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Physically linked clusters of genes that encode the enzymatic

information for the synthesis of specialized metabolites are a

well-established feature of microbial secondary metabolism. In

contrast, the biosynthesis of plant specialized metabolites has

until recently been thought to be almost exclusively encoded by

genes that are randomly scattered in the genome. However,

recent reports highlight the growing number of examples of

gene clusters for specialized metabolic pathways in plants.

Numerous gene clusters that encode for the biosynthesis of

different classes of metabolite have now been discovered in a

variety of plant species. Comparison of these characterized

clusters now enables us to begin to define their salient features

and to exploit plant biosynthetic gene clusters for synthetic

biology applications.
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Introduction
The plant kingdom has a tremendous capacity to syn-

thesize diverse low-molecular weight compounds. These

specialized metabolites have important functions in inter-

actions between plants and the environment (e.g. as pest

and pathogen defense compounds and UV protectants).

The suites of different compounds that are produced by

individual plant accessions and species are likely to reflect

adaptation to particular environmental niches. Plants are a

rich source of valuable compounds including traditional

medicines, pharmaceuticals and agrochemicals. However,

the vast majority of the plant metabolite reservoir is still

uncharacterized, leaving potentially disease-curing com-

pounds undiscovered and hindering biotechnological
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progress of synthetic approaches to meet the demands

for higher value and cheaper chemicals for medicine,

agriculture and industry.

Recent genetic and biochemical studies have highlighted

an intriguing facet of plant secondary metabolism, namely

the physical clustering of genes for specialized metabolic

pathways in plant genomes. It is not yet clear whether

clustering of genes for secondary metabolic pathways

predominates in plants, as it does in fungi and bacteria;

certainly there are well-characterized examples of plant

metabolic pathways (e.g. anthocyanins and glucosino-

lates) for which the genes are not linked [1�]. Never-

theless, the rapidly growing number of reports of

metabolic gene clusters for synthesis of diverse classes

of compounds from different plant species suggests that

this form of genomic organization is common. In contrast

the number of pathways for which the genes are known to

be dispersed is very limited. It is important to remember

that the vast majority of plant specialized metabolic

pathways remain as yet undiscovered and their genomic

organization is unknown.

In this review we will summarize current knowledge of

the plant metabolic gene clusters that have been

described so far, define their common features and high-

light the similarities and differences. We will also discuss

the potential for exploiting plant metabolic gene clusters

for biotechnology and synthetic biology applications.

Metabolic gene clusters in plants — no longer
the exception to the rule
In 1997 Frey et al. reported the first example of physical

clustering of the genes for a plant specialized metabolite

pathway — for the synthesis of defence compounds in

maize (Zea mays) [2]. The maize gene cluster was originally

defined as a group of five adjacent genes (Bx1–Bx5) that

encode enzymes for successive steps in the biosynthesis of

the cyclic hydroxamic acid 2,4-dihydroxy-1,4-benzoxazin-3-

one (DIBOA). Further investigations revealed four more

biosynthetic genes (Bx6–Bx9) that are required for the

conversion of DIBOA to 2,4-dihydroxy-7-methoxy-1,4-ben-

zoxazin-3-one (DIMBOA) and subsequent glycosylation,

three of which (Bx6-8) are either within or genetically linked

to the cluster [3–5]. Seven years later two further biosyn-

thesis gene clusters were described, the avenacin cluster in

oat (Avena spp.) and the phytocassane cluster in rice (Oryza
sativa) [6,7]. By the beginning of 2012 the number of

identified plant secondary metabolite gene clusters had

increased to nine [8��,9,10,11��], and within the last year

four more clusters have been reported [12��,13��,14��,15��].
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Examples of different types of specialized compounds that are the products of plant metabolic gene clusters. (A) The triterpenes thalianol and

marneral (A. thaliana); (B) the cyclic hydroxamic acid 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) (maize; Zea mays); (C, D) the

cyanogenic glucosides lotaustralin and linamarin (L. japonicus) (C) and dhurrin (S. bicolor) (D); (E) the steroidal glycoalkaloid a-tomatine (tomato; S.

lycopersicon); (F) the diterpenes momilactone A and phytocassanes A–E (rice; O. sativa); (G) the alkaloid noscapine (poppy; P. somniferum); (H) the

triterpene avenacin A-1 (oat; Avena spp.). Other examples (not shown) include a terpene cluster from S. lycopersicon, a cluster for synthesis of

cyangenic glucosides in cassava (M. esculenta), a triterpene cluster in L. japonicus and an a-chaconine/a-solanine gene cluster in potato (S.

tuberosum). The images of plants are reproduced with the kind permission of the John Innes Centre Photographic Services (A, C, E); Paul Cristou,

Institució Catalana de Recerca I Estudis Avançats, Lleida, Spain; (B), Arthur Mostead, Murray-Darling Basin Authority, Australia (D); Uta Paszkowski,

University of Cambridge, UK (F); Tanja Niggendijker/Creative Commons (G); Anthony Pugh, Institute for Biological, Environmental and Rural Sciences,

Aberystwyth, UK (H).
These biosynthetic gene clusters have been found in

diverse plant species, including monocots and dicots,

and are required for the synthesis of different classes of

molecules, including terpenes, alkaloids and cyanogenic

glycosides (Figure 1). A common feature is the location of

at least three non-homologous biosynthetic genes for a

distinct chemical pathway adjacent to one another in the

genome. One gene encodes the signature enzyme that

defines the scaffold of the specialized metabolite, and a

variable number of additional genes encode the tailoring

enzymes that modify this initial scaffold to catalyze the

formation of the pathway end-product [16]. The signature
Current Opinion in Biotechnology 2014, 26:91–99 
genes within these plant gene clusters appear to have

evolved directly or indirectly from genes for primary

metabolism by gene duplication and neofunctionalisation

[17]. The newly formed signature gene then seeds the

formation of a metabolic gene cluster through recruitment

of additional genes encoding tailoring enzymes [8��,18�].
Comparative genomics is beginning to shed light on mech-

anisms of cluster formation [8��,11��,13��,18�]. Interest-

ingly, as shown for the cyanogenic glucoside gene clusters,

in some cases specialized metabolic gene clusters for

similar metabolites have evolved several times indepen-

dently in different plant species [11��].
www.sciencedirect.com
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The currently described gene clusters span regions of

�35–270 kb and consist of three to ten genes (Figure 2).

Some gene clusters, such as the cyanogenic glucoside

cluster in Lotus japonicus, contain additional genes with no

obvious function in secondary metabolism, whereas other

clusters (such as the oat avenacin cluster and the A.
thaliana thalianol cluster) are compact and do not contain

intervening genes [6,9,11��,13��]. The majority of the

genes within each cluster are co-expressed, so enabling

co-ordinate production of the pathway enzymes in a

tissue-specific and time-specific manner. However,

although all cluster genes show co-expression in at least

one highly specific set of conditions, individual cluster

genes may also be transcribed separately under other

conditions [11��,13��,19]. The multifunctional phytocas-

sane gene cluster in rice is exceptional. Two partly

overlapping gene clusters form one giant cluster that

shows differential gene transcription profiles for its sub-

cluster-specific genes [20,21]. Cluster-independent gene

expression presumably enables synthesis of a pathway

intermediate rather than the end-product, which may be

desirable in certain tissues/under certain conditions.

Furthermore, it may allow the utilization of enzymes

encoded by clustered genes in other pathways. Interest-

ingly, the steroidal alkaloid gene clusters in tomato (Sola-
num lycopersicum) and potato (Solanum tuberosum) are each

split into two gene clusters that reside on different

chromosomes yet are co-regulated [15��]. The ability to

synthesize DIBOA is not restricted to maize. While most

plant specialized metabolic gene clusters are likely to

have arisen relatively recently in evolutionary time, the

DIBOA cluster is believed to have formed in an ancestral

monocot. Wheat (Triticum aestivum) and rye (Secale cereale)
are also able to synthesize this compound but the DI(M)-

BOA cluster is split into two in these species, most likely

due to a translocation event that occurred after a common

wheat/rye ancestor diverged from the maize lineage.

Nevertheless the pathways are functional, providing

further examples of split clusters [22,23]. Some metabolic

clusters are able to synthesize more than one major

product, although the reasons for this differ. For example,

the enzymes encoded by the L. japonicus cyanogenic

glucoside cluster are able to use different precursor amino

acids as the starting point, so catalyzing the formation of

linamarin and lotaustralin [11��]. The main products of

the steroidal alkaloid gene cluster in S. tuberosum are a-

solanine and a-chaconine. These metabolites differ only

in a sugar moiety, exemplifying the formation of two

different products due to variable tailoring of the scaffold

[15��]. The variety of different terpenes originating from

a single gene cluster in Solanum species are formed due to

the existence of several related terpene synthase genes

within the gene cluster. These genes are most likely

duplicates generated from an ancient terpene synthase

gene that is still represented within the cluster, the

activities of the duplicated terpene synthases sub-

sequently diverging [13��].
www.sciencedirect.com 
Metabolic gene clusters in plants — tools for
synthetic biology
The discovery of gene clusters for synthesis of specialized

metabolites in plants is reminiscent of earlier findings in

bacteria and fungi [17]. A typical feature of bacterial

genomes is the organization of genes for multi-step pro-

cesses in operons and clusters. The discovery several

decades ago of biosynthetic gene clusters in bacteria

has paved the way for the rational manipulation of path-

ways for the synthesis of antibiotics and other bioactives,

and for the discovery of novel metabolites. Gene clusters

for the synthesis of specialized metabolites are also a

common feature of the genomes of filamentous fungi.

The advent of affordable genome sequencing techniques

has enabled microbial genomes to be mined for their full

complement of candidate biosynthetic gene clusters [24],

so allowing the discovery of new pathways and novel

metabolites in previously untapped microbes [25–28,29�].

Most of the metabolic gene clusters that have been

reported in plants to date have been discovered by

serendipity, using a combination of genetics and bio-

chemistry. However, it is now becoming possible to

exploit genome sequence information for the discovery

of new clustered metabolic pathways in plants

[8��,9,30�,31�]. In the future this is likely to be accelerated

by the development of customized bioinformatics pipe-

lines for analysis of plant genomes along similar lines to

those established for microbes (e.g. antiSMASH, SMURF

and ClusterMine360; [32��,33,34]), thus allowing the

identification of regions of plant genomes that contain

clusters of genes for predicted signature and tailoring

enzymes and so have the hallmarks of candidate special-

ized metabolic gene clusters. A drawback for plant

researchers is the fact that plant genomes are significantly

larger than microbial genomes. The small size of bacterial

genomes facilitates both genome sequencing and sub-

sequent genome mining for genes and pathways of

interest. However, rapid advances in sequencing tech-

nology coupled with development of appropriate gen-

ome-mining tools will position plant researchers to use

strategies similar to those taken with microbes for gene

cluster discovery. The body of available plant genome

sequence information is increasing rapidly and genome

sequencing projects are now underway even for the

exceptionally large gymnosperm genomes [35,36]. The

identification of candidate biosynthetic gene clusters

based on genome sequence analysis offers access to

complete biosynthetic pathways for new specialized

metabolites.

Clearly the genomics-based discovery of candidate meta-

bolic gene clusters is only the starting point. Biochemical

and chemical analyses will be essential in order to delin-

eate these new predicted pathways and identify their

end-products. We also need to understand how amenable

these metabolic gene clusters are to engineering. The
Current Opinion in Biotechnology 2014, 26:91–99
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Figure 2
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The organization and architecture of characterized gene clusters for the synthesis of specialized metabolites in plants. The arrows representing the

genes within the clusters are colour-coded according to the class of biosynthetic enzyme that they encode; the labels above the CYP450 genes (blue

arrows) are also colour-coded to indicate the family of CYP450 to which the gene products belong (see key). For the marneral, thalianol, avenacin and

a-tomatine gene clusters no other genes are evident other than those shown. Intervening genes lacking predicted functions in secondary metabolism

are present in the other clusters but are not shown in the figure due to uncertainties about precise genome annotation. The maize DIMBOA pathway

includes three genes that are not shown in the figure, namely the methyltransferase gene Bx7, which is separated from the core cluster by an

intervening region of 15 Mb; the sugar transferase gene Bx9, which is located on a different chromosome; finally, a further gene Bx6 is not shown

because its genomic location has not yet been established. Note that the structure of this cluster has been revised since our previous review [1] in

response to the increased genome sequence information now available for this region. Gene clusters similar to the terpene gene cluster shown for

Solanum lycopersicon in this figure (third from the top) are also present in Solanum pimpinellifolium, Solanum pennellii and Solanum habrochaites [13].

Current Opinion in Biotechnology 2014, 26:91–99 www.sciencedirect.com



Gene clustering in plant specialized metabolism Nützmann and Osbourn 95
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Towards synthetic clusters. The phenomenon of clustering of genes for specialized metabolic pathways is now opening up exciting opportunities for

large-scale mining of multiple plant genomes for the discovery of new pathways and chemistries. Characterization of the components of plant

metabolic gene clusters (promoters, coding sequences, regulatory sequences, intergenic regions) coupled with biochemical characterization of the

cognate enzymes, modules and pathways will enable the establishment of an inventory of parts that can be used in synthetic biology applications.

These applications may include synthesis of streamlined minimal clusters that are optimized for transfer into plants. There is also the potential to

generate synthetic clusters with novel functions by combining the building blocks of different gene clusters.
biosynthetic genes form only a small part of these clusters

and the function of the intervening DNA sequences in

cluster function and regulation is not yet known. This

raises two important questions. Firstly, what are the

requirements for a ‘minimal’ functional cluster? Sec-

ondly, can functional clusters be built up from defined

components? Consequently, two key goals can be ident-

ified (Figure 3): (i) the construction of minimal functional

clusters that have been edited to remove all non-essential

sequences. This will be important for the engineering of

cluster-encoded multi-gene traits in plants; (ii) the con-

struction of synthetic clusters that combine promoter sets,

terminators and coding sequences for suites of signature

and tailoring enzymes from different gene clusters. This

will enable the generation of designer clusters for expres-

sion in heterologous hosts, which will be important both

for plant engineering and for the production of high value

specialized metabolites in plant or microbial systems.

Introduction of designer clusters into heterologous hosts

will enable temporal and spatial control of specialized

metabolite production and the discovery of new mol-

ecules through combinatorial biosynthesis, as has been

amply demonstrated for microbes [37].
www.sciencedirect.com 
New recombination and DNA assembly techniques now

offer routes to the rapid, reliable and precise construction of

large DNA fragments [38–40,41�,42��,43]. Synthetic

biology approaches for production of plant-derived special-

ized metabolites by metabolic engineering have so far been

carried out primarily in yeast (Saccharomyces cerevisiae) and

to lesser extent in Escherichia coli [44�,45�,46]. The poten-

tial of yeast for production of plant specialized metabolites

has been highlighted by the genetic engineering of strains

that provide the precursor of artemisinin, a major antima-

larial drug, on an industrial scale [47��,48]. Heterologous

expression platforms have been established for the

production of specialized metabolites from various differ-

ent sources. For example, genetically engineered Strepto-
myces coelicolor and Aspergillus nidulans strains provide

convenient hosts for expression of multiple biosynthetic

genes from Actinomycetes and filamentous fungi, respect-

ively, and facilitate the biochemical analysis of the intro-

duced biochemical pathways [49,50]. The tobacco species

Nicotiana tabacum and Nicotiana benthamiana have emerged

as hosts for the heterologous expression of biosynthetic

genes and production of specialized metabolites in plants

[51–58]. This can be achieved by generation of stable
Current Opinion in Biotechnology 2014, 26:91–99



96 Plant biotechnology
transformants [51,52,55,56]. This is, however, a very slow

process. Agrobacterium-mediated transient expression in N.
benthamiana leaves can be achieved within a matter of days

and minimizes any problems associated with detrimental

effects of heterologous metabolites on the plant host

[53,57,58,59�]. The Cow Pea Mosaic Virus HyperTrans

(CPMV-HT) expression system has proven to be a highly

effective tool for the rapid, transient expression of a variety

of proteins, including plant biosynthetic enzymes in N.
benthamiana leaves [14,53,54,59�,60].

In bacteria and fungi, gene clusters for the synthesis of

specialized metabolites are controlled at multiple levels

[61,62]. Manipulation of these regulatory mechanisms

using genetic and chemical approaches can result in

activation of these microbial clusters with associated

production of metabolites of interest [63–67]. The identi-

fication of regulatory processes that govern the expression

of plant metabolite gene clusters will enable similar

approaches to be taken in plants. So far, only one tran-

scriptional regulator has been described for a plant meta-

bolic gene cluster [68]. Interestingly, overexpression or

deletion of this transcription factor had substantial effects

on the metabolite production level of the targeted bio-

synthetic pathway [68]. Plant metabolic gene clusters are

also likely to be regulated at the level of chromatin

[8,9,19], opening up opportunities to activate/repress

cluster expression following methods similar to those

used in filamentous fungi [64,69].

Conclusions
The growing number of reports of clustered genes for

biosynthesis pathways in plants has established a new

avenue of research in plant biology and natural product

discovery. These clusters together provide a critical mass

of information that is now beginning to enable the com-

monalities and unique features of plant clusters to be

defined. Increased knowledge of plant metabolic gene

clusters will enhance future genome mining efforts for

discovery of new pathways and chemistries and the de-

velopment of biotechnological pipelines to exploit the

output of this. Important tasks to tackle will be the

generation of broadly applicable search engines for meta-

bolic gene clusters in the increasing number of sequenced

plant genomes, the identification of the regulatory mech-

anisms governing gene cluster expression, the definition

of essential building blocks and the uncovering of the

evolutionary forces behind the formation and mainten-

ance of metabolic gene clusters.
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