-

nated by polar interactions mediated by a basic patch on the BC

loop of hCSF-1RD2 defined by R142, R144, and R146 forming

salt bridge networks with E62, D59, and D63 on helix B of

hCSF-1, respectively (Figure 1C, site I; Table S1). On the periph-

ery of the BC loop a second set of basic residues, R150 and

H151, interact with D69 on hCSF-1 (Figure 1C, site I; Table S1).

Near the bottom of site I adjacent to the D2-D3 hinge region,

V78 and L85 on helix C of hCSF-1 interact with I170 and F169

on hCSF-1R, respectively. Fittingly, V78 in hCSF-1 had previ-

ously been identified as a functional hotspot (Taylor et al.,

1994). The latter is further engaged in a cation-p interaction

with R86, which in turnmakes a hydrogen bondwith the hydroxyl

group of Y252 (Figure 1C, side view site I; Table S1). Site II is

formed by b strands D and E and the BC loop of hCSF-1RD3,
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which interact with helix C and the N-terminal part of helix A of

hCSF-1 (Figure 1C, site II; Table S1). This site mainly features

two hydrogen bond-rich regions separated by V231 on the BC

loop of hCSF-1RD3. This residue is flanked by Y257 on hCSF-

1RD3 and Y6 on hCSF-1 and makes van der Waals contacts

with M10 on hCSF-1. The first set of hydrogen bonds is formed

between the hydroxyl group of Y257 on strand E of hCSF-1RD3

and the backbone carbonyl oxygen of M10 on hCSF-1, and be-

tween D251 on strand D of hCSF-1RD3 and the backbone amide

hydrogen atoms of S13 andG14 (Figure 1C, site II; Table S1). The

second hydrogen bond network consists of S250 on strand D of

hCSF-1RD3 making hydrogen bonds with H9 on hCSF-1, and

between D234 at the end of the BC loop of hCSF-1RD3 and Y6

at the N terminus of hCSF-1. Near the D2-D3 hinge, F252 on

hCSF-1RD3 marks the boundary of site II by engaging in a p-p

stacking interaction with H15 on helix A of hCSF-1 (Figure 1C,

site II; Table S1). Indeed, H9 and H15 in hCSF-1 were previously

identified as binding and functional hotspots (Taylor et al., 1994).
31, September 1, 2015 ª2015 Elsevier Ltd All rights reserved 1623



Figure 1. Crystal Structure of the hCSF-1:CSF-1RD1–D3 Ternary Complex

(A) Dimeric hCSF-1 (lemon green) recruits two hCSF-1RD1–D3 receptor molecules (light to dark blue). Disulfide bridges are shown as spheres, and glycans in

hCSF-1RD1–D3 are shown as sticks and transparent surfaces.

(B) The hIL-34 dimer (red) binds to only one hCSF-1RD1–D3 receptor molecule (light to dark blue) (PDB: 4DKD) (Ma et al., 2012). The second hCSF-1RD1–D3

molecule, shown in white, was modeled for comparison purposes.

(C and D) Insets show a detailed view of the hCSF-1:hCSF-1RD1–D3 (C) and hIL-34:CSF-1RD1–D3 (D) binding epitopes. Functional hotspots in hCSF-1 (H9, H15,

and V78) (Taylor et al., 1994), and mouse CSF-1R (R146) (Chen et al., 2008) are labeled in red (C).

See also Figure S1 and Table S1.
Substitution of additional residues beyond this point along helix

A (Q17, Q20, and R21) does not affect binding of hCSF-1 (Taylor

et al., 1994), which can now be readily explained by the lack of

involvement of these residues in the binding interface.

Remarkably, despite the absence of sequence similarity be-

tween the two hCSF-1R ligands, the two cytokines target exactly

the same residues in site I of the hCSF-1R binding interface,

albeit each deploying a different set of interacting residues

(Figures 1C and 1D). For instance, R142 and R146 in hCSF-

1RD2 interact electrostatically with E103 in hIL-34 versus E62

and D63 in hCSF-1 (site I, Figure 1C). Substitution of R146, a

conserved residue in CSF-1RD2 across species, to alanine in

mouse CSF-1RD2, abrogates binding to CSF-1 (Chen et al.,

2008), supporting a central role for this residue in the cytokine-

binding duality of CSF-1R. Furthermore, R144 and R150 in

hCSF-1R interact with the main-chain carbonyl oxygen of

N150, Q106, and L109 in hIL-34 (site I, Figure 1D), as opposed

to engaging in salt bridge networks with D69 and D59 in

hCSF-1 (site I, Figure 1C). The level of congruence observed

among the respective site I interfaces in hCSF-1 and hIL-34

mediated complexes is only partly copied to site II. This is

because the site II interface mediated by hIL-34 is augmented

by additional interactions involving N254 and Q249 and displays

a far more extensive hydrogen network than the hCSF-1:CSF-1R

site II interaction (Figure 1D, site II). That such structural differ-
1624 Structure 23, 1621–1631, September 1, 2015 ª2015 Elsevier Lt
ence centers localizes on hCSF-1RD3 would be consistent with

the emerging notion that D3may be in evolutionary terms the pri-

mordial cytokine-binding domain in the RTKIII family of receptors

(Verstraete and Savvides, 2012).

hCSF-1RD3 Displays Structural Plasticity
Given the convergent evolution of hCSF-1 and hIL-34 to exploit

very similar binding principles hosted by their cognate receptor,

we wondered whether hCSF-1RD3 might contribute to binding

specificity in any additional ways. When the two copies of

hCSF-1RD1–D3 in the ternary hCSF-1:CSF-1RD1–D3 complex are

superimposed with hCSF-1RD1–D3 from the binary hIL-34:CSF-

1RD1–D3 complex based on an alignment of the D1-D2 module,

several surprising features become apparent. Firstly, D3 in one

of the two receptor molecules in the hCSF-1:hCSF-1RD1–D3

ternary assembly is rotated by �15� around the D2-D3 hinge,

breaking down the apparent 2-fold symmetry of the hCSF-

1:CSF-1RD1–D3 ternary complex (Figure S1A). While this results

in a relatively small positional shift near the D2-D3 hinge region,

it is far more pronounced at the extremities of D3. Secondly,

despite such a pronounced conformational difference between

the two copies of hCSF-1RD1–D3, the respective interaction inter-

faces with hCSF-1 are virtually superimposable (Figure S1B).

Lastly, when we incorporate hCSF-1RD1–D3 as bound to hIL-34

into our analysis, we observe yet a third distinct conformation
d All rights reserved



Figure 2. Crystal Structure of the hCSF-1:CSF-1RD1–D5 Extracellular Complex

(A) Cartoon representation of the ternary complex between hCSF-1 (lemon green) and the full hCSF-1R ectodomain (light to dark blue). Disulfide bridges in

hCSF-1 and hCSF-1RD1–D5 are shown as spheres. The inset zooms into the D4-D40 interface, with Ca atoms of R370 and E375 shown as spheres.

(B) Cartoon representation of the human SCF:KIT complex (PDB: 2E9W) (Yuzawa et al., 2007). The inset zooms into D4-D40 contacts in KIT.

(C) Alignment of conserved D4 sequences from human CSF-1R, KIT, PDGFR-a, PDGFR-b, and Flt3.

(D) Cartoon representation of the human Flt3L:Flt3 complex (PDB: 3QS9) (Verstraete et al., 2011). See also Figure S2.
for hCSF-1RD3 (Figure S1A). Such structural plasticity in hCSF-

1RD3 may serve in terms of not only ensuring specificity and

fidelity of binding to cognate cytokine ligands but also enabling

correct positioning of the membrane-proximal regions of

hCSF-1R to form an active signaling assembly.

Crystal Structure of the Human CSF-1:CSF-1R
Extracellular Complex
To enable crystallographic studies of the complete hCSF-1:CSF-

1R extracellular assembly, we produced glycosylated hCSF-

1RD1–D5 in transiently transfected HEK293T cells in the presence

of the glycosylation inhibitor kifunensine (Chang et al., 2007) and

reconstituted the hCSF-1:CSF-1RD1–D5 complex as previously

described (Elegheert et al., 2011; Felix et al., 2013). Attempts

to further trim N-linked glycosylation in hCSF-1RD1–D5 using

EndoH led to recombinant receptor with dramatically lowered

solubility and stability.

The crystal structure of the hCSF-1:CSF-1RD1–D5 complex

determined to 6.8 Å resolution features a 2-fold-symmetric as-

sembly in which the ternary encounter complex (Figure 1A) is

mounted on either side to a nearly linear stacking of the mem-

brane-proximal domains D4 and D5, bringing the C-terminal

ends of adjacent D5 to 40 Å from each other (Figure 2A; Table 1;

Figure S2). Such geometry is possible due to the elbow-like

arrangement of D3 and D4 domains, which come together at

nearly 90� at the D3-D4 junction. Interestingly, analysis and

modeling of our crystal structure against SAXS data showed

that in the structure of the glycosylated complex in solution,

hCSF-1RD1 swings outward away from its collapsed interaction

with hCSF-1RD2 observed in the crystal structure (Figure 3A).
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With the support of orthogonal structural information via sin-

gle-particle EM analysis of the complex (Elegheert et al., 2011)

(Figure 3B), we propose that hCSF-1RD1 is inherently flexible

about the D1-D2 linker, which may have functional implications.

We note that analogous flexibility in D1 has also been observed

in Flt3, another member of the RTKIII family (Verstraete et al.,

2011).

Arguably, the hallmark of the complete ectodomain complex

centers at the receptor-receptor interaction interface estab-

lished between dimerized D4 domains (Figure 2A). While our

crystallographic refinement of hCSF-1:CSF-1RD1–D5 at 6.8 Å res-

olution was limited to rigid-body refinement protocols, the two

dimerized D4 modules approached each other to optimal dis-

tances to enable salt bridges between R370 and E375 across

the dimer interface via the main side-chain rotamers of each

type of amino acid residue (Figure 2A, inset). Analogous homo-

typic receptor interactions have been proposed to be important

for the activation of KIT (Reshetnyak et al., 2013, 2015; Yuzawa

et al., 2007) (Figure 2B, inset), platelet-derived growth factor re-

ceptor b (PDGFRb) (Yang et al., 2008), and vascular endothelial

growth factor receptor (VEGFR) 1, 2, and 3 (Yang et al., 2010),

and can be traced to a sequence fingerprint in the EF loop of

D4 in RTKIII and D7 in the closely related RTKV, except from

Flt3 (Figure 2C; Figure 2D). For instance, alanine point mutations

of R381 and E386 in D4 of human KIT (Yuzawa et al., 2007), R385

and E390 in D4 of human PDGFRb (Yang et al., 2008) and R726

and D731 in D7 of human VEGFR2 (Yang et al., 2010) compro-

mise cytokine-driven receptor activation. Thus, the absence of

homotypic interactions in Flt3 (Verstraete et al., 2011), which

lacks this sequence cassette (Figure 2D), and structural
31, September 1, 2015 ª2015 Elsevier Ltd All rights reserved 1625



Figure 3. SAXS Analysis of the hCSF-1:CSF-1RD1–D5 Complex

(A) Calculated SASREF/CRYSOL curves (colored) and their corresponding fits

to the experimental data (black) are shown on a relative scale for the hCSF-

1:CSF-1RD1–D5 crystal structure (red curve), the hCSF-1:CSF-1RD1–D5 crystal

structure after adding N-glycans in SASREF (orange curve), followed by

allowing D1 to move as a rigid body (green curve).

(B) Comparison of the hybrid X-ray/SAXS model for hCSF-1:CSF-1RD1–D5

(green curve in A) and a 3Dmodel obtained by EM for the hCSF-1:CSF-1RD1–D5

complex (Elegheert et al., 2011) (EMD: 1977).
confirmation of homotypic receptor interactions mediated by

such residues in human KIT, VEGFR2, and now in CSF-1R,

greatly fortifies the expectation that cytokine-driven assemblies

of PDGFRa and PDGFRb will also display such structural

features.

Dimeric hCSF-1 Adopts an Active Conformation upon
Binding to hCSF-1R
Considering the extensive interaction interface established

between hCSF-1 and hCSF-1R, we were intrigued by the con-

spicuous absence of conformational changes at the side-chain

level in hCSF-1 upon complex formation. In fact, comparison

of receptor-bound hCSF-1 with five copies of unbound hCSF-1

(Elegheert et al., 2012) shows that only a handful of residues

involved in receptor interactions undergo local side-chain rear-
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rangements, while all other structural elements involved in re-

ceptor binding appear to be projected for binding as preformed

binding surfaces. However, each copy of unbound CSF-1 dis-

plays a different tilt along its 2-fold axis of symmetry. Upon

binding to hCSF-1R, dimeric hCSF-1 undergoes a rigid-body

butterfly-like collapse to lock into a single conformer (Figures

4A and 4B). It would thus appear that dimeric hCSF-1 inherently

exists as a conformational ensemble and that its engagement in

a signaling complex with cognate receptor results in the selec-

tion of the active state of the cytokine. On the other hand, the

conformation of hCSF-1 observed in the complex with hCSF-

1RD1–D3 superimposes with the most open form of unbound

hCSF-1 (Figure 4A), implying that dimeric hCSF-1 retains its

conformational plasticity even after it engages in the ternary

encounter complex. Remarkably, the immunomodulatory viral

protein BARF1 appears to play into the conformational states

of dimeric hCSF-1 by binding precisely at the pivot point of the

inter-subunit hinge on the opposite side of the cognate receptor

interaction sites to lock the cytokine into a conformation that is

unable to bind to cognate hCSF-1R (Figure 4C) (Elegheert

et al., 2012). This observation had offered a first clue of an allo-

steric mechanism in the modulation of hCSF-1 activity and the

possible role of inter-subunit plasticity of dimeric hCSF-1 in

signaling. We note that hCSF-1 bound to BARF1 is identical to

the collapsed conformation of unbound hCSF-1R and differs

markedly from hCSF-1 bound to hCSF-1RD1–D5 (Figure 4C).

Thus, such structural benchmarking using cognate and non-

cognate complexes of hCSF-1 seals the notion that dimeric

hCSF-1 can be directed to adopt active and inactive states.

DISCUSSION

The structures of human CSF-1:CSF-1R complexes presented

here provide the necessary framework to consolidate prior

biochemical, biophysical, and structural studies on CSF-1R

complexes (Chen et al., 2008; Elegheert et al., 2011, 2012; Lin

et al., 2008; Liu et al., 2012; Ma et al., 2012) to a synthesis of

CSF-1R activation principles (Figure 5A). In addition, our work

offers a mechanistic rationale for two recently uncovered modes

of antagonism against hCSF-1 and hCSF-1R, respectively (Ele-

gheert et al., 2012; Ries et al., 2014).

Previously, interaction studies employing an engineered

monomeric variant of hCSF-1, dimeric hCSF-1, and truncation

ectodomain variants of hCSF-1R (Elegheert et al., 2012) led to

a quantitative deconvolution of the positive cooperativity in the

hCSF-1:hCSF-1R complex into at least three levels of modular

contributions: (1) an initial binary encounter complex between

a subunit of hCSF-1 and a molecule of hCSF-1R (KD = 3 mM);

(2) a ternary encounter complex involving dimeric hCSF-1 and

the cytokine-binding domains of hCSF1-R leading to a near

15-fold improvement in the KD (KD = 213 nM); and (3) the full

ectodomain assembly stabilized by an additional 15-fold

improvement in the KD of the complex (KD = 14 nM) mediated

by receptor-receptor interactions via the membrane-proximal

domains of hCSF-1R. Our structural studies have now shown

that dimeric hCSF-1 utilizes largely preformed and extensive re-

ceptor binding sites targeting D2 and D3 in hCSF-1R to establish

a ternary encounter complex that does not rely on receptor-

receptor contacts (Figure 5A). In this context hCSF-1 maintains
d All rights reserved



Figure 4. Conformational Plasticity of

Dimeric hCSF-1

(A andB) Unbound structures of hCSF-1 (collapsed

in black, open in purple; PDB: 3UF2) (Elegheert

et al., 2012) are superimposed with hCSF-1 bound

to hCSF-1RD1–D3 (dark green) (A) and hCSF-

1RD1–D5 (lemon green) (B).

(C) hCSF-1 bound to viral BARF1 (PDB: 3UEZ)

(Elegheert et al., 2012) compared with hCSF-1

bound to hCSF-1RD1–D5. The hCSF-1R binding

footprint on hCSF-1 is shown in red as a reference.
its inter-subunit plasticity (Figure 4A), which we propose is the

key structural feature necessary to enable conformational

sampling in hCSF-1R leading to the receptor dimerization inter-

faces between D4 domains. This leads to locking of hCSF-1 to its

active state as manifested via the observed inter-subunit tilt in

the extracellular complex (Figure 4B; Figure 5A). Thus, both the

plasticity of hCSF-1 and the formation of homotypic receptor-

receptor contacts are indispensable for the cooperative assem-

bly of the hCSF-1R signaling complex (Figure 5A), although

contributions from interactions between the membrane and

intracellular domains of hCSF-1R would also be expected.

Remarkably, these are precisely the structural features tar-

geted in two recently characterized non-cognate complexes of

hCSF-1 and hCSF-1RD1–D5, respectively, that result in antago-

nism of hCSF-1R signaling (Elegheert et al., 2012; Ries et al.,

2014). In the first instance, the immunomodulatory protein

BARF1 secreted by the Epstein-Barr virus binds with ultra-high

affinity to the top of the dimer interface of hCSF-1 on the oppo-

site side of the hCSF-1R binding epitope to lock dimeric hCSF-1

into a conformation that is incompetent to bind to hCSF-1RD1–D5

(Figure 4C) (Elegheert et al., 2012). Such allosteric inactivation of

dimeric hCSF-1 provides cross-validation of our proposal that

conformational freedom of dimeric hCSF-1 is a requisite for its

ability to drive the assembly of signaling complexes with

hCSF-1R. Thus, a picture emerges whereby dimeric hCSF-1

can adopt active versus inactive states. Such a link between

structural plasticity and signaling capacity is reminiscent of the
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way dimeric activin activates transforming

growth factor b family receptors (Green-

wald et al., 2004), but has never been

validated for cytokine:RTKIII complexes,

although we did anticipate this possibility

in a recent analysis (Verstraete and Savvi-

des, 2012).

In a recent finding, the therapeutic

monoclonal antibody RG7155 was shown

to abrogate hCSF-1R signaling by binding

with high affinity to the D4-D5 junction in

the ectodomain of hCSF-1R (Ries et al.,

2014). Our structural studies now provide

the necessary insights to rationalize fully

the antagonistic behavior of RG7155.

Not only does RG7155 disrupt the

D4-D40 dimerization interface established

in the hCSF-1:CSF-1RD1–D5 complex, it

does so by establishing salt bridges with

E375 and R370 in hCSF-1RD4 (Ries
et al., 2014), which are essentially the centerfold of the D4-D40

interface in the hCSF-1:CSF-1R complex (Figure 2). We note

that similar antagonistic principles emerged from the develop-

ment of therapeutic monoclonal antibodies against the D4-D5

segment of human KIT (Reshetnyak et al., 2013).

Our structure-basedmechanistic proposal for the assembly of

the hCSF-1:CSF-1R signaling assembly also provides opportu-

nities to rationalize the ever-growing collection of somatic muta-

tions that are identified in the extracellular segment of hCSF-1R

(Forbes et al., 2015), which we can now readily map to the struc-

ture of the complex (Figure 5B). At the outset we propose that the

role of such somatic mutations could be to stabilize either

unbound or cytokine-bound forms of hCSF-1R or both, or to pro-

mote and/or predispose the adoption of active conformational

states in hCSF-1R. Nonetheless, to date the only mutation

shown to bestow transforming potential and ligand-independent

activation upon hCSF-1R is L301S (Roussel et al., 1988), which

localizes at end of the D3-D4 linker and contributes to the tip

of the hydrophobic core in D4 facing D3 (Figure 5B). It is not

yet clear how the L301Smutation could affect structure-function

relationships in hCSF-1R, but one possibility is that it may

enhance flexibility in the D3-D4 linker to promote receptor-

receptor interactions. Of particular interest are several mutations

that map to the membrane-proximal D4-D5 domain modules of

hCSF-1R (Figure 5B). In fact, multiple somatic mutations in these

regions have also been identified in all other RTKIIIs (reviewed

in Verstraete and Savvides, 2012) and have been linked to
ª2015 Elsevier Ltd All rights reserved 1627



Figure 5. Mapping of Mechanistic Principles in Wild-Type and Oncogenic hCSF-1R

(A) Mechanism of hCSF-1R activation by hCSF-1. Binding affinities for the binary encounter, ternary encounter, and active complexes are shown on a

relative scale.

(B) Mapping of confirmed somatic mutations (COSMIC, http://cancer.sanger.ac.uk) (Forbes et al., 2015) to the hCSF-1:CSF-1RD1–D5 complex. The L301S

mutation is highlighted in red to identify it as the only mutation to date with confirmed transforming properties.
mechanistic scenarios of enhanced receptor-receptor interac-

tions in both constitutive and cytokine-driven receptor activa-

tion. Indeed, recent studies aiming to probe the effect of

oncogenic mutations in D5 of human KIT have shown that they

enhance the dimerization propensity of human KIT via D5-medi-

ated homotypic receptor interfaces (Reshetnyak et al., 2015).

Intriguingly, many mutations map to hCSF-1RD1, which we

have shown extends away from the complex in solution, and

for which a functional annotation remains elusive.

Finally, we are left to wonder whether the mechanistic reca-

pitulation of hCSF-1R activation driven by hCSF-1, in particular

its reliance on hCSF-1 plasticity, also applies to hIL-34. Recent

structural studies at low resolution have shown that the two

cytokines establish strikingly similar extracellular assemblies

with hCSF-1R activation (Felix et al., 2013), and we have shown

here that both have evolved to respond to common binding

principles that meet the geometric requirements of hCSF-1R.

Given that the membrane-proximal domains in hCSF-1R also

contribute at least one order of magnitude to the affinity of

the extracellular complex driven by IL-34 (Chen et al., 2008;

Liu et al., 2012; Ma et al., 2012) and the fact that hIL-34

also displays plasticity in its dimeric assembly as evidenced

in its complex with Fab fragments (Ma et al., 2012), we are

led to propose that the mechanistic principles we have derived

for CSF-1 assemblies would be congruent with IL-34-driven

complexes.
EXPERIMENTAL PROCEDURES

Recombinant Human CSF-1 and hCSF-1:CSF-1R Complexes

Recombinant hCSF-1 (Uniprot: P09603, a-splice variant, residues 1–149) was

expressed via the pET-15b vector (Novagen) in the BL21(DE3) RosettaGami B
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(Novagen) Escherichia coli strain and refolded from inclusion bodies (Ele-

gheert et al., 2011; Verstraete et al., 2009). Refolded hCSF-1 was purified

by immobilized metal affinity chromatography (IMAC) using a prepacked

5-ml Ni-NTA Superflow cartridge (Qiagen). Immobilized hCSF-1 was washed

with 50 mM NaH2PO4, 300 mM NaCl, and 15 mM imidazole (pH 7.0), and

eluted with 50 mM NaH2PO4, 300 mM NaCl, 500 mM imidazole (pH 7.0). Pro-

tein fractions were pooled and further purified by SEC using a Prep-Grade Hi-

load 16/60 SD75 column (GE Healthcare) equilibrated with HEPES-buffered

saline buffer (HBS; 20 mM HEPES [pH 7.5], 150 mM NaCl). Next, the N-termi-

nal His6 tag was removed by 1 unit of biotinylated thrombin (Novagen) per

milligram of hCSF-1, followed by overnight incubation at room temperature.

Biotinylated thrombin was removed with streptavidin-agarose beads (Nova-

gen) at room temperature for 30 min followed by centrifugation at 500 3 g.

hCSF-1 was further purified to remove the cleaved N-terminal His6 tag via

a second SEC purification step. Purified hCSF-1 was concentrated to

1 mg/ml aliquots and flash-frozen for later use. Expression constructs corre-

sponding to hCSF-1RD1–D3 (residues 1–296) and hCSF-1RD1–D5 (residues

1–503) (Uniprot: P07333), each with their native secretion signal, were cloned

into the pHLsec vector for expression with a C-terminal His6-tag (Aricescu

et al., 2006). Based on the hCSF-1RD1–D3 construct, four glycosylation

mutants were designed as follows: N73Q, N153Q, N240Q, and N275Q.

hCSF-1RD1–D3 constructs were transiently transfected in HEK293T,

HEK293S GnTI�/� (Reeves et al., 2002), and HEK293S GlycoDelete (Meuris

et al., 2014), and 3.6 mM of valproic acid was added to the expression me-

dium (Backliwal et al., 2008). Expression medium was harvested after

5 days and loaded onto a Talon FF column (Clontech). After IMAC purification

using the same buffers as described for hCSF-1, purified hCSF-1RD1–D3

glycosylation mutants were further purified by SEC on a Prep-Grade Hiload

16/60 SD200 column (GE Healthcare) equilibrated with HBS. To generate

hCSF-1:CSF-1RD1–D3 complexes, recombinant hCSF-1 (with cleaved N-ter-

minal His6 tag) was added in a 2:1 molar excess to hCSF-1RD1–D3 glycosyla-

tion mutants, followed by a final SEC run. hCSF-1RD1–D5 was expressed in

HEK293T cells in the presence of kifunensine (Chang et al., 2007) and purified

by IMAC using Talon beads (Clontech). After addition of a molar excess of

hCSF-1, hCSF-1:CSF-1RD1–D5 was further purified by SEC on a Superdex

200 16/60 column (GE Healthcare) equilibrated with HBS. For deglycosy-

lation, hCSF-1:CSF-1RD1–D5 was treated overnight with endoglycosidase
d All rights reserved
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F1 (1:100 w/w at 294 K). Deglycosylated hCSF-1:CSF-1RD1–D5 was purified

further via SEC in HBS buffer.

Crystallization and X-Ray Data Collection

hCSF-1:CSF-1RD1–D3

Purified complexes of refolded hCSF-1 and each of the hCSF-1RD1–D3 glyco-

sylation mutants expressed in HEK293T, HEK293S GnTI�/�, and HEK293S

GlycoDelete cells were concentrated to approximately 7 mg/ml and subjected

to initial crystallization trials, both in a sitting- and hanging-drop vapor-diffu-

sion geometry using a Mosquito robot (TTP LabTech). The best diffracting

crystals were obtained from hCSF-1RD1–D3 N240Q expressed in HEK293S

GlycoDelete cells. Brick-shaped crystals grew at 20�C after mixing 100 nl of

hCSF-1:CSF-1RD1–D3 N240Q (7.4 mg/ml) with 100 nl of reservoir solution con-

taining 0.2 M lithium sulfate monohydrate, 0.1 M Tris (pH 8.5), and 28% w/v

PEG3350. Prior to X-ray data collection, crystals were stepwise incubated in

stabilizing solution containing 35%v/w PEG3350 and 5%ethylene glycol. Cry-

oprotected crystals were subsequently flash-frozen in liquid nitrogen and

diffraction data were collected to 2.8 Å at the ID23-1 beamline of the ESRF

(Grenoble, France).

hCSF-1:CSF-1RD1–D5

Hexagonal rod-like crystals of hCSF-1:CSF-1RD1–D5 were grown via sitting-

drop vapor-diffusion geometry at 20�C by mixing 1 ml of the complex at

5 mg/ml and 1 ml of a reservoir solution containing 0.1 M NaCl, 0.1 M Tris

(pH 7.0), and 6% PEG20000. Crystals were cryoprotected using stabilizing

solution containing 30% v/v of sugar mixture (10% v/v D-glucose, 10% v/v su-

crose, 10% v/v sorbitol), and flash-frozen in liquid nitrogen. Diffraction data to

6.8 Å were collected at the PXI beamline at the SLS (Villigen, Switzerland). All

data were processed with XDS (Kabsch, 2010).

Crystal Structure Determination and Refinement

hCSF-1:CSF-1RD1–D3

The data were processed in space group I41 (a = 142.99 Å, b = 142.99 Å, c =

139.32 Å), and the structure was solved by maximum-likelihood molecular

replacement (MR) in Phaser (McCoy et al., 2007) using the crystal structure

of hCSF-1 (PDB: 3UF2) (Elegheert et al., 2012) and hCSF-1RD1–D3 as found

in the hIL-34:CSF-1RD1–D3 crystal structure (PDB: 4DKD) (Ma et al., 2012). A

single MR solution was found for a ternary complex containing one CSF-1

dimer bound by two CSF-1RD1–D3 receptor molecules in the asymmetric

unit. Initial refinement was performed in BUSTER (Blanc et al., 2004) using

rigid-body refinement in the first of five macrocycles. The resulting electron

density maps showed clear density for hCSF-1 and two copies of hCSF-

1RD1–D2, whereas the density for two hCSF-1RD3 domains was only readily

interpretable at the hCSF-1:CSF-1RD3 interface. The electron density was

greatly improved by allowing hCSF-1RD3 to refine as a separate entity, consis-

tent with the plasticity of hCSF-1RD3. Additional refinement steps were carried

out in PHENIX (Adams et al., 2010) using individual B-factor refinement with

TLS (translation/libration/screw), XYZ refinement, occupancy refinement, opti-

mized X-ray/geometry weight, non-crystallographic symmetry restraints,

mask parameter refinement, and removal of some flexible solvent-exposed

side chains for which no clear density was visible. Lastly, glycan chains on

Asn73, Asn45, Asn153, and Asn275 were added to the model, which was

further refined to completion in PHENIX (R/Rfree: 22.31%/26.13%) and vali-

dated using MolProbity software (Chen et al., 2010).

hCSF-1:CSF-1RD1–D5

The data were processed in space group P6122 (a = 281.47 Å, b = 281.47 Å, c =

91.17 Å, a = b = 90�, g = 120�) and ellipsoidally truncated and anisotropically

scaled (Strong et al., 2006). Recommended resolution limits along the recip-

rocal unit cell axes a*, b*, and c* were 7.4, 7.6, and 6.8 Å, respectively. Using

our structure of hCSF-1:CSF-1RD1–D3 to 2.8 Å resolution as a search model, a

single solution was found usingmaximum-likelihoodMR in Phaser for one sub-

unit of hCSF-1 and one molecule of hCSF-1RD1–D3 in the asymmetric unit. The

ensuing ternary complex is generated by a crystallographic 2-fold axis of sym-

metry along the unit cell b axis. Based on the composition of the asymmetric

unit, the solvent content of the crystal was estimated (Kantardjieff and Rupp,

2003) to be unusually high (�85%), which may rationalize the poor diffraction

quality of the crystals. Using the atomic coordinates for hCSF-1RD4 (PDB:

4LIQ) (Ries et al., 2014), maximum-likelihood MR in Phaser gave a single solu-

tion for the placement of D4, where two adjacent D4s (symmetry mates) are
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contacting each other. Due to obvious main-chain clashes, the rotamer of

Arg370 (taken from the Fab:hCSF-1RD4 complex, PDB: 4LIQ) was modeled

to its most predominant rotamer in Coot. This led readily to a salt bridge be-

tween Arg370 and Glu375 of an opposing hCSF-1RD4 analogous to the one

observed between D4 domains in the SCF:KIT complex (Yuzawa et al.,

2007). For hCSF-1RD5, MR in Phaser did not yield a solution, although density

for D5 was clearly visible after one round of rigid-body refinement in PHENIX.

Manual placement of hCSF-1RD5 followed by refinement in PHENIX using

rigid-body refinement, occupancy refinement, group B-factor refinement

with TLS, optimized X-ray/geometry weight, and mask parameter refinement

finally resulted in R/Rfree values of 32.63%/35.93%. Recalculation of the

R/Rfree values using the full data range resulted in R/Rfree values of 34.29%/

36.19%.

Small-Angle X-Ray Scattering

SAXS data acquisition for the hCSF-1:CSF-1RD1–D5 complex and subsequent

data processing were performed as described by Elegheert et al. (2011) and

Felix et al. (2013), respectively. CRYSOL (Petoukhov et al., 2012; Svergun

et al., 1995) was used to calculate a theoretical scattering curve from the

hCSF-1:CSF-1RD1–D5 crystal structure as well as its discrepancy from the

experimental SAXS data. Rigid-body refinement of the hCSF-1:CSF-1RD1–D5

complex was performed using the online version of SASREF (Petoukhov

et al., 2012; Petoukhov and Svergun, 2005). For each run, data to 0.25 Å�1

was used while imposing P2 symmetry. The structure of hCSF-1:CSF-

1RD1–D5 lacking D1 was taken as a starting rigid-body core. D1 was added

as a separate rigid body with a contact restraint of 4 Å between its C and

the N terminus of hCSF-1RD2–D5, as well as five N-linked glycans containing

a ‘‘dummy’’ asparagine residue (Asn-GlcNAc2Man5) with 1-Å restraints to

the Ca of truncated asparagine residues on hCSF-1RD2–D5 (N73, N153,

N240, N275, and N353). The fit of the model to the experimental data via

SASREF yielded c2 values of 1.65, 3.0, and 1.5 in SASREF, CRYSOL, and

FoxS (Schneidman-Duhovny et al., 2013), respectively.
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