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a b s t r a c t

In this paper, we give a sufficient condition to guarantee the rationality of solving constant
coefficient fractional differential equations by the Laplace transform method.
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1. Introduction

This paper deals with the rationality of Laplace transform for solving the following fractional differential equation

C
0D

α
t x(t) = Ax(t) + f (t), 0 < α < 1, t ≥ 0,

x(0) = η,
(1)

where C
0D

α
t · is the Caputo fractional derivative operator, A is a n × n constant matrix, f (t) is a n-dimensional continuous

vector-valued function, which is usually called the forcing term.
Fractional derivatives describe the property of memory and heredity of many materials, and it is the major advantage

over integer-order derivatives. Fractional differential equations are differential equations of arbitrary (noninteger) order.
Fractional differential equations have attracted considerable attention recently, due to its extensive applications in
engineering and science; see the books of Podlubny [1], Miller and Boss [2], Oldham and Spanier [3] and the papers by
Friedrich [4], Chen and Moore [5], Ahmad and Sivasundaram [6], Odibat [7].

An effective and convenient method for solving fractional differential equations is needed. Methods in [2,3] for rational
order fractional differential equations is not applicable to the case of arbitrary order. Some authors used the series method
[3,4], which allows solution of arbitrary order fractional differential equations, but it works only for relatively simple
equations. Podlubny [1] introduced a method based on the Laplace transform technique, it is suitable for a large class of
initial value problems for fractional differential equations.

However, we find that the existence of Laplace transform is taken for granted in some papers to solve fractional
differential equations (see, e.g., [8,9]). In fact, not every function has its Laplace transform, for example, f (t) = 1/t2, f (t) =

et
2
, do not have the Laplace transform. In this paper, to guarantee the rationality of solving fractional differential equations

by the Laplace transform method, we give a sufficient condition, i.e., Theorem 3.1.
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The paper has been organized as follows. In Section 2, basic definitions and lemmas related to fractional derivatives and
fractional integrals have been summarized. In Section 3, we give the main results.

2. Preliminaries

In this section, we give some definitions and lemmas which are used further in this paper.

Definition 2.1. The Laplace transform is defined by

F(s) = L[f (t)] =

∫
∞

0
e−st f (t)dt, (2)

where f (t) is n-dimensional vector-valued function.

Definition 2.2 ([1]). The Mittag-Leffler function in two parameters is defined as

Eα,β(z) =

∞−
k=0

zk

Γ (αk + β)
, z ∈ C, (3)

where α > 0, β > 0, C denotes the complex plane.

Definition 2.3 ([10]). The Riemann–Liouville fractional integral of order 0 < α < 1 of a function h : (0, ∞) → Rn is defined
by

0Iαt h(t) =
1

Γ (α)

∫ t

0
(t − s)α−1h(s)ds. (4)

Definition 2.4 ([10]). The Riemann–Liouville fractional derivative of order 0 < α < 1 of a function h : (0, ∞) → Rn is
defined by

0Dα
t h(t) =

1
Γ (1 − α)

d
dt

∫ t

0
(t − s)−αh(s)ds. (5)

Definition 2.5 ([10]). The Caputo fractional derivative of order 0 < α < 1 of a function h : (0, ∞) → Rn is defined by

C
0D

α
t h(t) =0 Dα

t [h(t) − h(0)]. (6)

Definition 2.6. A function f on 0 ≤ t < ∞ is said to be exponentially bounded if it satisfies an inequality of the form

‖f (t)‖ ≤ Mect (7)

for some real constantsM > 0 and c , for all sufficiently large t .

Lemma 2.1. Let C be complex plane, for any α > 0, β > 0 and A ∈ Cn×n,

L{tβ−1Eα,β(Atα)} = sα−β(sα − A)−1 (8)

holds for ℜs > ‖A‖
1/α , where ℜs represents the real part of the complex number s.

Proof. For ℜs > ‖A‖
1/α , we have

∑
∞

k=0 A
ks−(k+1)α

= (sα − A)−1. Then

L[tβ−1Eα,β(Atα)] = L


tβ−1

∞−
k=0

(Atα)k

Γ (αk + β)



=

∞−
k=0

AkL[tαk+β−1
]

Γ (αk + β)

= sα−β
∞−
k=0

Aks−(k+1)α

= sα−β(sα − A)−1. �
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Lemma 2.2 ([11]). Suppose b ≥ 0, β > 0 and a(t) is a nonnegative function locally integrable on 0 ≤ t < T (some T ≤ +∞),
and suppose u(t) is nonnegative and locally integrable on 0 ≤ t < T with

u(t) ≤ a(t) + b
∫ t

0
(t − s)α−1u(s)ds (9)

on this interval. Then

u(t) ≤ a(t) + θ

∫ t

0
E ′

β(θ(t − s))a(s)ds, 0 ≤ t < T , (10)

where

θ = (bΓ (β))1/β , Eβ(z) =

∞−
n=0

znβ/Γ (nβ + 1), E ′

β(z) =
d
dz

Eβ(z),

E ′

β(z) ≃ zβ−1/Γ (β) as z → 0+, E ′

β(z) ≃
1
β
ez as z → +∞,

(and Eβ(z) ≃
1
β
ez as z → +∞). If a(t) ≡ a, constant, then u(t) ≤ aEβ(θ t).

3. Main results

In this section, we discuss the reliability of the Laplace transform method for solving (1).

Theorem 3.1. Assume (1) has a unique continuous solution x(t), if f (t) is continuous on [0, ∞) and exponentially bounded,
then x(t) and its Caputo derivative C

0D
α
t x(t) are both exponentially bounded, thus their Laplace transforms exist.

Proof. Since f (t) is exponentially bounded, there exist positive constantsM, σ and enough large T such that ‖f (t)‖ ≤ Meσ t

for all t ≥ T .
It is easy to see that Eq. (1) is equivalent to the following integral equation

x(t) = η +
1

Γ (α)

∫ t

0
(t − τ)α−1

[Ax(τ ) + f (τ )]dτ , 0 ≤ t < ∞. (11)

For t ≥ T , (11) can be rewritten as

x(t) = η +
1

Γ (α)

∫ T

0
(t − τ)α−1

[Ax(τ ) + f (τ )]dτ +
1

Γ (α)

∫ t

T
(t − τ)α−1

[Ax(τ ) + f (τ )]dτ

In view of assumptions of Theorem 3.1, the solution x(t) (x(0) = η) is unique and continuous on [0, ∞), then Ax(t) + f (t)
is bounded on [0, T ], i.e., there exists a constant K > 0 such that ‖Ax(t) + f (t)‖ ≤ K . We have

‖x(t)‖ ≤ ‖η‖ +
K

Γ (α)

∫ T

0
(t − τ)α−1dτ +

1
Γ (α)

∫ t

T
(t − τ)α−1

‖A‖ ‖x(τ )‖dτ +
1

Γ (α)

∫ t

T
(t − τ)α−1

‖f (τ )‖dτ

Multiply this inequality by e−σ t and note that e−σ t
≤ e−σT , e−σ t

≤ e−στ , ‖f (t)‖ ≤ Meσ t (t ≥ T ) to obtain

‖x(t)‖e−σ t
≤ ‖η‖e−σ t

+
Ke−σ t

Γ (α)

∫ T

0
(t − τ)α−1dτ +

e−σ t

Γ (α)

∫ t

T
(t − τ)α−1

‖A‖ ‖x(τ )‖dτ

+
e−σ t

Γ (α)

∫ t

T
(t − τ)α−1

‖f (τ )‖dτ

≤ ‖η‖e−σT
+

Ke−σT

αΓ (α)
(tα − (t − T )α) +

‖A‖

Γ (α)

∫ t

T
(t − τ)α−1

‖x(τ )‖e−στdτ

+
e−σ t

Γ (α)

∫ t

T
(t − τ)α−1

‖f (τ )‖dτ

≤ ‖η‖e−σT
+

Ke−σT

αΓ (α)
(tα − (t − T )α) +

‖A‖

Γ (α)

∫ t

0
(t − τ)α−1

‖x(τ )‖e−στdτ

+
M

Γ (α)

∫ t

0
(t − τ)α−1eσ(τ−t)dτ

≤ ‖η‖e−σT
+

KTαe−σT

αΓ (α)
+

‖A‖

Γ (α)

∫ t

0
(t − τ)α−1

‖x(τ )‖e−στdτ +
M

Γ (α)

∫ t

0
sα−1e−σ sds
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≤ ‖η‖e−σT
+

KTαe−σT

αΓ (α)
+

‖A‖

Γ (α)

∫ t

0
(t − τ)α−1

‖x(τ )‖e−στdτ +
M

Γ (α)

∫
∞

0
sα−1e−σ sds

≤ ‖η‖e−σT
+

KTαe−σT

αΓ (α)
+

M
σ α

+
‖A‖

Γ (α)

∫ t

0
(t − τ)α−1

‖x(τ )‖e−στdτ , t ≥ T .

Denote

a = ‖η‖e−σT
+

KTαe−σT

αΓ (α)
+

M
σ α

, b =
‖A‖

Γ (α)
, r(t) = ‖x(t)‖e−σ t ,

we get

r(t) ≤ a + b
∫ t

0
(t − τ)α−1r(τ )dτ , t ≥ T . (12)

By Lemma 2.2,

r(t) ≤ aEα(θ t) = a
∞−
n=0

(bΓ (α))ntnα

Γ (nα + 1)
, t ≥ T .

Recall that the Mittag-Leffler function is defined as

Fα(t) =

∞−
n=0

tn

Γ (αn + 1)
, α > 0,

then

r(t) ≤ aFα(bΓ (α)tα), t ≥ T . (13)

It is known that (see [10], p. 21) the Mittag-Leffler type function Fα(ωtα) satisfies the following inequality

Fα(ωtα) ≤ Ceω1/α t , t ≥ 0, ω ≥ 0, 0 < α < 2, (14)

where C is a positive constant.
With (13) and (14), we have

r(t) ≤ aCe(bΓ (α))1/α t , t ≥ T .

then

‖x(t)‖ ≤ aCe[(bΓ (α))1/α+σ ]t , t ≥ T .

From Eq. (1), we obtain

‖
C
0 Dα

t x(t)‖ ≤ ‖A‖ ‖x(t)‖ + ‖f (t)‖

≤ a‖A‖Ce[(bΓ (α))1/α+σ ]t
+ Meσ t

≤ (a‖A‖C + M)e[(bΓ (α))1/α+σ ]t , t ≥ T . �

Taking Laplace transform with respect to t in both sides of (1), we obtain

x̂(s) = sα−1(sα − A)−1η + (sα − A)−1 f̂ (s), (15)

where x̂(s) and f̂ (s) denotes the Laplace transform of x(t) and f (t), respectively. The inverse Laplace transform using (8)
yields

x(t) = Eα,1(t)η +

∫ t

0
(t − τ)α−1Eα,α(A(t − τ)α)f (τ )dτ . (16)

Remark 3.1. The Laplace transform method is suitable for constant coefficient fractional differential equations, but it
demands for forcing terms, so not every constant coefficient fractional differential equation can be solved by the Laplace
transform method.
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