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The problem of classifying, up to isometry, the orientable 3-manifolds that arise by
identifying the faces of a Platonic solid was completely solved in a nice paper of
Everitt [B. Everitt, 3-manifolds from Platonic solids, Topology Appl. 138 (2004) 253–263].
His work completes the classification begun by Best [L.A. Best, On torsion-free discrete
subgroups of PSL2(C) with compact orbit space, Canad. J. Math. 23 (1971) 451–460],
Lorimer [P.J. Lorimer, Four dodecahedral spaces, Pacific J. Math. 156 (2) (1992) 329–335],
Prok [I. Prok, Classification of dodecahedral space forms, Beiträge Algebra Geom. 39 (2)
(1998) 497–515], and Richardson and Rubinstein [J. Richardson, J.H. Rubinstein, Hyperbolic
manifolds from a regular polyhedron, Preprint]. In this paper we investigate the topology
of closed orientable 3-manifolds from Platonic solids. Here we completely recognize those
manifolds in the spherical and Euclidean cases, and state topological properties for many
of them in the hyperbolic case. The proofs of the latter will appear in a forthcoming paper.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction and statement of the results

Let X = S3, E3 or H3. A 3-space form (or, an X-manifold) M is an orbit space X/G , where G is an isometry group acting
on X properly discontinuously and without fixed points. This gives a tiling of X . The isometries of G , mapping a distin-
guished tile onto its neighbours, identify the boundary faces of the tile in pairs. Such isometries generate the fundamental
group of M . Of course, M is the quotient space obtained from any distinguished tile via the above pairing of its boundary
faces. A Platonic solid in X is a polytope P with the combinatorial type of a Platonic solid (convex regular solid), embedded
in X , so that all side lengths are equal, as are the interior face angles and dihedral angles. Everitt classified in [5], up to
isometry, the orientable 3-space forms that arise from tilings of X by Platonic solids. This completes the work begun by
several authors (see [1,9,17,18]). These results, obtained by algebraic and computational methods, follow from the classifica-
tion of certain subgroups of rank four Coxeter groups. The following theorem summarizes the results of the quoted papers
according to Everitt notation (explained after the statement).

Theorem 1.1. (Everitt [5], Lorimer [9]) The closed orientable spherical 3-manifolds arising from Platonic solids as space forms are listed
in Table 1.

The manifold M1 comes from the tetrahedron with dihedral angle 2π/3, M2 and M3 from the cube with angle 2π/3, M4 , M5
and M6 from the octahedron with angle 2π/3, and M7 and M8 from the dodecahedron with angle 2π/3.

Remark 1. The manifolds M7 and M8 were constructed by Lorimer in [9]. The manifold M3 is the quaternionic space
[11, p. 120], and M6 is the octahedral space [11, p. 117]. The manifolds M2 and M5 have the same homology but they
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Table 1

Spherical manifolds F E Homology

M1 abab a(−−)b(−−)aabb Z5

M2 ababcc a(++)b(+−)aac(+−)bcd(+−)bcdd Z8

M3 abcbca a(++)b(−−)c(+−)cd(−−)bdabdac Z2 ⊕ Z2

M4 abcacbdd a(++)b(+−)c(+−)ad(++)cbdacdb Z2 ⊕ Z6

M5 abcacdbd a(++)b(−−)c(++)ad(−+)cbcaddb Z8

M6 abcdcdab a(++)b(++)c(++)d(++)bcdadabc Z3

M7 abcdef ef bcda a(−+)b(−+)c(−+)d(−+)e(−+) f (−+)g(−+)h(−+)i(−+) j(−+)idjef agbhcghi j f eabcd 0
M8 abcdef bdcf ea a(−+)b(−+)c(−+)d(−+)e(−+) f (++)g(++)h(++)i(++) j(++)ajcgbf eidhf hg jieabcd Z15

Table 2

Euclidean manifolds F E Homology

M9 abacbc a(+ + +)b(+ + +)aac(+ + +)bccbcba Z3 ⊕ Z

M10 abbcca a(− + −)ab(− − +)c(− + −)bacbbacc Z2 ⊕ Z2 ⊕ Z

M11 abccba a(− + −)ab(− − +)c(+ − −)bccbbcaa Z4 ⊕ Z4

M12 abcbca a(+ + +)b(+ + +)c(+ + +)bcaaccbba Z ⊕ Z ⊕ Z

M13 abcbca a(+ + +)b(+ + +)c(− + −)cbaacbbca Z2 ⊕ Z

M14(= M10) abcbca a(− + −)b(+ − −)c(+ + +)bcaaccbba Z2 ⊕ Z2 ⊕ Z

are not homeomorphic (hence non-isometric). This is proved in [5] by algebraic arguments which imply that π1(M2) ∼= Z8
while π1(M5) has order 24. We obtain all these facts as particular consequences of our geometric methods. Note that (and
this was also pointed out by the referee) the edge identifications given for the manifold M5 do not quite agree with those
for the corresponding one in Table 3 of the paper of Everitt [5] (our paper has b(−−) while Everitt’s has b(−+)). But we
have accurately checked the corresponding side pairing of the boundary faces of the octahedron, and can affirm that our
sequence is right. This corrects a transcription error in the quoted paper.

Theorem 1.2. (Everitt [5], Prok [17]) The closed orientable Euclidean 3-manifolds arising from Platonic solids as space forms are listed
in Table 2.

All these manifolds arise from the familiar cube with dihedral angle 2π/4.

Remark 2. The manifold M12 is the 3-torus S1 × S1 × S1. The methods in [5] are not able to distinguish between the
manifolds M10 and M14 (see [5, pp. 260/261]). Prok [17] constructed an affine conjugacy between M10 and M14, so they are
indeed the same manifold. We prove again this fact in a different way.

Theorem 1.3. (Richardson and Rubinstein [18]) The closed orientable hyperbolic 3-manifolds arising from Platonic solids as space
forms are listed in Table 3.

The manifolds M15, . . . , M22 come from the dodecahedron with dihedral angle 2π/5, and M23, . . . , M28 from the icosahedron
with angle 2π/3.

Remark 3. For manifolds in Theorem 1.3 with the same first homology, algebraic arguments are provided in [18] to show
that they are all distinct. The manifold M15 is the Seifert–Weber 3-manifold [21].

Now we recall the Everitt notation for the tables. The columns F and E give the face and edge identifications in the form
of an encoded string of letters and ± signs to be read in conjunction with Fig. 1. The ith and jth faces are paired when
the ith and jth positions of the string in column F are occupied by the same letter. Similarly, for the edge identifications,
where a string of ±s after a letter indicates whether the corresponding edge is identified with subsequent ones with
the orientations matching or reversed. For example, the Seifert–Weber manifold M15 arising from the dodecahedron with
dihedral angle 2π/5 has face identifications abcdef ef bcda, where a indicates that faces 1, 12 are identified, b indicates that
faces 2, 9 are identified, and so on. It has edge identifications

a(− + −+)b(− + −+)c(− + −+)d(− + −+)e(− + −+)

cdeabf (+ + ++)af bf c f df ecdeabdeabc

where a indicates that edges 1, 9, 12, 24 and 28 are identified, and a(− + −+) means edge 1 is identified with edge 9 so
that the identifications are reversed, with edge 12 so they match, with edge 24 so they are reversed, and with edge 28 so
they match. From the data in these two columns one can reconstruct the side pairing of the boundary faces of the Platonic
solid. This completely defines the quotient manifold. From the polyhedral representation, one obtains immediately a finite
presentation of the fundamental group and a Heegaard diagram of the quotient manifold.

The purpose of this paper is to investigate the topology of the above manifolds. We recall that a Seifert manifold Σ is
uniquely characterized by a system of invariants (ε g ε ′ : b (α1, β1) (α2, β2) · · · (αr, βr)), where g is the genus of the base
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Table 3

Hyperbolic manifolds F E Homology

M15 abcdef ef bcda a(− + −+)b(− + −+)c(− + −+)d(− + −+)e(− + −+) Z5 ⊕ Z5 ⊕ Z5

cdeabf (+ + ++)af bf c f df ecdeabdeabc
M16 abcdef def bca a(+ + ++)b(+ + ++)c(+ + ++)d(+ + ++)e(+ + ++) Z5 ⊕ Z5 ⊕ Z5

abcdebf (+ + ++)cf df ef af cdeabbcdea
M17 abcdef def bca a(+ − ++)b(− + ++)c(− − −+)d(+ + −+)e(+ − ++) Z3 ⊕ Z3

debaf (+ − ++)bcf af ef cdcf edabeabcd
M18 abccadeef bf d a(+ + −−)ab(− + ++)ac(− + −+)d(− + ++)bab Z35

e(+ + +−)ef (− − +−)bf dcaecdf f f ddcbece
M19 abcdef ebf dca a(− + −+)b(− + −+)c(− + −+)d(− + −+)e(− + −+) Z5 ⊕ Z15

edacbf (+ + ++)cf ef bf af dbdaeceabcd
M20 abcdef f bdeca a(+ + ++)b(+ + ++)c(+ + ++)d(+ + ++)e(+ + ++) Z15 ⊕ Z15

adbcecf (+ + ++)ef df bf af eacdbdeabc
M21 abcdebedf f ca a(+ − ++)b(+ − ++)c(− − −+)d(− + −+)e(− + ++) Z48

cedaef (− − +−)af df bf c f ebdcbacdeab
M22 abbcadef ecf d a(+ + +−)b(+ + −+)c(− − ++)ad(− + +−)a Z29

e(+ − +−)dbbeaecf (+ − −+)acf cef f dedbdbf c
M23 abcbdaef ghihdef jgc ji a(−+)b(+−)c(−−)d(−−)e(−+)deabf (−+) Z11 ⊕ Z11

g(+−)h(−+)i(+−)iacc j(++) jhdebf g f ghi j
M24 abcdebf ceghhii j j f gda a(−+)b(−+)c(−+)d(−−)e(++)cf (−−)ea Z9

g(−−)ebh(+−)gi(+−)dj(+−) f ghhdii f j jabc
M25 abcdef bdgehii j jhf gca a(++)b(++)c(++)d(++)e(+−)cdf (+−)ad Z2 ⊕ Z18

g(+−)bf h(−+)gi(+−)ej(−+)i jg jhehi f abc
M26 abcdaef dg f hihcj jbige a(++)b(+−)bc(+−)d(−−)e(+−)baf (−−) Z35

g(+−)ef gh(++)ghci(+−)dj(−+) j jdeiicahf
M27 abcdabef ghci jidf jghe a(++)ab(−+)c(++)d(++)e(−−)bacf (+−) Z29

g(+−)h(+−)ei(−+) j(++)dj f idhgihebg j f c
M28 abcdaebdf ghic jehj f gi a(++)b(+−)bc(−−)d(−+)e(++)bacdef (+−) Z29

g(−−)h(+−)di(−+)aj(−−)i j f ehgcighj f

orbifold S , ε = O and ε′ = o if Σ and S are orientable, respectively, b = −(e0 + ∑r
i=1 βi/αi) ∈ Q, where e0 is the rational

Euler number of the bundle, and (αi, βi) are the Seifert invariants of the ith exceptional fiber. For the theory of Seifert
manifolds we refer to the monograph of P. Orlik [12]. Here we state our main results.

Theorem 1.4. The spherical and Euclidean manifolds obtained from Platonic solids as space forms are homeomorphic to the fibered
spaces described in Table 4.

Theorem 1.5. For the closed orientable hyperbolic 3-manifolds arising from Platonic solids as space forms, the following properties
hold:

(a) The manifolds M15 (Seifert–Weber) and M16 coincide with the manifolds M5,2 and M5,1 , respectively, constructed in [6]. They are
5-fold strongly cyclic coverings of the 3-sphere branched over the Whitehead link. These manifolds have the same homology but
they are distinct;

(b) The manifold M20 is the Lorimer dodecahedral space with homology Z15 ⊕ Z15 [9];
(c) The manifold M23 is the Fibonacci manifold M5 (of Heegaard genus 2) encoded by the standard presentation of the Fibonacci

group F (2,10) with generators x1, . . . , x10 and relations xi xi+1 = xi+2 (subscripts mod 10). It is the 5-fold (respectively 2-fold)
cyclic covering of the 3-sphere branched over the figure eight knot (respectively the knot 10123) (see [7,8]);

(d) The manifolds M24 and M25 are 3-fold strongly cyclic coverings of the lens space L(3,1) branched over two (non-equivalent)
2-component links L24 and L25 , respectively (see Fig. 2);

(e) The manifolds M26 , M27 , and M28 have Heegaard genus 2, and they are 2-fold coverings of the 3-sphere branched over the π -
hyperbolic 3-bridge knots K26 , K27 , and K28 , respectively, depicted in Fig. 3. The knots K26 and K28 are chiral and invertible while
K27 is chiral and non-invertible. The symmetry group of K27 and K28 (respectively K26) is Z2 (respectively D2). The manifolds M27
and M28 have the same homology but they are distinct.

Here we prove Theorem 1.4 while the proof of Theorem 1.5 will be given in the forthcoming paper [4].

2. Spines of closed manifolds

Let M be a closed connected orientable 3-manifold. A spine of M is a connected 2-polyhedron X ⊂ M such that
M \ (open 3-cell) collapses onto X . It is known that every closed 3-manifold M has a spine with just one vertex. Such
a spine corresponds in a natural way with a finite presentation of π1(M). A lot of results on group presentations corre-
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Fig. 1. Platonic solids labelled according to Everitt notation.

Table 4

Spherical manifolds

M1 ∼= L(5,2)

M2 ∼= L(8,3)

M3 ∼= S
3/〈222〉 = (O 0 o : −1 (2,1)(2,1)(2,1))

M4 ∼= S
3/Q 8×Z3 = (O 0 o : 0 (2,1)(2,1)(2,1))

M5 ∼= S
3/D24 = (O 0 o : −1 (2,1)(2,1)(3,2))

M6 ∼= S
3/〈332〉 = (O 0 o : −1 (3,1)(3,1)(2,1))

M7 ∼= S
3/P120 = (O 0 o : −1 (2,1)(3,1)(5,1))

M8 ∼= S
3/P24×Z5 = (O 0 o : −1 (2,1)(3,2)(3,2))

Euclidean manifolds

M9 ∼= T × I/( 0 1

−1 −1

) = (O 0 o : −1 (3,1)(3,1)(3,1))

M10 ∼= M14 ∼= T × I/(−1 0

0 −1

) = (O 0 o : −2 (2,1)(2,1)(2,1)(2,1))

M11 ∼= (K ×∼ I) ∪ (K ×∼ I)/(0 1

1 0

) = (O 1 n : −1 (2,1)(2,1))

M12 ∼= T × I/(1 0

0 1

) = S
1 × S

1 × S
1

M13 ∼= T × I/( 0 1

−1 0

) = (O 0 o : −1 (4,1)(4,1)(2,1))

sponding to spines of compact manifolds can be found in [13–16,20]. We recall two of them which serve in our proof of
Theorem 1.4. Let us consider the group presentation for π1(M) given by
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Fig. 2. Heegaard diagrams of the lens space L(3,1); the components of the links L24 and L25 arise from the dotted edges.

φ = 〈
x, y: xm yn = 1, xp yq = 1

〉
where m,n, p,q �= 0, and (m, p) = (n,q) = 1. Following [20, p. 165], we associate the matrix

[ m n
p q

]
to φ. Certain matrix

operations yield new matrices corresponding to spines of the same manifold. Among them, there are: (1) interchange of
rows or columns, and (2) multiplication of a row or column by −1. These correspond, respectively, to (1) an interchange of
relators or generators, and (2) replacement of a relator or generator by its inverse. In addition, we have: (3) subtraction of
one row from the other under condition that both entries in at least one column have the same sign.

Theorem 2.1. (Stevens [20, Theorem 11]) Let φ = 〈x, y: xm yn = 1, xp yq = 1〉, where m,n, p,q �= 0, (m, p) = (n,q) = 1, |m| and |p|
are not both 1 and |n| and |q| are not both 1. Operate on the matrix

[ m n
p q

]
using rules (1), (2), and (3) to obtain a matrix of the

form
[ 1 n′

1 q′
]
. Then φ corresponds to a spine of a unique closed orientable 3-manifold which is the lens space L(λ,k), including S1 × S2

(respectively S3) if λ = 0 (respectively λ = 1), where λ = |mq − np| = |n′ − q′|, 0 � k < λ, and k ≡ n′ (mod λ).

The following result completes the statement of Theorem 3.1 in [16], and the subsequent note (see [16, p. 485]).

Theorem 2.2. Let ϕ be the group presentation
〈
x, y: xp yn = 1,

(
xm yn+q)k

xm yq = 1
〉

where |p|, |n| > 1, k > 0, and (p,m) = (n,q) = 1. Then ϕ corresponds to a spine of a unique closed connected orientable 3-manifold
which is the fiber space defined by the Seifert invariants(

O 0 o : −1 (p,m) (n,−q) (k + 1,1)
)
.

Proof. We sketch a proof. By Theorem 3.1 of [16] ϕ corresponds to a spine of a Seifert fiber space M over S2 with three
exceptional fibers. If π1(M) is finite, these fibers are of multiplicity (p,2,2), (3,3,2), (4,3,2), or (5,3,2). For these pa-
rameters (p,n,k + 1), one can draw extended Heegaard diagrams of genus 2 which induce the group presentation ϕ . All
such diagrams are 2-symmetric, that is, they admit an involution with six fixed points. Then by [2,22,23] the represented
manifolds are 2-fold branched coverings of the 3-sphere. The singular knots of these branched coverings are equivalent
to the Montesinos knots m(−1;m/p;−q/n;1/(k + 1)). So the result follows from [10]. Now we treat the case when M is
a large manifold. Let Σ be the Seifert manifold defined by the invariants of the statement. By [12, p. 91] the fundamental
group π1(Σ) has a finite presentation with generators q1, q2, q3, h and relations qp

1 hm = 1, qn
2h−q = 1, qk+1

3 h = 1, [qi,h] = 1,
i = 1,2,3, and q1q2q3 = h−1. Since (p,m) = (n,q) = 1, there exist integers a, b, c, d such that ap + bm = 1 and cn + dq = 1.
Define x := haq−b

1 and y := h−cq−d
2 . We show that the generators qi and h can be expressed in terms of x and y. In fact, we

have:
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Fig. 3. The π -hyperbolic knots K26, K27 and K28.

xp = (
haq−b

1

)p = hapq−bp
1 = hh−bmq−bp

1 = h
(
qp

1 hm)−b = h,

xm = (
haq−b

1

)m = hamq−bm
1 = hamqap

1 q−1
1 = (

qp
1 hm)a

q−1
1 = q−1

1 ,

yn = (
h−cq−d

2

)n = h−cnq−dn
2 = h−1hdqq−dn

2 = h−1(qn
2h−q)−d = h−1

and

yq = (
h−cq−d

2

)q = h−cqq−dq
2 = h−cqqcn

2 q−1
2 = (

qn
2h−q)c

q−1
2 = q−1

2

hence

h = xp = y−n, q1 = x−m, and q2 = y−q.

In particular, we have obtained the relation xp yn = 1 of ϕ . From relations qk+1
3 h = 1 and q1q2q3 = h−1 of π1(Σ), we get

qk+1
3 h = (

q−1
2 q−1

1 h−1)k+1
h = (

q−1
2 h−1q−1

1

)k+1
h = (

yq ynxm)k+1
y−n = yn+q(xm yn+q)k

xm y−n = 1

which is the second relation of ϕ . Since π1(M) ∼= π1(Σ) and M , Σ are large Seifert manifolds (i.e., k > 0 and 1/p + 1/n +
1/(k + 1) � 1), the result follows from Theorem 4 [12, p. 134]. �
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Let now M be a closed orientable 3-manifold obtained by a single polyhedral 3-ball B whose finitely many boundary
faces are glued together in pairs. The interior of B becomes in M an open 3-cell whose boundary meets itself in M along an
embedded spine of M . If such a spine has a unique vertex, then it is the canonical 2-complex corresponding to a geometric
presentation (i.e., induced by a Heegaard diagram) of π1(M). On the other hand, the affine transformations, which identify
the faces of B , generate π1(M). Relations between them arise from the cycles of equivalent edges in the above pairing. This
group presentation is also geometric, and corresponds to a spine of M , which is dual to the previous one.

3. Spherical manifolds

(M1) The manifold M1 comes from the tetrahedron with dihedral angle 2π/3. The face identifications imply that (1,3)

and (2,4) are pairs of equivalent faces on the boundary of the tetrahedron. The edge identifications give two classes of
equivalent edges, denoted by a (1 ≡ 3 and 1 ≡ 4) and b (2 ≡ 5 and 2 ≡ 6). Here 1 ≡ 3 means edge 1 is identified with
edge 3 so that the identification is reversed. The quotient space has exactly one vertex, so π1(M1) has a presentation
with generators a and b and relations ab2 = 1 and a2b−1 = 1. These relations can be read by walking around the oriented
boundaries of the faces. The above presentation corresponds to a spine of M1, and we can associate to it the matrix[ m n

p q

] = [ 1 2
2 −1

]
. By using rule (3) we get the matrix

[ 1 n′
1 q′

] = [ 1 2
1 −3

]
. Now Theorem 2.1 implies that M1 is the lens space

L(λ,k), where λ = |mq − np| = |n′ − q′| = 5, and 0 � k < 5, k ≡ 2 (mod 5), i.e., M1 ∼= L(5,2).
(M2) The manifold M2 comes from the cube with dihedral angle 2π/3. The face identifications imply that (1,3), (2,4)

and (5,6) are pairs of equivalent faces on the boundary of the cube. The edge identifications give four classes of equivalent
edges, denoted by a (1 ≡ 3 and 1 ≡ 4), b (2 ≡ 6 and 2 ≡ 9), c (5 ≡ 7 and 5 ≡ 10) and d (8 ≡ 11 and 8 ≡ 12). Here 1 ≡ 3
(respectively 2 ≡ 9) means that edge 1 (respectively 2) is identified with edge 3 (respectively 9) so that the identification
matches (respectively is reversed). The quotient space has exactly two vertices. Let x1, x2, and x3 denote the isometries
which identify the faces in pairs, i.e., x1 : 1 → 3, x2 : 2 → 4, and x3 : 5 → 6. The classes a, b, c, and d of equivalent edges give
the relations x2

1x2 = 1, x1x−1
3 x−1

2 = 1, x1x−1
2 x−1

3 = 1, and x2x−2
3 = 1, respectively. Then π1(M2) has the presentation

〈
x1, x2, x3: x2

1x2 = 1, x1x−1
3 x−1

2 = 1, x2x−2
3 = 1

〉
,

which corresponds to a spine of M2, or, equivalently, it is induced by a genus 3 Heegaard diagram of M2. We see that the
curve represented by the relator x2

1x2 has exactly one point in common with the curve represented by the generator x2.
Then the pair of such curves determines a reducible handle in the diagram, briefly called (x2

1x2, x2)-handle. Cancelling it
yields the presentation π1(M2) ∼= 〈x1, x3: x3

1x−1
3 = 1, x2

1x2
3 = 1〉, which arises from a genus 2 Heegaard diagram of M2.

Operating on the associate matrix by rule (3) we get[
m n
p q

]
=

[
3 −1
2 2

]
→

[
1 −3
2 2

]
→

[
1 −3
1 5

]
=

[
1 n′
1 q′

]
.

By Theorem 2.1 we see that M2 is the lens space L(λ,k), where λ = |mq −np| = |n′ −q′| = 8, and 0 � k < 8, k ≡ −3 (mod 8),
i.e., M2 ∼= L(8,5) ∼= L(8,3).

(M3) The manifold M3 comes from the cube with dihedral angle 2π/3. The face identifications imply that (1,6), (2,4),
and (3,5) are pairs of equivalent faces on the boundary of the cube, and let x1, x2, and x3 denote the isometries which
identify them in that order. The edge identifications give four classes of equivalent edges, denoted by a (1 ≡ 8 and 1 ≡ 11),
b (2 ≡ 6 and 2 ≡ 9), c (3 ≡ 4 and 3 ≡ 12), and d (5 ≡ 7 and 5 ≡ 10). The quotient space has exactly two vertices. The
classes a, b, c, and d give the relations x1x−1

2 x−1
3 = 1, x2x−1

3 x−1
1 = 1, x3x−1

1 x−1
2 = 1, and x1x2x3 = 1, respectively. Then

π1(M3) has the presentation

〈x1, x2, x3: x1x3 = x2, x2x1 = x3, x1x2x3 = 1〉,
which arises from a genus 3 Heegaard diagram of M3. Cancelling the reducible (x1x2x3, x3)-handle yields the presentation
π1(M3) ∼= 〈x1, x2: x2

2x2
1 = 1, (x2x1)x2x−1

1 = 1〉, which is induced by a genus 2 Heegaard diagram of M3, and hence it cor-
responds to a spine of M3. Now we apply Theorem 2.2 with p = n = 2, m = 1, k = 1, and q = −1. Then M3 is the Seifert
manifold defined by the invariants (O 0 o : −1 (2,1) (2,1) (2,1)), that is, the well-known quaternionic space S3/〈222〉
described in [11, p. 117].

(M4) The manifold M4 comes from the octahedron with angle 2π/3. The face identifications imply that (1,4), (2,6),
(3,5) and (7,8) are pairs of equivalent faces on the boundary of the octahedron. The edge identifications give four classes
of equivalent edges, denoted by a (1 ≡ 4 and 1 ≡ 9), b (2 ≡ 7 and 2 ≡ 12), c (3 ≡ 6 and 3 ≡ 10) and d (5 ≡ 8 and 5 ≡ 11).
The quotient space has exactly one vertex. Then π1(M4) has the presentation〈

a,b, c,d: ba2 = 1, c2b−1 = 1, adc−1 = 1, bd2 = 1
〉
,

where the relations are read by walking around the oriented boundaries of the faces. This presentation corresponds to
a spine of M4, and arises from a genus 4 Heegaard diagram of M4. Cancelling the reducible (adc−1, c)-handle we get the
presentation π1(M4) ∼= 〈a,b,d: ba2 = 1, (ad)2b−1 = 1, bd2 = 1〉, which comes from a genus 3 Heegaard diagram of M4.
Cancelling the reducible (bd2,b)-handle yields the presentation π1(M4) ∼= 〈a,d: a2d−2 = 1, (ad)ad3 = 1〉, which is induced
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by a genus 2 Heegaard diagram of M4, and hence it corresponds to a spine of M4. Now we apply Theorem 2.2 with
p = n = 2, m = k = 1, and q = −3. Then M4 is the Seifert manifold (O 0 o : −1 (2,1) (2,3) (2,1)), which is homeomorphic
to (O 0 o : 0 (2,1) (2,1) (2,1)) by the observation of [11, p. 146].

(M5) The manifold M5 comes from the octahedron with angle 2π/3. The face identifications imply that (1,4), (2,7),
(3,5) and (6,8) are pairs of equivalent faces on the boundary of the octahedron. The edge identifications give four classes
of equivalent edges, denoted by a (1 ≡ 4 and 1 ≡ 9), b (2 ≡ 7 and 2 ≡ 12), c (3 ≡ 6 and 3 ≡ 8) and d (5 ≡ 10 and 5 ≡ 11).
The quotient space has exactly one vertex. Then π1(M5) has the presentation

〈
a,b, c,d: a2b−1 = 1, cdb = 1, adc−1 = 1, dcb−1 = 1

〉
,

which arises from a genus 4 Heegaard diagram of M5. Cancelling successively the reducible handles given by the relator-
generator pairs (a2b−1,b) and (adc−1, c), we get the presentation π1(M5) ∼= 〈a,d: d2a3 = 1, (da)da−2 = 1〉. This presentation
arises from a genus 2 Heegaard diagram of M5, hence it corresponds to a spine of M5. Now we apply Theorem 2.2 with
p = 2, n = 3, k = m = 1, and q = −2. Then M5 is the Seifert manifold (O 0 o : −1 (2,1) (3,2) (2,1)).

(M6) It is well known that M6 is the octahedral space S3/〈332〉 described in [11, p. 117]. However, we re-prove this fact
by using our methods. The face identifications imply that (1,7), (2,8), (3,5) and (4,6) are pairs of equivalent faces on the
boundary of the octahedron. The edge identifications give four classes of equivalent edges, denoted by a (1 ≡ 8 and 1 ≡ 10),
b (2 ≡ 5 and 2 ≡ 11), c (3 ≡ 6 and 3 ≡ 12), and d (4 ≡ 7 and 4 ≡ 9). The quotient space has exactly one vertex. Then π1(M6)

has the presentation
〈
a,b, c,d: abd = 1, bac−1 = 1, dbc−1 = 1, adc−1 = 1

〉
,

which arises from a genus 4 Heegaard diagram of M6. Cancelling successively the reducible handles given by the relator-
generator pairs (abd,d) and (bac−1, c), we get the presentation π1(M6) ∼= 〈a,b: b3a3 = 1, (ba2)ba−1 = 1〉. This presentation
comes from a genus 2 Heegaard diagram of M6, hence it corresponds to a spine of M6. Now we apply Theorem 2.2 with
p = n = 3, k = m = 1, and q = −1. Then M6 is the Seifert manifold (O 0 o : −1 (3,1) (3,1) (2,1)).

(M7) It is well known that M7 is the Poincaré homology 3-sphere, and the polyhedral representation as dodecahedral
space form is precisely the classical one described in [21] (see also [19, p. 223]). But we re-prove this fact by using our
methods. The face identifications imply that (1,12), (2,9), (3,10), (4,11), (5,7) and (6,8) are pairs of equivalent faces on
the boundary of the dodecahedron. Let b, a1, . . . ,a5 denote the isometries which identify the faces in pairs according to
the order above. The edge identifications give ten classes of equivalent edges, denoted by a (1 ≡ 16 and 1 ≡ 27), b (2 ≡ 18
and 2 ≡ 28), c (3 ≡ 20 and 3 ≡ 29), d (4 ≡ 12 and 4 ≡ 30), e (5 ≡ 14 and 5 ≡ 26), f (6 ≡ 15 and 6 ≡ 25), g (7 ≡ 17
and 7 ≡ 21), h (8 ≡ 19 and 8 ≡ 22), i (9 ≡ 11 and 9 ≡ 23), and j (10 ≡ 13 and 10 ≡ 24). The quotient space has exactly five
vertices. Then π1(M7) has the presentation

〈
b,ai (i = 1, . . . ,5): aiai+3 = b, aiai+2 = ai+1 (i = 1, . . . ,5)

〉
,

where the subscripts are taken mod 5. This presentation corresponds to a spine of M7. Since b = a2a1a−1
2 , a3 = a−1

1 a2,
a4 = a−1

2 a−1
1 a2 and a5 = a1a−1

2 , we get the presentation

π1(M7) ∼= 〈
a1,a2: a1a2

2a1a−3
2 = 1, a2a1a2a−1

1 a−1
2 a−1

1 = 1
〉

which is induced by the genus 2 Heegaard diagram of M7 depicted in Fig. 4(a). Setting u = a1a2
2 and v = a−1

2 , with inverse
relation a1 = uv2, we get the presentation

π1(M7) ∼= 〈
u, v: v5u2 = 1, (vu)2 vu−1 = 1

〉
,

which arises from the genus 2 Heegaard diagram of M7 drawn in Fig. 4(b). It is an exercise to verify that Heegaard diagrams
in Fig. 4 are equivalent, i.e., one can be transformed into the other by Singer moves. Now we apply Theorem 2.2 with p = 5,
k = n = 2, m = 1, and q = −1. Then M7 is the Seifert manifold (O 0 o : −1 (5,1) (2,1) (3,1)).

(M8) The manifold M8 is the Lorimer (spherical) dodecahedral space (see [9]). The face identifications imply that (1,12),
(2,7), (3,9), (4,8), (5,11) and (6,10) are pairs of equivalent faces on the boundary of the dodecahedron. Let b, a1, . . . ,a5
denote the isometries which identify the faces in pairs according to the above order. The edge identifications give ten classes
of equivalent edges, denoted by a (1 ≡ 11 and 1 ≡ 27), b (2 ≡ 15 and 2 ≡ 28), c (3 ≡ 13 and 3 ≡ 29), d (4 ≡ 19 and 4 ≡ 30),
e (5 ≡ 17 and 5 ≡ 26), f (6 ≡ 16 and 6 ≡ 21), g (7 ≡ 14 and 7 ≡ 23), h (8 ≡ 20 and 8 ≡ 22), i (9 ≡ 18 and 9 ≡ 25), and
j (10 ≡ 12 and 10 ≡ 24). The quotient space has exactly five vertices. Then π1(M8) has a presentation with generators b,
a1, . . . ,a5 and relations a2

1 = b, a2a3 = b, a3a2 = b, a4a5 = b, a5a4 = b, a1 = a2a4, a2 = a2
3, a3 = a4a1, a4 = a2

5 and a5 = a1a2.
Eliminating the generators a1(= a2

3a2
5), a2(= a2

3), a4(= a2
5) and b(= a2

1 = (a2
3a2

5)
2) we get the presentation

π1(M8) ∼= 〈
a3,a5: a3

5a3
3 = 1,

(
a2

5a3
)
a2

5a−2
3 = 1

〉
,

which arises from a genus 2 Heegaard diagram of M8, and hence corresponds to a spine of M8. Now we apply Theorem 2.2
with p = n = 3, m = 2, k = 1, and q = −2. Then M8 is the Seifert manifold (O 0 o : −1 (3,2) (3,2) (2,1)).
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Fig. 4. Heegaard diagrams of the Poincaré homology sphere.

Fig. 5. An extended Heegaard diagram of genus 3 for the manifold M10.

4. Euclidean manifolds

(M9) The face identifications imply that (1,3), (2,5) and (4,6) are pairs of equivalent faces on the boundary of the
cube. The edge identifications give three classes of equivalent edges, denoted by a (1 ≡ 3, 1 ≡ 4 and 1 ≡ 12), b (2 ≡ 6, 2 ≡ 9
and 2 ≡ 11) and c (5 ≡ 7, 5 ≡ 8 and 5 ≡ 10). The quotient space has exactly one vertex, so π1(M9) has a presentation with
generators a, b and c and relations a2b−1c−1 = 1, c2a−1b−1 = 1 and b2c−1a−1 = 1. This presentation corresponds to a spine
of M9, and arises from a genus 3 Heegaard diagram of M9. Cancelling the reducible handle given by the relator-generator
pair (c2a−1b−1,b), we get the presentation π1(M9) ∼= 〈a, c: a3c−3 = 1, (ac−2)2ac = 1〉, which is induced by a genus 2
Heegaard diagram of M9. Now we apply Theorem 2.2 with p = n = 3, m = 1, k = 2, and q = −1. Then M9 is the Seifert
manifold (O 0 o : −1 (3,1) (3,1) (3,1)).

(M10) The face identifications imply that (1,6), (2,3) and (4,5) are pairs of equivalent faces on the boundary of the
cube. The edge identifications give three classes of equivalent edges, denoted by a (1 ≡ 2, 1 ≡ 6 and 1 ≡ 10), b (3 ≡ 5, 3 ≡ 8
and 3 ≡ 9) and c (4 ≡ 7, 4 ≡ 11 and 4 ≡ 12). The quotient space has exactly one vertex, so π1(M10) has a presentation
with generators a, b and c and relations a2c2 = 1, baba−1 = 1 and bcbc−1 = 1. This presentation comes from the genus 3
Heegaard diagram of M10 shown in Fig. 5. Since H1(M10) ∼= Z2 ⊕ Z2 ⊕ Z, the Heegaard genus of M10 is 3. The diagram
admits an orientation preserving involution given by the symmetries with respect to the marked axes in the circles a, b, c,
and by the symmetry with respect to the axis of ends 3 and 7 in the circle u (see Fig. 5). By a construction described
in [2,22,23] the manifold M10 is the 2-fold covering of the 3-sphere branched over the 4-component link depicted in
Fig. 6(a). By Reidemeister moves we show that such a link is equivalent to the Montesinos link m(1/2,1/2,−1/2,−1/2).
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Fig. 6. The Montesinos link m(1/2,1/2,−1/2,−1/2).

By Theorem 3.7 of [10] the manifold M10 is homeomorphic to the Seifert space (S2 : (2,1) (2,1) (2,−1) (2,−1)), which is
also defined by the Seifert invariants (O 0 o : −2 (2,1) (2,1) (2,1) (2,1)).

(M11) The face identifications imply that (1,6), (2,5) and (3,4) are pairs of equivalent faces on the boundary of the
cube. The edge identifications give three classes of equivalent edges, denoted by a (1 ≡ 2, 1 ≡ 11 and 1 ≡ 12), b (3 ≡ 5, 3 ≡ 8
and 3 ≡ 9) and c (4 ≡ 6, 4 ≡ 7 and 4 ≡ 10). The quotient space has exactly one vertex, so π1(M11) has a presentation with
generators a, b and c and relations a2c2 = 1, bcba−1 = 1 and babc−1 = 1. This presentation is induced by a genus 3 Heegaard
diagram of M11. Cancelling the reducible handle given by the relator-generator pair (babc−1, c), we get the presentation
π1(M11) ∼= 〈a,b: b2ab2 = a, a2(bab)2 = 1〉, which arises from a genus 2 Heegaard diagram of M11. Substituting b2a = ab−2

in the second relation, we obtain

a2(bab)2 = a2bab2ab = a2ba2b−1 = 1,

hence a2ba2 = b. Thus π1(M11) ∼= 〈a,b: a2 = (ab2)2, a2 = ba−2b−1〉. Since H1(M11) ∼= Z4 ⊕ Z4, the Heegaard genus of M11
is 2. Let Σ be the Euclidean Seifert manifold defined by the invariants (O 1 n : −1 (2,1) (2,1)). We recall by [12, p. 91] that
π1(Σ) ∼= 〈q0,q1,q2, A,h: Ah A−1 = h−1, q0q1q2 = A2, [q j,h] = 1, j = 0,1,2, q0 = h, q2

1h = 1, q2
2h = 1〉. Eliminating the

generators h = q0 (= q−2
1 ) and q2 (= q1 A2) we get the presentation π1(Σ) ∼= 〈q1, A: q2

1 = (q1 A2)2, Aq−2
1 A−1 = q2

1〉. Setting
a := q1 and b := A we see that the group π1(M11) and π1(Σ) are isomorphic. In particular, the element a−2 (= q−2

1 = h)

generates an infinite cyclic group 〈a2〉, which is the nontrivial center of π1(M11). Suppose M11 is not prime. Since its
genus is 2, M11 can be decomposed in a connected sum M11 = L1 # L2, where Li is a nontrivial lens space, and π1(M11) ∼=
π1(L1) ∗ π1(L2) with π1(Li) �= 1. But a free product of nontrivial groups admits only a trivial center and here π(M11) has
a nontrivial one (generated by a2). This implies that M11 is prime, and hence it is irreducible since M11 � S1 × S2 (in fact,
π1(M11) � Z as H1(M11) ∼= Z4 ⊕ Z4). By [3] M11 is a Seifert fibered manifold. Since M11 and Σ are Euclidean manifolds
(hence π(M11) ∼= π1(Σ) is infinite), M11 and Σ are large Seifert manifolds. By [12, p. 134], M11 is homeomorphic to Σ .

(M12) The manifold M12 is homeomorphic to S1 × S1 × S1 since the polyhedral representation is precisely the standard
one of the 3-torus.

(M13) The face identifications imply that (1,6), (2,4) and (3,5) are pairs of equivalent faces on the boundary of the
cube. The edge identifications give three classes of equivalent edges, denoted by a (1 ≡ 6, 1 ≡ 7 and 1 ≡ 12), b (2 ≡ 5, 2 ≡ 9
and 2 ≡ 10) and c (3 ≡ 4, 3 ≡ 8 and 3 ≡ 11). The quotient space has exactly one vertex, so π1(M13) has a presentation
with generators a, b and c and relations c−1ab−1a−1 = 1, bcb−1c−1 = 1 and bac−1a−1 = 1. This presentation comes from
a genus 3 Heegaard diagram of M13. Cancelling the reducible handle given by the relator-generator pair (c−1ab−1a−1, c),
we get the presentation π1(M13) ∼= 〈a,b: a2 = ba2b, bab−1a−1b−1aba−1 = 1〉, which is induced by a genus 2 Heegaard
diagram of M13. Setting u = a and v = b−1a−2, with inverse relation b = u−2 v−1, the first relation becomes u4 v2 = 1, and
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the second relation becomes (uv)3uv−1 = 1. Hence we have π1(M13) ∼= 〈u, v: u4 v2 = 1, (uv)3uv−1 = 1〉, which arises
from a genus 2 Heegaard diagram of M13 (one can directly verify that this diagram is equivalent to the previous one via
Singer moves). Now we apply Theorem 2.2 with p = 4, n = 2, m = 1, k = 3, and q = −1. Then M13 is the Seifert manifold
(O 0 o : −1 (4,1) (2,1) (4,1)).

(M14) The manifold M14 in Table 2 coincides with M10, as proved in [17]. We re-obtain this result by using our methods.
The face identifications imply that (1,6), (2,4) and (3,5) are pairs of equivalent faces on the boundary of the cube. The edge
identifications give three classes of equivalent edges, denoted by a (1 ≡ 6, 1 ≡ 7 and 1 ≡ 12), b (2 ≡ 4, 2 ≡ 10 and 2 ≡ 11)
and c (3 ≡ 5, 3 ≡ 8 and 3 ≡ 9). The quotient space has exactly one vertex, so π1(M14) has a presentation with generators a,
b and c and relations aba−1b−1 = 1, bcbc−1 = 1 and acac−1 = 1. Setting u = ac, v = c−1 and w = b, with inverse relation
a = uv , the third relation becomes u2 v2 = 1, the second relation becomes w v w v−1 = 1, and the first relation becomes
uv w v−1u−1 w−1, or, equivalently, wuwu−1 = 1 as v w = w−1 v . Then we have π1(M14) ∼= 〈u, v, w: u2 v2 = 1, wuwu−1 = 1,

w v w v−1 = 1〉, hence π1(M14) is isomorphic to π1(M10). Since H1(M14) ∼= Z2 ⊕ Z2 ⊕ Z, the Heegaard genus of M14 is 3.
Reasoning as in the proof of M11 we see that M14 is irreducible. Since π1(M14) ∼= π1(M10) has nontrivial center, M14 is
a Seifert fibered manifold. Since M10 and M14 are Euclidean fibered manifolds with infinite fundamental groups, they are
large Seifert manifolds. By [12, Theorem 8, p. 134], M14 is homeomorphic to M10. By [12, Theorem 7, p. 133], there is also a
Seifert bundle isomorphism between such manifolds. Finally, they are isometric.
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