TCT-802
Long-Term Follow-Up for Complete Transcatheter Melody Valve-in-Valve Implantation for High-Pressure Systemic Bioprosthetic Failure

Sean Wilson1, Chad Kiger1, Dillon Weiss1, Vladimir Jelzin1, Ahmed Al-Badri1, Gila Perk2, Izhak Kronzon3, Sonnit Sharma4, Carlos E. Ruiz5
1Lenox Hill Hospital, New York, NY, 2Lenox Hill Heart and Vascular Institute-North Shore LIJ Health System, New York, NY, 3Lenox Hill Heart and Vascular Institute-North Shore LIJ Health System, New York, United States, 4Lenox Hill Heart & Vascular Institute, New York, NY, 5Lenox Hill Hospital Professor of Cardiology in Pediatrics and Medicine, New York, United States

Background: Reoperation for aortic and mitral valve bioprosthetic deterioration is associated with significant morbidity and mortality. Transcatheter valve-in-valve (ViV) implantation is now utilized as an alternative in the high-risk patient. However, little is known about the long-term follow-up of Melody (Medtronic, Minneapolis, MN) ViV for systemic bioprosthetic failure.

Methods: Between February 2012 and February 2013, 12 patients (74±14years, 66% male, STS mitral aortic 14.3±1.4%±13.5±10%) presented to our institution with severe bioprosthetic mitral (25 to 33mm, n=9) and aortic (23 to 25mm, n=3) dysfunction at a median of 342 days ([IQR:260 to 3318] following surgery. Echoloty of mitral and aortic dysfunction was severe regurgitation in 67% 0% stenosis, in 11% 67%, and combined in 22% 33%. All patients had transcatheter aortic valve implantation preoperatively and at 1mo, 6mo, and annually thereafter. Percutaneous transeptal/transapical approach with an arterovenous route was utilized for all ViV ViV and retrograde transaortic human ViV ViV.

Results: Complete percutaneous mitral and aortic ViV was successfully performed in all patients, with 3 patients having 2 Melody valves implanted in the mitral position. The mean NYHA functional class improved from 3.4±0.5 to 2.0±1.1 (p<0.005) over a median follow of 483 days and a maximum follow-up of 818 days [IQR:250 to 578]. The mean transvalvular gradient improved from 10.3 (25.6mmHg) to 8.2, P<0.004). Furthermore, intraoperative 3D visualization of the mitral valve anatomic changes (Figure) and direction of the prosthetic leaflets was evident in the mitral and aortic valve.

Conclusions: In high-risk patients, Melody ViV implantation for left-sided valvular bioprosthetic failure is an emerging therapeutic option in individuals with degenerated bioprostheses. Early results suggest that it is associated with favorable outcomes however long term durability needs to be further assessed.

TCT-803
3D Transesophageal Echocardiography provides optimal real-time guidance for off-pump, transapical implantation of artificial chordae tendineae. An imaging study

Kestutis Racinskas1, Diana Zaharkaitke, Rita Krumena, Robertas S. Samalavicius, Vilnius Vilijus Janusauskas, Giovanni Spelzii, Audruia Aidaitei
1Department of Cardiovascular Medicine, Vilnius University, Vilnius, Lithuania, 2Department of Intensive Care, Centre of Anaesthesiology, Intensive Care and Pain Medicine, Vilnius University, Vilnius, Lithuania, 3Vilnius University, Vilnius, Lithuania

Background: The NeoChord DS1000 system is used deliver artificial chordae tendineae (neochordae), under beating-heart conditions with transesophageal echocardiography (TEE) used to guide the device to the target leaflet for deployment of the neochoordae. The aim of the study is to identify refinements in intraoperative imaging technology that directly influence accuracy and reproducibility of the key steps of neochordae implantation using NeoChord DS1000 system: intra-cardiac navigation, crossing of mitral valve plane, mitral leaflet capture, assessment of neochoorde efficacy.

Methods: At Vilnius University Hospital Santariskiu Klinikos 42 Patients have undergone the NeoChord operation since June 2012. In the first 13 cases, intraoperative guidance was achieved by 2D echocardiography only, while in the remaining cases a combination of 2D and 3D echocardiographic guidance was utilized. Currently, 2D imaging is utilized first to introduce and navigate the NeoChord instrument inside the LV until the mitral valve plane is crossed. Imaging is then switched to 3D and leaflet capture and chorda deployment are performed. Tension is then applied to the artificial chorda and its effectiveness in reducing prolapse is evaluated.

Results: In the 42 patients, an average of 4 chordae per patient were implanted (Range 2-7). In the 2D+3D group, as compared to the 2D-only group, average number of chordae implanted per patient was increased by 44% (3.9 vs 2.7, P<.05); average time to implant a single chorda was decreased by 18% (4.4 vs 5.5 minutes, P=NS); number of total deployment attempts per case was decreased by 27% (5.8 attempts vs 8.2, P<.005). Furthermore, intraoperative 3D visualization of the mitral valve anatomy allowed a better understanding of the operation and precise targeting of specific portions of the prolapsing leaflets.

Conclusions: 3D real-time echocardiography provides significant benefits for 2D-only, and has become an indispensable intraprocedural guidance tool.

TCT-804
Transcatheter Mitral Valve-in-Valve / Valve-in-Ring Implantations for Degenerative Post Surgical Valvular Disease: Results from the Global Valve-in-Valve Registry

Danny Dvir1, Ran Kornowski2, Dominique Himbert3, Anson Cheung4, John Webb5
1St Paul’s Hospital, Vancouver, Canada, Vancouver, Canada, 2Professor of Cardiovascular Medicine, Tel Aviv University, Petach Tikva, Israel, 3Bichat, Paris, a, 4St Pauls Hospital, Vancouver, British Columbia, 5University of British Columbia, Vancouver, Canada

Background: Transcatheter mitral valve-in-valve / valve-in-ring implantation is an emerging therapeutic alternative for patients with failed mitral valvular devices after surgical intervention and may obviate the need for a redo operation. We aimed to evaluate the clinical results of this technique using a large worldwide registry.

Methods: The registry included 190 patients with degenerated mitral valves after surgical intervention (17.4% ring only, median of 9 years post procedure). Mean age 73.6 ± 12.6 years; 65.2% female (STS score 14.4 ± 11.9%). The mode of failure was regurgitation (n=70, 37%), stenosis (n=47, 25%), and combined (n=73, 38%).

Results: Transcatheter Edwards sapien (Edwards Lifesciences, Irvine, CA) implantation was performed in 93.7% of cases (23 mm in 11.1%, 26 mm in 57.4%, and 29 mm in 25.3%) and in 94% and Inoue in 6.3%. Procedural access was transapical in 161 cases (84.7%), transseptal in 23 (12.1%), and through the left atrium via right mini-thoracotomy in 3 (1.6%). Twenty-three combined procedures (12.1%) included aortic valve-in-valves, aortic valve replacement, tricuspid valve-in-ring implantation, and paravalvular leak closure. Device malposition appeared in 53% of cases and post implantation valvuloplasty was utilized in 8%. Post-procedure, mitral valve area was 1.9±0.7 cm^2 and valve mean gradients was 6.2 ± 2.7mmHg. Significant mitral regurgitation (§+2) was observed in 4.2% of patients. Median length of hospital stay was 8 days. At 30-day follow-up, all-cause mortality was 8.9%, 2.2% of patients had stroke and 85.8% were at New York Heart Association functional class II. 1-year survival was 83.6% and 73.0% for 2-year survival. Independent predictors, for 1-year mortality included baseline STS score (HR 1.04, CI 1.02-1.06) and renal failure (GFR< 60ml/min, HR 2.37, CI 1.06-5.28).

Conclusions: Mitral valve-in-valve/ valve-in-ring implantations, performed in extremely high-risk patients, were clinically effective in most patients with degenerative mitral valves after surgery. However, safety and efficacy concerns include device malposition and elevated post procedural gradients.

TCT-805
Effects of the Percutaneous Mitral Balloon Valvuloplasty on the Left Atrial Compliance

Guilherme Rafael S Athayde1, Luisa F. Barbosa2, Maria do Carmo P. Nunes3, Bruno R. Nascimento1, Lucas Lodi-Junqueira4
1Hospital das Clinicas da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil, 2Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 3Hospital das Clinicas da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 4Hospital das Clinicas da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil

Background: Percutaneous mitral balloon valvuloplasty (PMV) is the treatment of choice for patients with symptomatic mitral stenosis (MS). Rapid improvement in symptoms and hemodynamic parameters can be observed after increasing mitral valve area and decreasing left atrial pressure. However, left atrial pressure has been shown to be influenced by both MS severity and left atrial compliance (Ca). Effects of PMV on Ca and to identify factors influencing the changes in Ca post PMV in patients with MS.

Methods: We enrolled patients in our institution with MS who underwent successful PMV from December 2012 to May 2014. Transesophageal echocardiography (TEE) was performed in all the patients pre and 24-h post procedure. PMV was performed by the Inoue technique, guided by TTE. Gas analyses of blood samples from aorta and pulmonary artery were obtained and pressure tracings were recorded from aorta, left ventricle and left atrium before and after the balloon dilation in order to calculate mitral and left atrial compliances.

Results: Sixty-one patients were enrolled. The mean age was 45±12 years. 84% were female. Mean mitral valve area (MVA) pre procedure was 0.96 ± 0.25 cm². After PMV we observed a significant decrease in mPAP (35.1±12.4 mmHg vs. 29.6±9.7 mmHg, p<0.001) and an increase in cardiac output (4.1±1.2 L/min vs. 4.4±1.3 L/min, p<0.001). The median Ca pre procedure was 6.6 [4.5-9.2] ml/mmHg with increase after PMV to 12.4 [6.6-22.5] ml/mmHg (p<0.001). The change in Ca correlated with changes in mitral transvalvular gradient, pulmonary artery pressure, left atrial pressure and pulmonary vascular resistance pre and post PMV. Multivariate analysis revealed that the degree of change post PMV in mPAP (p=0.004), left atrial pressure (p=0.012) and pulmonary vascular resistance index (p=0.001) were independently associated with changes in Ca.

Conclusions: This study demonstrates that successful PMV can significantly increase Ca, which is associated with improvement in cardiac hemodynamics. These results may also provide potential mechanistic insights into the pathophysiology of the hemodynamic changes seen in MS.