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Abstract Scaled down models are widely used for experimental investigations of large structures

due to the limitation in the capacities of testing facilities along with the expenses of the experimen-

tation. The modeling accuracy depends upon the model material properties, fabrication accuracy

and loading techniques. In the present work the Buckingham p theorem is used to develop the rela-

tions (i.e. geometry, loading and properties) between the model and a large structural element as

that is present in the huge existing petroleum oil drilling rigs. The model is to be designed, loaded

and treated according to a set of similitude requirements that relate the model to the large structural

element. Three independent scale factors which represent three fundamental dimensions, namely

mass, length and time need to be selected for designing the scaled down model. Numerical predic-

tion of the stress distribution within the model and its elastic deformation under steady loading is to

be made. The results are compared with those obtained from the full scale structure numerical com-

putations. The effect of scaled down model size and material on the accuracy of the modeling tech-

nique is thoroughly examined.
ª 2015 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Any new design is subjected to many investigations through
theoretical analyses and experimental verification. As a system

becomes more complex, assumptions are usually made in order
to formulate a mathematical model for the system. In the
absence of a complete design base, a new system requires
extensive experimental evaluation until it gains the necessary

reliability and desired performance. For large and ‘‘oversize’’
systems, such as offshore/onshore rigs, tall buildings, dams,
bridges, spacecraft, airplanes, and space stations, creating the

actual working conditions for testing the prototype most of
the time is impossible, as in providing a zero gravitational
acceleration condition on the ground for testing large space

stations or antennas [8,16,4].
Even when a prototype test is possible, it is expensive, time

consuming, and difficult to control. Thus, it is extremely useful

if a prototype can be replaced by a similar scale model which is
much easier to work with. The only possible way to obtain
experimental data of overall performance of such a system
and the interaction of its elements is to design a small similar

system (scale model) which replicates the behavior of the actual
system (prototype). The accuracy of the behavior of the
prototype, which is predicted from interpreting the test results

of the model, is dependent on the relationship between the
corresponding variables and parameters of model and its pro-
totype [3].

Similarity of systems requires that the relevant system
parameters are identical and these systems are governed by
unique set of characteristic equations. Thus, if a relation or

equation of variables is written for a system, it is valid for
all systems which are similar to it [16,7]. Each variable in a
model is proportional to the corresponding variable of the pro-
totype. In establishing similarity conditions between the model

and prototype two procedures can be used. The similarity con-
ditions can be established either directly from the field equa-
tions of the system or, if it is a new phenomenon and the

mathematical model of the system is not available, through
dimensional analysis. In the second case, all of the variables
and parameters which affect the behavior of the system must

be known. By using dimensional analysis, an incomplete form
of the characteristic equation of the system can be formulated
[4]. This equation is in terms of non-dimensional products of
variables and parameters of the system. Then, similarity condi-

tions can be established on the basis of this equation.
2. Theories of scale model similitude

Similitude theory is concerned with establishing necessary and
sufficient conditions of similarity between two phenomena.
Establishing similarity between systems helps to predict the
behavior of a system from the results of investigating other sys-
tems which have already been investigated or can be investi-
gated more easily than the original system. The behavior of

a physical system depends on many parameters, i.e. geometry,
material behavior, dynamic response, and energy characteristic
of the system. The nature of any system can be modeled math-

ematically in terms of its variables and parameters [15].
A prototype and its scale model are two different systems

with different parameters. The necessary and sufficient condi-

tions of similitude between prototype and its scale model
require that the mathematical model of the scale model can
be transformed to that of the prototype by a bi-unique map-
ping or vice versa [14]. Qian et al. [10] studied the scaling laws

for impact damage in fiber composites by experiments. Their
experiments on scale plates, made of carbon and subjected to
impact loads, were carried out and the scaling laws for scaling

(up) the strain responses of the specimens to those of the full-
size ones were derived. The results show that the derived scal-
ing laws could reasonably predict the responses of the undam-

aged carbon plates undergoing impact loads. Simitses et al. [13]
studied the design of scale-down models for predicting the lam-
inated shell buckling and free vibration. In their article, the

similitude theory is employed to establish the similarity
between the chosen structural systems, and then the scaling
laws are derived and used to predict the physical characteristics
of the full-size structures. Vassalos [17] investigated the physi-

cal modeling and similitude of marine structures and provided
some valuable information concerning the appropriate use of
models in the design of marine structures. Safoniuk et al.

[11] presented a method to scale up the three-phase fluidized
beds, in which the scaling laws are obtained by achieving geo-
metric and dynamic similitude with the aid of the Buckingham

p theorem. Chouchaoui et al. [2] used the similitude theory to
develop the scaling laws for predicting the elastic behavior of a
laminated cylindrical tube under tension, torsion, bending,

internal and external pressure from the corresponding ones
of the scale model.

2.1. Scaling laws and parameters optimization methods

Several techniques were introduced where most of the litera-
ture uses a gradient-based optimization method and the solu-
tion often oscillates or diverges, depending upon the initial

search point, since the model and the measurement errors
can make the objective function complex [1,5]. One of the
approaches used to overcome this problem is to use a robust

optimization method and genetic algorithms (GAs) which were
successfully used to find the parameter set in a stable manner.
Nevertheless, this stability of convergence is achieved only at
the expense of efficiency. Taking the advantage of the
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efficiency of the gradient-based optimization method and the
robustness of GAs, this work first proposes a hybrid optimiza-
tion method, namely gradient-incorporated continuous evolu-

tionary algorithms (GICEAs), which can solve this class of
problems efficiently and in a robust manner. This method is
an extension of continuous evolutionary algorithms (CEAs).

The search point representation of which is continuous unlike
GAs, and has demonstrated their capability to yield good
approximate solutions one order faster than GAs for complex

optimization with a continuous search space. By incorporating
gradient search, GICEAs can further accelerate the speed of
convergence without sacrificing robustness. The use of this
technique, however, still leaves the user to develop algorithms

to derive a computer model response for each model and each
set of experimental data.

2.2. Dimensional analysis methods

The research efforts moved onto two different streams, one
concentrating on the integration of dimensional analysis with

other research methodologies, and the other trying to
export the use of DA into new research areas different
from traditional physics and engineering ones. In the first

stream the works of Vignaux and Scott [18], and Mendez
and Ordonez [9] on regression and data modeling can be
quoted. Regarding the second stream there is the work of
Hertkorn and Rudolph [6].

3. Case study

3.1. The pad-eye

A pad-eye is a device often found on boats that a line runs

through, or provides an attachment point. It is a kind of fair-
lead and often bolted or welded to the deck or hull of a boat. It
is also used in oil and gas projects to assist in the purpose of

lifting. Lifting is done with the help of D-shackle or sling,
which fits into the hole of pad-eye. There may be one or more
circular plates (cheek plates) welded around the hole. The pad-

eye is one of the main and most critical structural elements in
Figure 1 Pad-eye main dimensions.

Table 1 System parameters Primary Dimensions.

Parameter E F q t

Primary dimensions ML�1T�2 MLT�2 ML-3 L
derrick structures as it is used at the main connection and lift-
ing points.

3.2. Applying Buckingham p theorem on the pad-eye

The aim of this study was to determine a set of dimensionless
groups that can be used to correlate data for relating the pad-

eye strain due to a static biaxial loading, pad-eye thickness,
mating face length, hole diameter, pad-eye outer diameter,
pad-eye wedge height and the modulus of elasticity as the main

mechanical property which identify the pad-eye material,
Fig. 1.

Step 1: List of all parameters involved in the case study.

r: stress. E: modulus of elasticity.
F: applied force. q: Density. W: wedge height. d: maximum
displacement.

I: second moment of area for section A-A. d: hole diameter.
t: pad-eye thickness. D: pad-eye outer diameter. L: Mating
face length.

Note: all the expected parameters which are relevant to the
problem are included. If this suspicion is correct, experiments

will show that the parameter must be included to get consistent
result; if the parameter is extraneous, an extra p-group may
result but experiments will show that it may be eliminated from
consideration. Fig. 1 shows all parameters used in the case

study.
Step 2: Identifying the number of restrictions (r).
The number of dimensions depends upon the problem

being analyzed. The temperature or the electric or magnetic
charges are not to be included.

Primary dimensions selected were (M, L, T). Representing
the mass, length and time.
The number of restrictions is equal to the number of pri-

mary dimensions.

In this problem (kg, m, s) are selected r= 3.
Step 3: Assigning the primary dimensions to the

parameters.
The primary conditions of the case study as from Table 1

are

No. of parameters, n= 11, No. of restrictions, r= 3, No.
of p-groups, k= n � r.

Thus, k= 11–3 = 8 p-groups.
Step 4: Selecting from the parameters the repeating param-

eters which include all of the primary dimensions.
The following rules are to be considered:

1. Not to pick as repeating parameter that is needed to be iso-
lated. In this case the strain rE.

2. All of the dimensions must be presented in the repeating

parameters.
r I l D d W d

ML�1T�2 L4 L L L L L
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3. A repeating parameter which has the same unit as another

repeating parameter to a power is not to be selected.

According to the above rules t, q and E have been selected.

Step 5: Deriving the p-groups using the parameters.
Repeating parameters and one additional parameter in the
format:

Non-repeating variable (r)
p1 = r (ta Æ qb Æ Ec) = (ML�1T�2). ((L)a Æ (ML�3)b Æ
(ML�1T�2)c)

p1 = (kg1 m�1 s�2) Æ ((m)a Æ (kg m�3)b Æ (kg m�1 s�2)c) = (kg)0

Æ (m)0 Æ (s)0

Select values for the powers a, b & c such that dimensions
are all to the zero power; (i.e. dimensionless).

L : �1þ a� 3b� c ¼ 0

M : 1þ bþ c ¼ 0

T : �2� 2c ¼ 0

9>=
>;

c ¼ �1
b ¼ 0

a ¼ 0

p1 ¼ r=E

Non-repeating variable (I)

p2 = I (ta Æ qb Æ Ec) = (L)4. ((L)a Æ (ML�3)b Æ (ML�1T�2)c)
p2 = (m)4 Æ ((m)a Æ (kg m�3)b Æ (kg m�1 s�2)c) = (kg)0 Æ (m)0 Æ
(s)0

L : 4þ a� 3bþ c ¼ 0

M : b� c ¼ 0

9>= b ¼ 0

c ¼ 0
T : �2c ¼ 0
>;

a ¼ �4
p2 ¼ I=t4

Non-repeating variable (L)

p3 = L (ta Æ qb. Ec) = (L). ((L)a. (ML�3)b. (ML�1T�2)c)
p3 = (m) Æ ((m)a Æ (kg m�3)b Æ (kg m�1 s�2)c) = (kg)0 Æ (m)0 Æ
(s)0

L : 1þ a� bþ c ¼ 0

M : b� c ¼ 0

9>>>= b ¼ 0
T : �2c ¼ 0 >>>;
c ¼ 0

a ¼ �1

p3 ¼ L=t

Non-repeating variable (d)

p4 = d (ta Æ qb Æ Ec) = (L) Æ ((L)a Æ (ML�3)b Æ (ML�1T�2)c)
p4 = (m) Æ ((m)a Æ (kg m�3)b Æ (kg m�1 s�2)c) = (kg)0 Æ (m)0 Æ
(s)0

L : 1þ a� bþ c ¼ 0
9>= b ¼ 0
M : b� c ¼ 0

T : �2c ¼ 0
>; c ¼ 0

a ¼ �1
p4 ¼ d=t

Non-repeating variable (D)

p5 = D (ta Æ qb Æ Ec) = (L) Æ ((L)a Æ (ML�3)b Æ (ML�1T�2)c)
Table 2 p’s relationships.

p1 p2 p3 p4
r
E

l
t4

L
t

d
t

p5 = (m) Æ ((m)a Æ (kg m�3)b Æ (kg m�1 s�2)c) = (kg)0 Æ (m)0 Æ
(s)0

L : 1þ a� bþ c ¼ 0

M : bþ c ¼ 0

T � 2c ¼ 0

9>=
>;

b ¼ 0

c ¼ 0

a ¼ �1

p5 = D/t. Because of the repetition of the same dimension in

the p-groups we have p6 = W/t, p7 = d/t.
Non-repeating variable (F)

p8 = F

(ta Æ qb Æ Ec) = (MLT�2) Æ ((L)a Æ (ML�3)b Æ (ML�1T�2)c)
p8 = (kg m s�2) Æ ((m)a Æ (kg m�3)b Æ (kg m�1 s�2)c) = (kg)0 Æ
(m)0 Æ (s)0

L : 1þ a� 3b� c ¼ 0

M : 1þ bþ c ¼ 0

T : �2� 2c ¼ 0

9>=
>;

c ¼ �1
b ¼ 0

a ¼ �2

p8 = F/t2E. Table 2 shows all the p’s relationships.
Step 6: Verifying the dimensionless of the p-groups.
The functional dependence between the p-groups is deter-

mined experimentally.

p1 ¼ fðp2; p3; p4; p5; p6; p7; p8Þ;
r
E

¼ f
l

t4
;
L

t
;
d

t
;
D

t
;
W

t
;
d
t
;
F

t2E

� �

Hence the main parameters which required to be grouped
are d/D, t, d, F and r. The approach is to figure out the equa-

tion constant which controls the relationship between those
parameters.

To specify the equation constant all parameters have been

fixed for the same prototype to check which will be the con-
stant parameter after altering the values of F as well as calcu-
lating r’s. The relation which will be used:

p1 ¼ S � p5p8

p4

ð1Þ

r ¼ S � F �D
t2 � d ð2Þ

By applying the same sequence to derive a relation between
f and d

p7 ¼ K � p5p8

p4

ð3Þ

d ¼ K
F �D
E � t � d ð4Þ

where S and K are the r to F and the d to F factors

respectively.

3.3. Case study of prototype pad-eye of a derrick

As a case study the dimensions of the pad-eye of the derrick

raising system and the mean wiring scheme are considered.
p5 p6 p7 p8

D
t

W
t

d
t

F
t2E



All dimensions are in m.

Figure 2 Prototype pad-eye dimensions.

Figure 3 Force versus maximum stress for the prototype.
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The loads for the system will be the maximum design loads of
the manufacturer. The dimensions of the pad-eye are given in
Fig. 2:

t= 0.1016 m, FMax = the load on the sling line = 1159 kN
and E = 210 GN/m2.

From Eq. (1) the relation will be

r ¼ S
F �D
t2d
¼ ð253:19ÞS � F ð5Þ

By applying the same sequence to drive a relation between
F and d

d ¼ K
F �D
E � t � d ¼ ð1:225� 10�10ÞK � F ð6Þ
Figure 4 Force versus maximum displacement for the prototype.
4. Results and discussion

4.1. Deriving the equations factors for the prototype

Using Solid works a 3D model of the pad-eye is built and its
material is specified as plain carbon steel. Then the welded face

is selected. Also the force applied on the prototype is to be
added with its direction. Finally the QOSMOSX is used to
mesh the model with the default meshing method in the pro-

gram and analyzing it to calculate the maximum stress and dis-
placement of the model. Descending values for the applied
force were used to calculate the maximum stress and displace-

ment for the model. Then the average values for the applied
forces with the resultants stresses and displacements are to
be used in Eqs. (5) and (6) to calculate the stress and displace-

ment factors S and K, the following step have been precede:

1. Building a 3D model for the prototype the pad-eye and
specify its material.

2. Determine the welding face and adding the amount and
direction of the maximum load.

3. Subdivide the pad-eye to meshing elements and then ana-

lyze the model to calculate and locate the maximum stress
and displacement.

4.2. Mesh information

1. The analysis is to be run in order to determine the factor of
safety.

2. The stress distribution results are to be checked to deter-
mine the maximum stress on the model.

3. The maximum displacement is to be checked.

4. By applying the same sequence from steps 1–6 with differ-
ent values of F the values for S and K are derived and the
results of the Stress r and displacement d are to be obtained
from the software Solid works. Figs. 3 and 4 show the force
versus maximum stress and maximum displacement of the
prototype.

The values for Spr and Kpr become

Spr ¼
Rr

ð253:12ÞRF and Kpr ¼
Rd

ð1:225� 10�10ÞRF

Hence Rr = 13,095 MN/m2, Rd = 1.5698 mm and
RF = 9259 kN, then Spr = 0.559 and Kpr = 1.384.

4.3. Deriving the equations factors

Similarity conditions require that the equations of two similar
systems be the same. If the r-terms of the functional equation

for two systems are the same, then f1 = f2 even if the func-
tional equation is completely not known. These equalities of
r-terms which determine the conditions, for which the two sys-

tems are similar, are the similarity conditions or scaling laws
for these systems and for the specific phenomena.

p1p = fp (p2p, p3p, p4p,. . ., p8p), p1m = fm (p2m, p3m, p4m,. . .,
p8m)
If p1p = p1m for i = 2, 3, 4,. . .,8, then
fp (p2p, p3p, p4p,. . ., p8p) = fm (p2m, p3m, p4m,. . ., p8m)

Since these 1r-terms are combinations of geometric,
dynamic, material, and kinematic parameters of the systems,
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the above equalities define different similarities, such as geo-
metric , material, kinematic, and dynamic similarity [12].

4.4. Models scaling tests

The relations have been tested by calculating the S and K fac-
tors for the nine models by scaling all the system factors using

the same scale factor k.

� Model-1 k1 = (0.9): the sequence for analysis the model is

used as the prototype with considering the following:
1. The sketch and extrude dimensions will be scaled to 0.9 of

the prototype dimensions as follows:

t1 = k1. tP = 0.9 (0.1016) = 0.09144 m, D1 = k1. DP = 0.9
(0.3429) = 0.30861 m
d1 = k1. dP = 0.9 (0.1312) = 0.11808 m

2. Same material is to be considered (plain carbon steel).

3. Using the same restraints.
4. Applying F1 = k1. Fp = 0.9(1,159,000) = 1,043,100 N on

the same face and direction.

5. Show the predicted stress and displacement distribution for
the model.

Theoretically in case of complete similarity that SP equal to
Sm, also Kp equal Km. By substituting the model dimensions
values into Eqs. (5) and (6) the theoretical values for the max-
imum stress and maximum displacement are calculated.

r ¼ S
F �D1

t21d1
¼ ð0:559ÞF 0:30861

ð0:09144Þ2ð0:11808Þ
; d ¼ K

F �D1

E � t1 � d1

¼ ð1:384ÞF ð0:30861Þ
ð2:1� 1011Þð0:11808Þð0:09144Þ

6. The deviation percentage between the predicted and theo-

retical stress and displacement is also calculated from

r%Dev ¼
rPr: � rTr:

rPr:

� 100 and d%Dev ¼
dPr: � dTr:

dPr:

� 100

Accordingly by applying the same steps on the eight other
models the dimensions for all models are obtained. The rela-
tion between the applied force and the theoretical and
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Figure 5 Predicted maximum stress for models 2, 4, 6, and 8.
predicted values of the maximum stress for the models is
shown in Fig. 5. The relation between the applied force and
theoretical and predicted values of the maximum displacement

for the models is shown in Fig. 6. The maximum displacement
predicted and theoretical values are shown in Figs. 7 and 8
respectively.

4.5. Discussion

By observing the charts of the stress and displacement for the
selected models it seems that the deviations between the theo-

retical and predicted are very small to be noticed on the charts.
So the average percentage deviation between the predicted and
theoretical values for the maximum stress and maximum dis-

placement for each model needs to be calculated in terms of
the percentage deviation as

%Dev ¼ Pr:� Th:

Pr:
� 100:
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Figure 8 Theoretical maximum displacement for models 2, 4, 6,

and 8.
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Figure 9 Percentage deviation of the theoretical to the predicted

values of the maximum stress for the different models.
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Figure 10 Percentage deviation of the theoretical to the Predicted

values of the maximum displacement for the different models.
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The percentage deviations for each model are calculated for
the maximum stress and maximum displacement as shown in
Figs. 9 and 10. It is clear that the percentage deviation whether

for the maximum stress or for the maximum displacement does
not exceed 0.25%.
5. Conclusions

� It is possible to use the dimensional analysis to derive equa-
tions to control the relations between the pad-eye character-

istics and predict the values of the stress and displacement
for any scaled model within the same materials by applying
the scaling laws through Buckingham theorem.
� The percentage deviation in the results between the theoret-

ical results and predicted values of the maximum stress and
maximum displacement is quite small and does not exceed
0.25%.

� It has been shown here that the development of similitude
relations for various homogeneous structural problems is
a rather simple feasible task.

� The smallness of the deviation between the theoretical and
the predicted results requires to be confirmed by experimen-
tal verification for structural elements of rather complicated
shapes and for different loading applications and

conditions.
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