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Suppose we are given a graph in which edge has an integral weight. An 'exact'  problem is to 

determine whether a desired structure exists for which the sum of  the edge weights is exactly k 

for some prescribed k. 
We consider the special case of  the problem in which all costs are zero or one for arborescences 

and show that a 'continuity '  property is possessed similar to that possessed by matroids. This 

enables us to determine in polynomial time the complete set of  values of  k for which a solution 

exists. We also give a minmax theorem for the maximum possible value Of k, in terms of a packing 

of certain directed cuts in the graph. 

We also show how enumerative techniques can be used to solve the general exact problem for 

arborescences (implying spanning trees), perfect matchings in planar graphs and sets of  disjoint 

cycles in a class of  planar directed graphs which includes those of  degree three. For these pro- 
blems, we thereby obtain polynomial algorithms provided that the weights are bounded by a cons- 

tant or encoded in unary. 

1. Introduction 

Given a graph (digraph) G -- (V, E)  and a vector w = (w e : e ~ E)  of nonnegative 

integral weights, we define the weight of F c E as 

w(F )=  ~ w(e). 
eeF 

Let F be a set of 'feasible'  subsets o f  E. An exact p rob lem is to determine, for 

some prescribed value k, whether  there exists S e F such that w(S) = k. A special case 

is the following: Suppose we are given G = (V, E) and a set R c_ E of ' red'  edges. For 
a prescribed value k, we want  to know whether there exists a member of  F contain- 

ing exactly k edges of R. In Section 2 we discuss this problem for matroids and 

matroid intersections and give a direct solution for the case of aborescences. 

Papadimit r iou and Yannakakis  [ 13] observe that the following three problems are 
NP-complete when the weights are encoded in binary and ask what is the complexity 

when the weights are encoded in unary.  

EXACT SPANNING TREE. Given a graph, a weight function and k > 0, is there a span- 
ning tree of  weight exactly k? 
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EXACT PERFECT MATCHING. Given a graph, a weight function and k > 0, is there a 
perfect matching of weight exactly k? 

EXACT CYCLE SUM. Given a digraph, a weight function and k > 0, is there a set of 
disjoint cycles of total weight exactly k? 

Even when the corresponding optimization problems are polynomially solvable it 
seems that for the above problems completely different algorithms are needed. In 
Sections 3 and 4 we use enumeration methods to prove that the first problem is 
polynomially solvable, and the second and third ones are polynomially solvable 
when restricted to planar graphs and to a class of planar digraphs (which includes 

cubic) respectively. 

2. Zero-one weights, matroids and arhorescences 

In this section we discuss direct solution methods for 'exact' problems in which 
all weights are 0 or 1. In several such cases there is a 'continuity'  property, namely 
if there exist feasible solutions with weights wl and w E, then for any k between Wl 

and w E there exists a feasible solution of weight k. A standard optimization 
algorithm can then be used to find minimum and maximum weight solutions and 
then the weights for which a feasible solution exists are precisely those between the 
maximum and minimum. Indeed, Papadimitriou and Yannakakis [13] show that the 

exact spanning tree problem with all edge weights 0 or 1 can be solved in precisely 

this fashion. Their result generalizes easily to matroids. 

Proposition 2.1. (cf. [9, pp. 84-86]). Let M =  (E, F) be a matroid, let R c_ E and sup- 

pose there exist bases B1, BE o f  M such that I R n B1 ] = k j, I R n n2l --- k2 and kl <- k2. 
Then, for  any integer k satisfying kl < k < k2, there exists a basis B c_ B! OB2 such 

that InnRI =k. 

Proof. It is sufficient to show that either k~ = k 2 or elese there exists a basis B' of 

M such that B'c_BIUB2 and ]B'GR] = k l + l .  For any e e B E \ B  l, let C e be the 
unique circuit obtained by adding e to Bl. If there exists e e B E \ B i such that e e R 
but there exists e ' e  C e \ R, then B ' = B  1U {e} \ {e'} is the desired basis. If no such 
e exists, then Bl AR is a basis of (B 1UB2)NR and so ]Bl OR] >_ ]BENR I which im- 

plies k l = k  2. [] 

By applying the above process we can see that if B' contains the minimum possible 
number of elements of R and B" contains the maximum possible number of 

elements of R, then we can construct a sequence B '=  Bo, B1, B2, ---, BI = B" of bases 
of M such that 

IBi_1ABiI=2 for i=1,2,...,l, (2.1) 
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IBiORI=IB~_IORI+I for i= 1,2,...,1. (2.2) 

That  is, each basis in the sequence is obtained from the previous basis by adding 
a single element of R and removing an element of E \ R. If  we only require (2.1) 

to hold, then the existence of such a sequence of bases is an elementary property 

of matroids, sometimes stated as " T h e  basis graph of a matroid is connected."  

Moreover, this in itself is sufficient to prove Proposit ion 2.1, for if ]B i_ l/~ Bil--2, 
then Ienn;_lt- 1< I R A B i t  < IenBi_ll + 1, i.e., the number of elements of R 
can increase or decrease by at most one. 

(Suppose that  each edge of  G has a real cost associated with it. Gabow and Tar jan 

[9] and Glover [10] give algorithms for finding a spanning tree of minimum cost 

containing a prescribed number  of red edges. Glover and Klingman [11] and Gabow 

[8] solved this problem for the case that  all red edges are incident with a single node. 

This is a special case of the weighted matroid intersection problem.) 

Let G = (V, E)  be a directed graph and let r ~ V be a specified root node. An 

aborescence rooted at r is a set A of arcs that  form a connected graph such that each 

node other than r has indegree one and r has indegree zero. 

We now show that this same property of 'continuity '  does hold for aborescences, 

however we no longer have the stronger monotonici ty  property. Let G be a directed 

graph with a fixed root node r. Let A be the set of all (spanning) arborescences 

rooted at r and, for any A c A ,  let R ( A ) =  IRAAI. We call arcs of R red arcs and 

call arcs of E \ R blue arcs. 

Propos i t ion  2.2. L e t  A ,  A" ~ A .  Then there exists a sequence A = A 0, A 1,.--,  A t  = A '  

o f  arborescences in A such that [A i_ l A A i l  = 2 f o r  i = 1, 2 , . . . ,  1. 

Proof .  We prove by induction on s = ]A A A'[.  I f  s = 2, we have nothing to prove, 

so assume s > 4. Let e '  be an arc of  A '  \ A such that  the head o of e '  is at a max- 

imum distance in A from r. Let e be the arc of A whose head is o. Remove e from 

A and let W be the set of nodes thereby disconnected from r. Some arc of A '  must 

jo in  a node of V \ W to a node of W. If  it were any arc other than e', we would 

contradict our choice of e '  so, in fact, e '  must join a node of V \ W to o. Therefore 

A " = A  U {e'} \ {e} is an arborescence in A satisfying IA"AA[ = 2 and I A " A A '  I = 
s - 2 .  The result now follows by applying induction to A '  and A". [] 

Just as for matroid bases, i f  A I , A 2 e A  satisfy t A I A A 2 ] = 2 ,  then 

[ R ( A I ) - R ( A 2 )  [ < 1, s o  w e  have the following: 

Corollary 2.3. Let  G = (V, E )  be a directed graph, let R c_ E and let A 1 and A 2 be 

arborescences rooted at r ~ V. Then f o r  any integer k between R(A l) and R(A2) 
there exists an arborescence A rooted at r such that R ( A ) =  k. 

However, unlike in the case of matroids,  it is not possible in general to find a se- 



94 F. Barahona, W.R. Pulleyblank 

1" ~r 

(o) (b) 

Edge in R 
Edge in E \R  Fig. 1. 

1" 

(c) 

quence A0, A1, .. . ,  AI as described in Proposi t ion 2.2 such that  R(A i_ 1)<R(Zi) or 
even R(Zi_l)<_R(Ai) for 1 <__i<l. For consider the graph of  Fig. l(a). I f A  and A '  

are the aborescences of  Fig. l(b), (c), respectively, then R(A)=2, R(A')= 3 but any 
sequence of  the form of  Proposi t ion 2.2 will contain an aborescence Ai for which 

R(Ai)=O. 
However, we can describe a direct algorithm which will, for any aborescence A,  

either find an arborescence A '  such that R(A')=R(A)+ 1 or else prove that R(A) 
is maximum. First we introduce some terminology. 

Let V(R)= {o~ V \ {r}: there exists an arc (u, o)~R}. That is, V(R) is the set of  
nodes which are the head of  a red arc. For any S c_ V we let S=  V \ S and we let 

(S, S) denote the set of  arcs with tail in S and head in S. We say that (S, S) is a blue 
cut if 

r e S, (2.3) 

(S, S) ___ E \ R, (2.4) 

for every arc (u, o) ~ (S, $), o ~ V(R). (2.5) 

Informally,  a blue cut is a cut directed away from r such that all arcs in it are blue 

and such that  the head of  each such arc is also incident with a red arc. 
A blue packing is a set B of  pairwise disjoint blue cuts. The size of  B (denoted 

by I BI) is the number of  cuts in the packing. Note that any arborescence rooted at 

r must contain at least I BI blue arcs incident with nodes of  V(R). Therefore the 
maximum number of  red arcs in an aborescence is at most ] V(R)I - Inl. In fact, for  
a suitable arborescence and blue cut packing, equality will hold. 

Theorem 2.4. The maximum of  {R (A) :AeA}  equals the minimum of  
{ I v ( R ) l  - Iu l :  B i s  a blue cut packing of  G}. 
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We prove this by giving an algorithm for the following: Given G = V(E), r, R as 

above and an arborescence A,  either find an arborescence A '  such that 
R(A' )=R(A)+ 1 or else find a blue cut packing B of  size [ V(R)[ -  [R(A)[. 

If  every node of V(R) is the head of  a red arc of  A, then setting B = 0 gives the 
required packing. If not,  choose v ~ V(R) such that the arc (u, o) of  A with head r 
belongs to E \ R and such that the path in A from r to o is maximal, subject to this. 

Let W be the set of  nodes such that the path in A from r passes through o. If  any 
arc (w,o)eR has we  W, then we can remove (u,v) and add (w,u) and get an 
arborescence A '  as required. If not, choose some (w, o) e R with w e W. (Such an arc 
exists because v ~ V(R).) Adding (w, u) to A creates a unique directed cycle C. Note 
that  every node of V(R) in C is the head of  a red arc of  C, by our choice of  o. Let 

be the number of nodes of  V(R) in C. 

Let (7 = (I2, E)  be obtained from G by shrinking C to form a pseudonode (~. The 

arcs of  (7 have the same colours as the corresponding arcs of G, except for arcs 
whose heads are C. If (s, t) e E is such that t is a node of  C, but s is not a node of 
C, then we let 

(s, ~) e~ if (t e V(R) and (s, t) e R) 

or (t ~ V(R) and (s, t) ~ E \ R), 

( s , t ~ ) eB= E\ I~  i f t e V ( R )  a n d ( s , t ) e E \ R .  

Note that  we cannot have t ~ V(R) and (s, t ) e  R. 
Let .4 be the arborescence in (7 whose arcs correspond to the arcs of  A (not in 

C). I f  we let /?( .4)  denote the number  of  arcs o f / ~  in A,  then 

R(A) = R ( A ) -  (2 - 1). (2.6) 

Recursively apply the algorithm to (7, r,/~,.4. There are two possible outcomes: 
(1) Suppose we obtain an aborescence .4' in (7 such that /~( .4 ' )  =/~(/1) + 1. Let 

(s, C) be the arc o f . 4 '  whose head is C. Let (s, t) be the corresponding arc of  G. We 
construct an arborescence A '  in G by adding to the arcs of  A all arcs of  C except 
the one whose head is t. It can be straightforwardly verified that,  in all cases, 

R(A') =/?(`4') + 2 - 1 =/~(A) + 2. Therefore,  by (2.6), R(A') = R(A) + 1 as required. 
(2) Suppose we obtain a blue cut packing B in (7 and ]B] = [ V(/~)[ - / ? (A) .  If all 

arcs of  (7 with heads equal to t~ belong t o / i ,  then [ V(/~)[ = [ V(R)[ - 2 .  Therefore 
[ V(R)[ - R ( A ) =  [i] I + 1. No arc with head (~ can belong to a cut in I], but the set 
of  arcs of  G with heads in C and tails not in C forms a blue cut in G. We add this 
cut to !] and obtain a blue cut packing B in G of  the required size. If  there exists 

an arc o f / ~  whose head is t~, then [ V(/~)] = [ V(R)[ + 2 +  1 and so [ V ( R ) [ - R ( A ) =  
[!] I . By the definition o f / ~  a n d / i  for the arcs whose head is C, it can be easily 
verified that  the arcs of  G corresponding to the arcs of  the cuts of !] form a blue 
cut packing B in G, and [B[ = [ V(R)[ - R ( A )  as required. [] 

Theorem 2.4 can also be deduced from Edmonds '  theorem [5] giving a linear system 
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sufficient to define the convex hull  of the incidence vectors of the aborescences, 

plus the total dual integrality of the linear system. Moreover, the algorithm is a 
special case of  a 'primal' algorithm for maximum weight aborescences. 'Dual' 
algorithms for the general problem are given by Chu and Liu [4], Edmonds [5], 
Bock [2] and Fulkerson [7]. Gabow and Tarjan [9] present an algorithm which finds 
a minimum cost aborescence containing k red arcs, for the case that all the red arcs 
are incident with a single node. 

Note that arborescences form a special case of  matroid intersection. Consider the 
general problem: given matroids M 1 = (E, FI) and M E = (E, F2), R c_ E and k, does 
there exist a basis B of Mlf')M 2 such that ]BNR] =k? This problem is open for 

matroids in general and even for the special case that M~ A M  2 is the set of mat- 
chings of a bipartite graph. As was noted in [1], considering an even cycle whose 
edges are alternately in and not in R, we can see that this matching problem does 
not have the continuity property possessed by matroids and arborescences. Hence 
neither do matroid intersection problems in general. 

3. Exac t  a r b o r e s c e n c e s  and trees 

We now consider the general 'exact' problem for arborescences, which will imply 
the results for spanning trees. That is, we have a directed graph G = (V, E), a non- 
negative integral weight function w and a specified root node r. We wish to find 
whether there exists an arborescence A such that ~ (w(i,j) : ( i , j ) e A ) - - k ,  for some 
prescribed k. Note that if we have negative weights, we can transform the problem 
into one with nonnegative weights by adding a suitable constant to the weight of 
each arc and adjusting k appropriately. 

Let M be an n × n matrix having zero row sums whose rows and columns are in- 
dexed by V. For i4:j we denote the (i,j)-th element by -Mij. Let D(M) be the 
determinant of  the matrix obtained by omitting the row and column corresponding 
to r. For each A in A, let Q(A) be the product of the Mij over all directed arcs (j, i) 
in A. In [3] the following identity is proved: 

D(M)= E Q(A). 
A e A  

Given a nonnegative integral weight function w and a real variable x, we define 
the matrix M(x) as follows: 

IO xW(j'i) if (j,i)eE, i~j, 
Miy(x)= if (j,i)¢E, i~j, 

Mii(x ) = ~ - Mij  (x) for  i = 1, 2 , . . . ,  n.  
j~=i 

Then 

DfMfx))= ~ ak xk, 

for i,j= l,2,...,n; 

where ak is the number of arborescences rooted at ol with weight exactly k. (Note 
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that if we replace (£ i) with (i,j) in the above, we enumerate arborescences directed 
'towards' the root.) 

D(M(x)) is a polynomial of degree at most p = n. max{ w(e)}, hence its p + 1 coef- 
ficients can be obtained by evaluating D(M(x)) for p + 1 points and solving a system 
of p + 1 linear equations. Using the method given in Edmonds [6], we can compute 
each determinant in time O(n3-p log p), where the p log p factor accounts for the 

time spent performing arithmetic operations. Similarly, we can solve the system of 
equations in time O(p3.plogp). 

Let us define the problem: 

EXACT ARBORESCENCE. Given a graph, a weight function and k > 0, is there an ar- 
borescence rooted at 0 of weight exactly l? 

We have the following theorem. 

Theorem 3.1. There exists an algorithm which solves EXACT ARBORESCENCE in time 
O((n 3 +p2)p2 log p). 

Note that p is a polynomial function of n, the number of nodes, and the 
magnitude of the largest arc cost. If the costs are encoded in unary or if the 

magnitudes are bounded by a constant, then p will be a polynomial function of the 
length of the input corresponding to an instance of the problem. Otherwise, this 

need not be the case. 
EXACT SPANNING TREE can be solved by replacing every undirected edge by two 

oppositely directed arcs and solving EXACT ARBORESCESCE. 

4. Exact matchings and cycles 

The same idea can be applied to perfect matchings in planar graphs. 
Let G = (V, E) be a planar graph with [ V t = 2n. Given an orientation of the edges 

and z : E - ~  we can define a matrix M as follows: 

~z(e) if e-- {i,j} and e is oriented from i to j ,  
M~i= ~-z(e)  if e=  {i,j} and e is oriented from j to i, 

ko if {i,j} ~E. 

Let M be the set of perfect matchings of G, for A e M let Q(A) be the product 
of z(e) over all edges e that belong to A. Kasteleyn [12] describes an efficient 

algorithm for obtaining an orientation of the edges of G such that 

P f (M)=  ]~ Q(A), 
AeM 

where Pf(M) denotes the pfaffian of  M. 
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G 

Fig. 2. Transformation of EXACT CYCLE tO EXACT PERFECT MATCHING. 

Given w : E---,7/ let us define z(e) = X  w(e). Then Pf(M) = ~ akx k, where at is the 

number of perfect matchings of weight exactly k. The pfaffian of a matrix can be 
computed in polynomial time in an analogous way to a determinant, see [1], or it 
can be computed directly from the determinant since [Pf(M)] 2= det(M). 

Since Pf(M) is a polynomial of degree at most p =  n.  max{w(e)}, its p + 1 coeffi- 
cients can be obtained as has been described in the preceding section. Therefore, we 
have the following: 

Theorem 4.1. There exists an algorithm which solves EXACT PERFECT MATCHING in 
planar graphs in time O((n 3 +p2)p2 logp). 

Suppose we wish to solve EXACT CYCLE SUM for a directed graph G. The problem 
can be transformed into EXACT PERFECT MATCHING for a bipartite graph as follows. 

Delete any nodes having indegree or outdegree zero. Replace each remaining node 
by two new nodes, one designated as a 'head' node and the other as a 'tail' node. 
Construct a new edge of cost zero between each pair of new nodes. For each arc 

of G we construct an edge joining the appropriate hed and tail nodes. The cost of 
this edge is the same as the cost of the corresponding arc. This transformation is 
illustrated in Fig. 2. 

Let (~ be the resulting (bipartite) graph. Then G has a set of  node disjoint directed 
cycles, the sum of whose edge weights is k, if and only if ¢~ has a perfect matching, 
the sum of whose edge weights is k. The graph ¢~ will be planar if and only if G 
has a planar embedding such that for each node i, the arcs whose heads are i form 
a consecutive group in the embedding. In particular, if G is cubic and planar, this 
will always be the case. Therefore, for these graphs we can solve EXACT CYCLE. 

Finally, we mention one additional problem. 

EXACT CUT. Given a graph, a weight function and k > 0, is there a cut of weight 

exactly k? 

For planar and toroidal graphs this problem can be solved in polynomial time by 
enumerating perfect matchings, the transformations are described in [1]. 
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