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Families of non-trivial cohomology classes are given for the dis-
crete groups belonging to the Johnson filtration of the automor-
phism group of a free group generated by n letters. The methods
are (1) to analyze analogous classes for filtrations of a subgroup
of the pure symmetric automorphism group of a free group and
(2) to analyze features of these classes which are preserved by the
Johnson homomorphism with values in the Lie algebra of deriva-
tions of a free Lie algebra. One consequence is that the ranks of
the cohomology groups in any fixed degree i for 1 � i � n − 2 for
the Johnson filtrations of IAn increase without bound. The actual
classes constructed are fragile in the sense that they vanish after
passage to successive filtrations; furthermore, these classes are all
naturally in the image of the Johnson homomorphism on the level
of cohomology. The methods are similar to those occurring within
the theory of arrangements.
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1. Introduction and preliminaries

Let Fn = F [x1, . . . , xn] be the free group on generators x1, . . . , xn . There is a surjective natural map
Aut(Fn) → GLn(Z) which sends an automorphism to the induced map on H1(Fn). The kernel IAn
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consists of exactly those automorphisms which induce the identity on H1(Fn). This is the Aut(Fn)-
analogue of the Torelli group, the subgroup of the mapping class group of a surface which acts trivially
on the first homology group of the surface.

The group IAn is the first in a series of subgroups belonging to the Andreadakis–Johnson filtration of
Aut(Fn); that is, the descending series IAn = J 1

n ⊃ J 2
n ⊃ · · · , where J s

n consists of those automorphisms
of Aut(Fn) which induce the identity map on the level of Fn/Γ s+1

n ; here Γ s+1
n denotes the (s + 1)-st

stage of the descending central series for Fn , as given in more detail below [1,12–14].
The subgroup J s

n is sometimes called the s-th Andreadakis–Johnson filtration, or s-th Johnson fil-
tration below, which gives a decreasing filtration of IAn . The main goal in this paper is to establish
quantitative information about the cohomology of these groups. One implication of the work here is
that the ranks of the cohomology groups in any fixed degree i for 1 � i � n − 2 increase without
bound by going deeper into the Andreadakis–Johnson filtration.

A brief summary is given next for what was known previously about the (co)homology of the
Johnson filtrations.

In 1934, Magnus [17] provided a finite generating set for IAn (see Section 3 below). The first
homology and cohomology groups were partially computed by Andreadakis [1]; completely by
Kawazumi in [15]. A number of degree two cohomology classes in the image of cup product were
computed by Pettet [21]. However it is still unknown whether or not IAn is finitely presentable for
n � 4. The cohomological dimension of IAn was recently computed to be 2n − 3 by Bestvina, Bux and
Margalit [2], where the maximal non-zero homology group was shown not to be finitely generated;
this implies in particular that IA3 is not finitely presentable.

Even less is known about the groups J s
n for s � 2. By adapting a theorem of McCullough and

Miller [19], it follows for n = 3 and s � 2 that J s
3 is not finitely generated, but it is unknown whether

or not its abelianization is finitely generated, and little is known along these lines for n � 4. Satoh
[23,22] has studied some abelian quotients of terms of the Johnson filtration via the Johnson homo-
morphisms (see Section 2 for definitions).

Before stating precise results of this paper, first record some facts and define some notation. Recall
the structure of the free Lie algebra defined over the integers Z generated by a free abelian group V ,
denoted here by L[V ]. The free abelian group V is frequently of finite rank. In the case that the rank
is q, the notation Vq is used in place of V below.

The Lie algebra L[V ] can be described as the smallest sub-Lie algebra of the tensor algebra T [V ]
which contains V . Thus L[V ] is graded with the s-th graded summand given by

Ls[V ] = L[V ] ∩ V ⊗s.

One classical result is that Ls[V ] is a finitely generated free abelian group with ranks given in
[10,24,20], with [25] for the graded case.

It is convenient to use the standard dual of Ls[V ] given by

Ls[V ]∗ = Hom
(
Ls[V ],Z

)
together with

Z ⊕ Ls[V ]∗

where Z is concentrated in degree 0, and the finitely generated free abelian group Ls[V ]∗ is required
to be concentrated in degree 1 in the main result stated next.

The s-th Johnson homomorphism, as described in Section 2 below, has domain J s
n and takes

values in the finitely generated free abelian group Hom(Vn, Ls+1[Vn]); thus is a direct product of
finitely many copies of the integers. The integer cohomology of the discrete group Hom(Vn, Ls+1[Vn])
is therefore a finitely generated exterior algebra. The purpose of this article is to show that the image
of the Johnson homomorphism
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τs : J s
n → Hom

(
Vn, Ls+1[Vn]

)
on the level of integer cohomology groups has the direct summand in the image described next.

Theorem 1.1. If n � 3, and 2 � q � n − 1, the integral cohomology ring H∗( J s
n) contains a direct summand

which is additively isomorphic to

⊗
n−q

(
Z ⊕ Ls[Vq]∗

)

in the image of

τ ∗
s : H∗(Hom

(
Vn, Ls+1[Vn]

)) → H∗( J s
n

)
.

Thus if 1 � i � n − 2, then the ranks of Hi( J s
n) increase without bound as s increases.

Remark 1.2. The proof of Theorem 1.1 has direct implications concerning geometric features of the
classifying space of J s

n . Namely, the suspension of the classifying space B J s
n has a wedge summand

given by a bouquet of spheres corresponding to the cohomology classes in Theorem 1.1. This feature
translates into a statement about the cohomology of B J s

n for any cohomology theory.

It follows from the theorem that

⊗
n−q

Ls[Vq]∗

is a direct summand of the cohomology group Hn−q( J s
n), a fact recorded next, in order to exhibit the

rapid growth of the cohomology as the depth of the Johnson filtration s increases.

Corollary 1.3. For fixed n > 2, and n − 2 � k � 1, the cohomology group Hk( J s
n) contains

⊗
k

(
Ls[Vn−k]∗

)

as a direct summand. Thus specializing to k = n−2, the cohomology group Hn−2( J s
n) contains

⊗
n−2(Ls[V 2]∗)

as a direct summand.

Observe that the rank of Ls[Vq]∗ grows rapidly for q > 1; estimates of this growth are given at the
end of Section 7 using Witt’s formula for the ranks in free Lie algebras. Thus the ranks of Hi( J s

n) for
1 � i � n − 2 grow rapidly for n at least 3.

The classes constructed in Theorem 1.1 are fragile in the following sense, proven in Corollary 7.3
below, and stated as follows.

Corollary 1.4. If n � 3, and 2 � q � n − 1, the subalgebra generated by
⊗

n−q Ls[Vq]∗ is in the kernel of the
map

H∗( J s
n

) → H∗( J s+1
n

)
.
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Note that Aut(Fn/Γ s+1) acts on the cohomology of J s
n as this last group is the kernel of the

homomorphism Aut(Fn) → Aut(Fn/Γ s+1). However, a more precise description of algebra generators
for

⊗
n−q(Z ⊕ Ls[Vq]∗) gives that this module is not closed with respect to this action; the closure of

this module with respect to the action is in fact much larger, a feature not addressed here.
The organization of this paper is outlined as follows. Section 2 is a review of the filtrations of

Aut(Fn) given by descending central series and the Johnson filtration. Subgroups of Aut(Fn) known as
McCool’s group are the subject of Section 3, and are used to detect cohomology classes. The descend-
ing central series for McCool’s group is the subject of Section 4. Section 5 gives natural subgroups of
McCool’s group which provide a considerable clarification of the work here. The values of the Johnson
homomorphism on certain subgroups of McCool’s group are recorded in Section 6. Equipped with a
theorem of Falk and Randell [7, Theorem 3.1] (appearing here as Theorem 4.1), these structures are
used to give a family of cohomology classes for certain subgroups of McCool’s group. These classes
are in the image of the Johnson homomorphism, seen directly by using subgroups of McCool’s group
as given in Section 7. That step finishes the proof of the main theorem.

The authors (weakly) conjecture the following:

Conjecture. If 3 � n, 2 � s and 1 � i � n − 2, the cohomology group Hi( J s
n) is not finitely generated.

2. Central series and the Johnson homomorphisms

Recall that the descending central series of a group π is the sequence of subgroups

π = Γ 1(π) ⊃ Γ 2(π) ⊃ · · · ⊃ Γ s(π) ⊃ · · ·

with Γ s(π) = [π,Γ s−1(π)]. It is natural to study the Lie algebra

gr DCS∗ (π) =
⊕
s�1

gr DCS
s (π)

associated to its descending central series with the graded terms given by

gr DCS
s (π) = Γ s(π)/Γ s+1(π)

with bracket given by

[−,−] : gr DCS
s (π) ⊗ gr DCS

t (π) �→ gr DCS
s+t (π)

induced by the commutator on the level of π given by

[x, y] = x−1 y−1xy, x, y ∈ π.

In case π is residually nilpotent, the descending central series filtration is convergent. Note that the
Lie algebra gr DCS∗ (π) is also graded, but fails to satisfy the axioms for a graded Lie algebra because of
sign conventions; this failure can be remedied by doubling all degrees to obtain a graded Lie algebra.

A classical example is that of the free group Fn first investigated by P. Hall and E. Witt. Recall that
V = Vn denotes a free abelian group of rank n, the first homology group of Fn . As in Section 1, L[Vn]
denotes the free Lie algebra generated by Vn . Hall [10] and Witt [25] proved that

L[Vn] = gr DCS∗ (Fn)



76 F.R. Cohen et al. / Journal of Algebra 329 (2011) 72–91
where Vn is a free abelian group of rank n with a choice of basis given by {x1, . . . , xn}, and each xi is
the image under the projection Fn → Vn 
 H1(Fn) of a basis element for Fn .

The graded derivations of a graded Lie algebra inherit the structure of the graded Lie algebra. In
the case of the free Lie algebra L[Vn], the Lie algebra of graded derivations

Der
(
L[Vn])

is additively isomorphic to the direct sum

⊕
s�1

Hom
(

Vn, Ls+1[Vn]
)
.

Writing

Ders
(
L[Vn]) = Hom

(
Vn, Ls+1[Vn]

)
,

the Lie bracket is given by a bilinear pairing

Ders
(
L[Vn]

) ⊗ Dert
(
L[Vn]) → Ders+t−1

(
L[Vn])

as developed by M. Kontsevich [16]; see also [6] and T. Jin [11].

Remark 2.1. A natural variation is the Lie algebra

D̂er
(
L[Vn]) =

⊕
s�1

Hom
(

Vn, Ls[Vn]
)

given by the direct sum

Der
(
L[Vn]

) ⊕ Hom(Vn, Vn).

The additional group

Hom(Vn, Vn) = End(Vn) =
⊕

n2

Z

is not used in the computations below.

Turn now to the Johnson filtration { J s
n} of Aut(Fn). Recall that the s-th term J s

n is the kernel of
the “reduction map”

Aut(Fn) → Aut
(

Fn/Γ
s+1).

It is well known that the intersection of all the terms of the Johnson filtration is trivial. Furthermore,
the successive quotients gr J

s (IAn) = J s
n/ J s+1

n are torsion-free finitely generated abelian groups. The

quotients gr J
s (IAn) give a graded Lie algebra which is free as a Z-module, with bracket inherited from

the commutator. The direct sum of these quotients
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gr J∗(IAn) =
⊕
s�1

gr J
s (IAn)

admits a natural structure of a Lie algebra, called the Johnson Lie algebra of the group IAn [1,4,8,15].
The first Johnson homomorphism τ1 on IAn is defined by

τ1 : IAn → Hom
(

Vn, L2[Vn]
)

by (with some abuse of notation) τ1(φ)(w) equal to the image of φ(x̃)x̃−1 in L2[Vn], where φ ∈ IAn ,
the element x ∈ Vn , and x̃ is a lift of x to Fn/Γ 3 Fn . It is straightforward to check that the kernel of
τ1 is J 2

n . Define inductively the s-th Johnson homomorphism on the kernel J s
n of τs−1 by

τs : J s
n → Hom

(
Vn, Ls+1[Vn]

)
with τs(φ)(x) = φ(x̃)x̃−1 for φ ∈ J s

n , and x ∈ H1(Fn) for any lift x̃ ∈ Fn/Γ s+2 Fn . As the group J s+1
n is

precisely the kernel of

τs : J s
n → Hom

(
Vn, Ls+1[Vn]

)
there is an induced map

τs : gr J
s (IAn) = J s

n/ J s+1
n → Hom

(
Vn, Ls+1[Vn]

)
.

Passing to direct sums, there is an induced map

⊕
s�1

τs :
⊕
s�1

J s
n →

⊕
s�1

Hom
(

Vn, Ls+1[Vn]
)
.

With the identification of the Lie algebra of graded derivations Der(L[Vn]) with
⊕

s�1 Hom(Vn,

Ls+1[Vn]), the induced homomorphism

J : gr J∗(IAn) → Der
(
L[Vn])

is a morphism of Lie algebras [1,4,8,15].
Thus, there are two natural structures of Lie algebras for IAn given by gr DCS∗ (IA) and gr J∗ (IAn).

3. Properties of McCool’s group

Recall Magnus’s generating set for IAn [17], consisting of automorphisms

Mn = {αi j | i �= j} ∪ {Aijk | i �= j,k; j < k}

where

αi j(xr) =
{

xr, r �= i,
x jxr x−1

j , r = i,

Aijk(xr) =
{

xr, r �= i,
[x j, xk]xi, r = i.
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McCool [18] proved that the subgroup PΣn of pure symmetric automorphisms (or the McCool group)
of IAn , consisting of those automorphisms which map each generator xi to a conjugate of itself, is
generated by the subset of Magnus generators

PΣn = 〈αi j | i �= j〉.

McCool provided a finite presentation of PΣn in terms of these generators. The group PΣn is interest-
ing to topologists as it appears as the mapping class group of the complement of n unlinked circles
in R

3, and is thus a generalization of the pure braid group (see [9], for example). The pure braid
group is itself realized as a subgroup of PΣn . McCool proved the following theorem.

Theorem 3.1. A presentation of PΣn is given by generators αk, j together with the following relations.

(1) αi, j · αk, j · αi,k = αi,k · αi, j · αk, j for i, j, k distinct.
(2) [αk, j,αs,t] = 1 if { j,k} ∩ {s, t} = φ .
(3) [αi, j,αk, j] = 1 for i, j, k distinct.
(4) [αi, j · αk, j,αi,k] = 1 for i, j, k distinct (redundantly).

Consider the subgroup PΣ+
n of PΣn generated by the subset

PΣ+
n = 〈αi j | 1 � j < i � n〉.

This group is referred to as the upper triangular McCool group in [5]. There exists an exact sequence

1 → Fn−1 → PΣ+
n → PΣ+

n−1 → 1

where the induced action of PΣ+
n−1 on H1(Fn−1) is trivial. This fact is recorded in [5] as Lemma 4.2,

and it should be compared with the case of the pure braid group. (See [3, pp. 281–283], or [7] for
instance.)

The map π : PΣ+
n → PΣ+

n−1 in [5] is recalled next for the convenience of the reader, as this map
is used below:

π(αk,i) =
{
αk,i if i < n and k < n,

1 if i = n or k = n.

Furthermore, there is a natural cross-section for π ,

σ : PΣ+
n−1 → PΣ+

n

defined by

σ(αk,i) = αk,i .

Thus the group PΣ+
n−1 is regarded as a subgroup of PΣ+

n below.
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4. The descending central series

The purpose of this section is to develop properties of the descending central series for PΣ+
n by

using the following theorem of Falk and Randell [7]:

Theorem 4.1. (See Falk and Randell [7, Theorem 3.1].) Suppose that 1 → A → B → C → 1 is a split exact
sequence of groups, and the induced conjugation action of C on H1(A) is trivial (that is, [A, C] ⊂ [A, A]). Then
the sequence of induced maps

1 → Γ s A → Γ s B → Γ sC → 1

is split exact for every s.
Furthermore, there is an induced exact sequence on the level of associated graded modules

0 → gr DCS
s (A) → gr DCS

s (B) → gr DCS
s (C) → 0

which is additively split.

To apply Theorem 4.1 to the group PΣ+
n , consider a lemma given by the second conclusion of

Theorem 1.2 of [5].

Lemma 4.2. The sequence

1 → Fn−1 → PΣ+
n → PΣ+

n−1 → 1

induced by the map xn �→ idFn−1 is split exact, where Fn−1 is the free group on the generators

αn,1, . . . ,αn,n−1.

Furthermore, the action of PΣ+
n−1 on H1(Fn−1) is trivial.

A consequence of Lemma 4.2 follows.

Lemma 4.3. The sequence

1 → Γ s Fn−1 → Γ s PΣ+
n → Γ s PΣ+

n−1 → 1 (1)

is split exact.

The next proposition then follows directly.

Proposition 4.4. If s � 2, then there is an additive isomorphism

n⊕
q=2

Ls[Vq−1] → Γ s PΣ+
n /Γ s+1 PΣ+

n .

Furthermore, each free Lie algebra L[Vq−1] is a sub-Lie algebra of gr∗(PΣ+
n ), and there is an induced isomor-

phism of abelian groups
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n⊕
q=2

L[Vq−1] → gr∗
(
PΣ+

n

)

(where this isomorphism does not preserve the structure as Lie algebras).
If s = 1, then there is an additive isomorphism

n⊕
q=2

Vq−1 → Γ 1 PΣ+
n /Γ 2 PΣ+

n = H1
(
PΣ+

n

)
.

5. On a subgroup

The purpose of this section is to define subgroups of PΣ+
n , denoted H(n,k) and G(n,k, j); these

groups will appear in the proof of the main theorem.

Definition 5.1. Fix integers 1 � j � k − 1 � n − 1, and define

G(n,k, j)

as the subgroup of PΣ+
n generated by the elements

αk,1,αk,2, . . . ,αk, j .

The group

H(n,k)

is defined to be the direct product

G(n,k,k − 1) × G(n,k + 1,k − 1) × · · · × G(n,n,k − 1).

Properties of the groups G(n,k + r,k − 1), and H(n,k) are recorded next.

Lemma 5.2. The groups G(n,k + r,k − 1) are free subgroups of the group PΣ+
n for 2 � k � k + r � n. Fur-

thermore, if

(1) x ∈ G(n,k + s,k − 1) for 0 � s � n − k, and
(2) y ∈ G(n,k + r,k − 1) for 0 � s < r � n − r, then

xy = yx,

and there are induced homomorphisms

Θ(n,k) : G(n,k,k − 1) × G(n,k + 1,k − 1) × · · · × G(n,n,k − 1) → PΣ+
n

such that

Θ(n,k)(αt,s) = αt,s ∈ G(n,k + r,k − 1)



F.R. Cohen et al. / Journal of Algebra 329 (2011) 72–91 81
for

0 � r � n − k.

Proof. Recall from [5] that there are split epimorphisms

π : PΣ+
n → PΣ+

n−1

with kernel given by a free group on (n − 1)-letters with basis

αn,1,αn,2, . . . ,αn,n−2,αn,n−1.

Thus G(n,n,n − 1) is a free subgroup of PΣ+
n for all 2 � n, and the first assertion that each G(n,k +

r,k − 1) is free follows.
Next, assume that

(1) x ∈ G(n,k + r,k − 1) for 0 � r � n − k, and
(2) y ∈ G(n,k + s,k − 1) for 0 � r < s � n − r.

It suffices to check the next assertion that xy = yx in case

x = αk+r,u, r � n − k, u � k − 1,

and

y = αk+s,t, r < s � n − k, t � k − 1.

Observe that either

(1) u = t so that [αk+r,t,αk+s,t] = 1 by Theorem 3.1, or
(2) u �= t in which case [αk+r,u,αk+s,t] = 1 by Theorem 3.1 as t, u � k − 1 and so the sets {k + r, u}

and {k + s, t} are disjoint. �
The next lemma follows by inspection of the definitions.

Lemma 5.3. If 2 � k � k + r � n − 1, then the groups G(n,k + r,k − 1) are subgroups of the group PΣ+
n−1 ⊂

PΣ+
n , and

G(n,k + r,k − 1) = G(n − 1,k + r,k − 1).

Next, consider the projection maps

p : H(n,k) → G(n,k,k − 1) × G(n,k + 1,k − 1) × · · · × G(n,n − 1,k − 1)

which deletes the coordinate in G(n,n,k − 1). Observe that G(n,k + 1,k − 1) × · · · × G(n,n − 1,k − 1)

is equal to H(n − 1,k − 1) ⊂ PΣ+
n−1. Furthermore, the maps

Θ(n,k) : G(n,k,k − 1) × G(n,k + 1,k − 1) × · · · × G(n,n,k − 1) → PΣ+
n

are compatible with the projection maps of
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π : PΣ+
n → PΣ+

n−1

of [5] in the following sense.

Lemma 5.4. If 2 � k < n, the group Γ s(H(n,k)) is isomorphic to the direct product

Γ s(G(n,k,k − 1)
) × Γ s(G(n,k + 1,k − 1)

) × · · · × Γ s(G(n,n,k − 1)
)
.

There is a morphism of group extensions

G(n,n,k − 1)
Θ(n,k)

i

Fn−1

i

H(n,k)
Θ(n,k)

p

PΣ+
n

π

H(n − 1,k)
Θ(n−1,k−1)

PΣ+
n−1 .

Furthermore, there are induced maps of the level of the s-th stage of the descending central series

Γ s(G(n,n,k − 1))
Θ(n,k)

i

Γ s(Fn−1)

i

Γ s(H(n,k))
Θ(n,k)

p

Γ s(PΣ+
n )

π

Γ s(H(n − 1,k))
Θ(n−1,k−1)

Γ s(PΣ+
n−1),

and the vertical columns are group extensions.

Proof. The first assertion concerning the product decomposition of Γ s(H(n,k)) follows from the fact
that H(n,k) is a product. That the first diagram commutes follows from the definition of the map
p : H(n,k) → H(n − 1,k).

The third assertion concerning the group extensions as well as stages of the descending cen-
tral series follows by naturality for the H(n,k) and by the Falk–Randell theorem, stated here as
Lemma 4.3. �

Since H(n,k) is a direct product of (n − k) free groups, each of which have (k − 1) generators, the
next corollary follows at once.

Corollary 5.5. If 2 � k � n, the Lie algebra gr DCS∗ H(n,k) is isomorphic to the direct sum of Lie algebras

⊕
k�m�n

gr DCS∗ G(n,m,k − 1) ∼=
⊕
n−k

L[Vk−1]
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with generators for the m-th summand represented by

αm,1,αm,2, . . . ,αm,k−1

for all n � m � k.

Lemma 5.6. If 2 � k � n, the map

Γ s(H(n,k)
) Θ(n,k)−−−−→ Γ s(PΣ+

n

)
of Lemma 5.4 induces a monomorphism of Lie algebras

gr DCS∗
(

H(n,k)
) gr∗(Θ(n,k))−−−−−−−→ gr DCS∗

(
PΣ+

n

)
which is a split monomorphism of abelian groups.

Proof. Observe that gr DCS
s (PΣ+

n ) was computed in Proposition 4.4. Corollary 5.5 states that if 2 �
k � n, the Lie algebra gr DCS∗ H(n,k) is isomorphic to the direct sum of Lie algebras

⊕
k�m�n gr DCS∗ G(n,

m,k − 1) ∼= ⊕
n−k L[Vk−1] with generators for the m-th summand represented by

αm,1,αm,2, . . . ,αm,k−1

for all m � k.
Since the map Θ(n,k) : H(n,k) → PΣ+

n restricts to a map

Θ(n,k) : G(n,k + r,k − 1) → PΣ+
k+r

for every 0 � r � n − k, it suffices to check that the induced map G(n,n,k − 1) → Fn−1, where Fn−1
is the kernel of π : PΣ+

n → PΣ+
n−1, induces a split monomorphism on the level of Lie algebras.

Note that G(n,n,k − 1) is the subgroup of PΣ+
n generated by the elements

αn,1,αn,2, . . . ,αn,k−1.

Thus the inclusion G(n,n,k − 1) → Fn−1 is a split monomorphism on the level of free groups, and
hence on the level of Lie algebras. Thus, the induced map

gr DCS
s H(n,k) → gr DCS

s

(
PΣ+

n

)
is a split monomorphism as it is a direct sum of maps which are monomorphisms of Lie algebras
each of which is split as abelian groups. �

The statement and proof of the next standard fact are recorded for the convenience of the reader.

Lemma 5.7. Let Γ s(Fq) denote the s-th stage of the descending central series for the free group Fq. Then

Z ⊕ Ls[Vq]∗

is a direct summand of the cohomology of Γ s(Fq).
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Proof. Recall that the Lie algebra attached to the descending central series of Fq is the free Lie algebra
L[Vq] with the s-th graded direct summand given by

Ls[Vq] = Γ s(Fq)/Γ
s+1(Fq).

Thus there is a group extension

1 → Γ s+1(Fq) → Γ s(Fq) → Ls[Vq] → 1.

Since Ls[Vq] is a finitely generated free abelian group, it has a basis over the integers. That basis
depends on both s and q. Thus let S(s,q) denote a set which indexes this basis. Fix a choice of
basis bα , α ∈ S(s,q), and let F denote a free group with this choice of basis.

There is a choice of lift of bα to γα ∈ Γ s(Fq) for each α ∈ S(s,q). Thus there is an induced homo-
morphism

Θ : F → Γ s(Fq)

with the property that the composite

F Θ−→ Γ s(Fq) → Ls[Vq]

is an epimorphism.
Thus this composite map induces an isomorphism

H1(F ) → H1
(
Ls[Vq]

) = Ls[Vq]

as well as an isomorphism

H1(Ls[Vq]
) = Ls[Vq]∗ → H1(F ).

It follows that H1(Ls[Vq]) = Ls[V ]∗ injects in H1(Γ s(Fq)) by inspection. Furthermore, this in-
jection is split by the map induced in cohomology from Θ : F → Γ s(Fq). Thus this gives a direct
summand. �
Remark 5.8.

(1) The cohomology of Fq/Γ
s(Fq) is not yet well understood for large q. One classical result of Hopf’s

theorem about the second homology group of a discrete group is an isomorphism

H2
(

Fq/Γ
s(Fq)

) ∼= Ls+1[Vq].

(2) One feature concerning Lemma 5.7 is developed next. The group Γ s(Fq) is a free group. However,
control of the generators or even the first homology group is tenuous (as seen from the formulae
of Witt for the ranks). Indeed, the first homology group is generally much larger than the group
Ls[V ]. However, this last group Ls[V ] is a direct summand of H1(Γ

s(Fq)), which allows easy
manipulation in this context and forces the rapid growth of the cohomology of J s

n .

The utility of Lemma 5.7 is as follows.



F.R. Cohen et al. / Journal of Algebra 329 (2011) 72–91 85
Corollary 5.9. Assume that 2 � k � n.

(1) The integral cohomology algebra of H(n,k) is isomorphic to

⊗
n−k

(
Z ⊕ L1[Vk−1]∗

) =
⊗
n−k

(
Z ⊕ V ∗

k−1

)
.

(2) The integral cohomology algebra of Γ s H(n,k) contains a subalgebra which is isomorphic to

⊗
n−k

(
Z ⊕ Ls[Vk−1]∗

)
,

which is the image of the natural map

H∗(gr DCS
s H(n,k)

) → H∗(Γ s H(n,k)
)
.

6. Values of the Johnson homomorphism on certain subgroups

The purpose of this section is to derive the values of the Johnson homomorphism for certain
subgroups of PΣ+

n . Recall from Section 3 that PΣ+
n is generated by the subset of Magnus generators

{αi j | 1 � j < i � n}.

For ease of notation, fix q and write

wr = αqr

for q > r. A fact observed in [5] is that the elements wr = αqr for 1 � r � q − 1 give a basis for a free
group in PΣ+

n .
Throughout the remainder of this section, it will be tacitly assumed that

1 � r � q − 1.

The formulae are verified as follows. First consider the action of

wr = αqr

for q > r on xt :

wr(xt) =
{

xt if t �= q,

xr xqx−1
r if t = q.

Thus for example

1 � ri � q − 1,

(wr1 wr2)(xt) = wr1

(
wr2(xt)

) =
{

wr1(xt) = xt if t �= q,

wr (xr xqx−1) = xr (xr xqx−1)x−1 if t = q.
1 2 r2 1 2 r2 r1
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Next, consider a product given by

W = wε1
r1 · wε2

r2 · · · wεm
rm

for εi = ±1 for 1 � ri � q − 1. We begin to record some formulae essential to our computations in the
sequel.

Lemma 6.1. If

W = wε1
r1 · wε2

r2 · · · wεm
rm

for εi = ±1 for 1 � ri � q − 1, the action of W is specified by the formula

W(xt) =
{

xt if t �= q,

(xε1
r1 · xε2

r2 · · · xεm
rm ) · xq · (xε1

r1 · xε2
r2 · · · xεm

rm )−1 if t = q.

Thus for example, the action of the commutator

[wr1 , wr2 ] = w−1
r1

w−1
r2

wr1 wr2

on xt is specified by

[wr1 , wr2 ](xt) =
{

xt if t �= q,

[xr1 , xr2 ] · xq · [xr1 , xr2 ]−1 if t = q.

The formula for the action of the commutator

Λ = [· · · [[wr1 , wr2 ] · · ·
]

wrm

] ∈ IAn

on xt for 1 � ri � q − 1 is thus given by the formula

Λ(xt) =
{

xt if t �= q,

Λx · xq · Λ−1
x if t = q

where

Λx = [· · · [[xr1 , xr2 ] · · ·
]
xrm

]
,

the commutator formally obtained by replacing each wri by xri in the commutator Λ.
Values resulting from applying the Johnson homomorphism are recorded next.

Proposition 6.2. Consider the commutator Λ = [· · · [[wr1 , wr2 ], . . .], wrt ]. If r1, r2, . . . , rt < q, then

τs(Λ)(xt) =
{

xt if t �= q,

Λx · xq · Λ−1
x · x−1

q = [Λ−1
x , xq

−1] if t = q.
�

The next statement records implications of these formulae on the level of Lie algebras.
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Corollary 6.3. The composite morphism of Lie algebras denoted

J :
⊕
s�1

gr DCS
s

(
PΣ+

n

) → Der
(
L[Vn])

given by

⊕
s�1

gr DCS
s

(
PΣ+

n

) →
⊕
s�1

gr J
s (IAn) → Der

(
L[Vn])

which is induced by the Johnson homomorphisms is injective, and is split injective as abelian groups (but not
split as Lie algebras).

7. The last step

By Corollary 6.3, the composite morphism of Lie algebras

J : gr DCS∗
(
PΣ+

n

) → Der
(
L[Vn])

given by

⊕
s�1

gr DCS
s

(
PΣ+

n

) →
⊕
s�1

gr J
s (IAn) → Der

(
L[Vn])

is injective, and is additively split. By 5.6, the morphism of Lie algebras

gr DCS∗
(

H(n,k)
) gr∗(Θ(n,k))−−−−−−−→ gr DCS∗

(
PΣ+

n

)
is a monomorphism which is additively split in case 2 � k � n. The next theorem follows at once.

Theorem 7.1. If n � 3, and 2 � k � n, the composite homomorphism

H(n,k) → PΣ+
n → IAn

induces a morphism of Lie algebras

gr DCS∗
(

H(n,k)
) → gr DCS∗

(
PΣ+

n

) → gr J∗(IAn) → Der
(
L[Vn]).

This composite is a monomorphism of Lie algebras and is a split monomorphism of abelian groups.

Since the composite map of Theorem 7.1

γ : gr DCS
s

(
H(n,k)

) → Hom
(

Vn, Ls+1[Vn]
)

is a split monomorphism of finitely generated, free abelian groups, the map γ induces a split epimor-
phism in integer cohomology

γ ∗ : H∗(Hom
(

Vn, Ls+1[Vn]
)) → H∗(gr DCS

s

(
H(n,k)

))
.
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Observe that the cohomology ring of gr DCS
s (H(n,k)) is isomorphic to that of the product

Γ s(G(n,k,k − 1)
) × Γ s(G(n,k + 1,k − 1)

) × · · · × Γ s(G(n,n,k − 1)
)

by Lemma 5.4. Thus, the cohomology of Γ s H(n,k) contains

⊗
n−k+1

(
Z ⊕ Ls[Vk−1]∗

)

by Lemma 5.7. On the other hand, the natural quotient map

Γ s H(n,k)
grs(Θ(n,k))−−−−−−→ gr DCS

s

(
H(n,k)

)
induces a surjection onto its image in cohomology given in Corollary 5.9 by

⊗
n−k+1

(
Z ⊕ Ls[Vk−1]∗

)
.

The next statement as well as the main Theorem 1.1 follows by setting q = k − 1: the case k = 2 is
deleted as Ls[V 1]∗ = {0} for s > 1.

Theorem 7.2. If n � 3, and 3 � k � n, the integral cohomology ring H∗( J s
n) contains a direct summand which

is additively isomorphic to

⊗
n−k+1

(
Z ⊕ Ls[Vk−1]∗

)
.

Furthermore, this summand is in the image of the map induced by the Johnson homomorphism on integral
cohomology groups

(τs)
∗ : H∗(Hom

(
Vn, Ls+1[Vn]

)) → H∗( J s
n

)
.

Since the composite

J s+1
n → J s

n
τs−→ Hom

(
Vn, Ls+1[Vn]

)
is constant by definition of the Johnson homomorphism (as given in Section 2), the next result, the
‘fragility’ of these cohomology classes, follows at once.

Corollary 7.3. If n � 3, and 2 � k � n, the composite

J s+1
n → J s

n
τs−→ Hom

(
Vn, Ls+1[Vn]

)
gives the trivial map in cohomology when restricted to

⊗
Ls[Vk−1]∗,
n−k+1
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and these classes are in the kernel of the map

H∗( J s
n

) → H∗( J s+1
n

)
.

To estimate the ranks of the free abelian groups Ls[Vq]∗ for fixed 1 � q � n−1 where Vq = ⊕
q Z =

H1(Fq), classical work of Witt is recalled next [24,25]. For fixed filtration degree s, write ds(V ) for
the rank of the free abelian group Ls[V ] occurring above and consider the power series

∑
s�0

ds(V )ts

where by convention

d0(V ) = 1.

Thus

d1(V ) = q.

Following Witt’s application of the Poincaré–Birkhoff–Witt theorem,

1/(1 − qt) =
∏
s�1

1/
(
1 − ts)ds(V )

.

To find an inductive formula for the coefficients ds(V ), take formal logarithms of both sides of this
equation to obtain the formula

qs =
∑
m|s

mdm(V ).

An elegant exposition for this information is in Serre’s book [24]. Observe that

sds(V ) = qs −
∑

m|s,m<s

mdm(V ).

Next, specialize to the case of filtration degree s for the summand Ls[V ] with

s = pr, p is assumed to be prime.

The formula qs = ∑
m|pr mdm(V ) then simplifies to

qpr =
∑

0�i�r

pidpi (V ) = d1(V ) + pdp(V ) + · · · + pr−1dpr−1(V ) + prdpr (V ).

To illustrate this computation, some values are listed next:

dpr (V ) =
{

q, r = 0,

(qpr − qpr−1
)/pr, r > 0.

Thus in case q > p for a fixed prime p, the previous formula illustrates the rapid growth of the values
dpr (V ).
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8. Further comparison with earlier work

This section consists of a remark concerning work of M. Bestvina, K. Bux, and D. Margalit [2]. They
exhibit an abelian subgroup of IAn determined by the automorphisms

ρ(p j,q j) : Hn → Fn

defined by

x1 → x1,

x2 → x2,

x j → w p j x j wq j ,

where w = [x1, x2], j > 2.
Depending on the choices of p j and q j , these elements live in various stages of the Johnson filtra-

tions. For example, if

p j = 1 and q j = −1,

then the elements ρ(p j,q j) are in Γ 2 PΣ+
n . The groups H(n,k) of Section 5 give non-trivial abelian

subgroups in J s
n for large s. It is natural to ask whether the above methods imply that Hi( J s

n) fails to
be finitely generated as long as n > 2, s > 2, and 2 � i � n − 2.
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Appendix A

The purpose of this section is to list the natural Euler–Poincaré series associated to the Lie algebra

Der
(
L[Vn]) =

⊕
1�s

Hom
(

Vn, Ls+1[Vn]
)

where each module Hom(Vn, Ls+1[Vn]) is formally assigned gradation s.
The reason for doing so is that these modules are the natural images of the Johnson homomor-

phism, which is injective. Thus these maps are split rationally, and so the computation given next
may provide a setting for enumerating the cokernel of the Johnson homomorphisms in a ‘global’ way.

Recall that the rank of Vn is n, and the rank of Ls[Vn] is

ds(Vn)
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subject to the relations discovered by Witt as described in Section 7. Thus the natural Euler–Poincaré
series associated to the Lie algebra Der(L[Vn]) is

χ
(
Der

(
L[Vn])) =

∑
1�s

n · ds+1(Vn) · ts.

It seems likely that the analogous series for the Johnson Lie algebra should admit an analogous
description in terms of the ds+1(Vn).
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