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a Telecom Paristech, Institut Télécom, CNRS LTCI, 46, rue Barrault, 75634 Paris Cédex 13, France
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Abstract

Linear processes are defined as a discrete-time convolution between a kernel and an infinite sequence of
i.i.d. random variables. We modify this convolution by introducing decimation, that is, by stretching time
accordingly. We then establish central limit theorems for arrays of squares of such decimated processes.
These theorems are used to obtain the asymptotic behavior of estimators of the spectral density at specific
frequencies. Another application, treated elsewhere, concerns the estimation of the long-memory parameter
in time series, using wavelets.
c© 2009 Elsevier B.V. All rights reserved.
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1. Introduction

Consider a linear process, that is, a weakly stationary sequence∑
t∈Z

v(k − t)ξk, k ∈ Z, where
∑
t∈Z

v2(t) <∞

and {ξt , t ∈ Z} is a centered white noise sequence, that is an uncorrelated sequence with mean
zero. We shall sometimes make the following additional assumptions on {ξt , t ∈ Z}.
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Assumptions A

(A-1) {ξt , t ∈ Z} is a sequence of independent and identically distributed real-valued random
variables such that E[ξ0] = 0, E[ξ2

0 ] = 1.

(A-2) {ξt , t ∈ Z} satisfies (A-1) and κ4
def
= E[ξ4

0 ] − 3 is finite.

We will allow decimation and consider, moreover, not one but N linear sequences, all using
the same {ξt , t ∈ Z}.

Definition 1. An array of N -dimensional decimated linear processes is a process admitting the
following linear representation:

Zi, j,k =
∑
t∈Z

vi, j (γ j k − t)ξt , i = 1, . . . , N , k ∈ Z, j ≥ 0, (1)

where {ξt , t ∈ Z} is a centered weak white noise, (γ j ) j≥0 is a diverging sequence of positive
integers and, for all i = 1, . . . , N and j ≥ 0, {vi, j (t), t ∈ Z} is real valued and satisfies∑

t∈Z v
2
i, j (t) <∞.

Remark 1. Zi, j,k involves three indices. The index i = 1, . . . , N is used to define an N -variate
version, the index j labels the decimation factor γ j , and the index k corresponds to time. Because
of the presence of the factor γ j in (1), Zi, j,k is not a usual convolution. It can be viewed as
a decimated convolution of a white noise in the sense that, after convolution, one keeps only
values spaced by γ j . A typical choice of decimation is γ j = 2 j , j ≥ 0.

Our goal is to study the asymptotic behavior of the sample mean square of Zi, j,k , namely to
find conditions on the kernels vi, j , the decimation factor γ j and normalization n j , so that the
normalized vectorn−1/2

j

n j−1∑
k=0

(
Z2

i, j,k − E
[

Z2
i, j,k

])
, i = 1, . . . , N


converges to a multivariate normal N (0,Γ ) distribution. We want also to characterize the
limiting covariance matrix Γ . Thus we are interested in the sum of squares of the Zi, j,k .

Such results are useful in estimation. In Section 4, for example, we apply our result to obtain a
central limit theorem for the estimator f̂n(0) of the spectral density at the origin f (0) of a linear
process. This CLT is compared to [1], Eq. 3.9, as discussed in Remark 13. We also include in
Section 4 a central limit theorem for estimators of the spectral density at several frequencies.

Another, more involved application, which involves wavelets, can be found in [2], where we
consider linear processes, not necessarily Gaussian, with long, short or negative memory. The
memory parameter is estimated semiparametrically using wavelets from a sample X1, . . . , Xn
of the process. We show that both the log-regression wavelet estimator and the wavelet Whittle
estimator of the memory parameter are asymptotically normal as the sample size n → ∞ and
we obtain an explicit expression for the limit variance. To do so, we use a general result on
the asymptotic normality of the empirical scalogram for linear processes. The scalogram is an
array of quadratic forms involving the wavelet coefficients of the observed sample. In contrast
to quadratic forms computed on the Fourier coefficients such as the periodogram, the scalogram
involves correlations which do not vanish as the sample size n → ∞. To establish the results
mentioned here, we use Theorem 2 below. For a general review of this type of application see [3].
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The paper is structured as follows. In Section 2, we indicate the main assumptions. The
central limit theorems (Theorems 1 and 2) for decimated sequences are stated in Section 3.
Section 4 contains an application to the estimation of the spectral density at various frequencies
(Theorems 3 and 4). Theorems 1 and 2 are proved in Sections 5 and 6 respectively. Theorems 3
and 4 are proved in Section 7. Section 8 contains technical lemmas.

2. Main assumptions

Our assumptions will be expressed in terms of the Fourier series of the `2 sequences
{vi, j (t), t ∈ Z}, namely

v∗i, j (λ) = (2π)
−1/2

∑
t∈Z

vi, j (t)e−iλt , λ ∈ R. (2)

We suppose that for any i = 1, . . . , N , as j → ∞, the Fourier series v∗i, j concentrates around
some frequency λi,∞ ∈ [0, π). By “concentrate”, we mean that when adequately normalized,
translated and rescaled around these frequencies, the series v∗i, j converges as j → ∞ to some
limit functions v∗i,∞, with a uniform polynomial control (see Eqs. (7) and (8) below). Because
of the particular structure of the γ j -decimation in (1), however, in order to derive the asymptotic
behavior for the processes, we need to introduce sequences of frequencies (λi, j ) j≥0 that satisfy
some special conditions and converge to λi,∞ for all i = 1, . . . , N . We shall first specify the
conditions on the Fourier series v∗i, j , the frequencies λi,∞ and the limit functions v∗i,∞, and then
comment on these conditions.
Condition B

(i) There exist an N -dimensional array of frequencies (λi, j )i∈1,...,N , j≥0 valued in [0, π) such
that, for all i = 1, . . . , N ,

γ jλi, j ∈ 2πZ+, for j large enough, (3)

λi, j → λi,∞, as j →∞, (4)

if λi,∞ = 0, then λi, j = 0, for j large enough, (5)

and, for all 1 ≤ i < i ′ ≤ N ,

if λi,∞ = λi ′,∞, then λi, j = λi ′, j , for j large enough. (6)

(ii) Moreover there exist δ > 1/2 and an array of [−π, π)-valued functions Φi, j (λ) defined on
λ ∈ R such that, for all i = 1, . . . , N ,

sup
j≥0

sup
λ∈[0,π)

γ
−1/2
j |v∗i, j (λ)|(1+ γ j |λ− λi, j |)

δ <∞, (7)

lim
j→∞

γ
−1/2
j v∗i, j (γ

−1
j λ+ λi, j )eiΦi, j (λ) = v∗i,∞(λ) for all λ ∈ R, (8)

and, for all 1 ≤ i < i ′ ≤ N ,

if λi,∞ = λi ′,∞, then Φi, j ≡ Φi ′, j , for j large enough. (9)

The following remarks provide some insight into these conditions.

Remark 2. Eqs. (4) and (8) imply that the spectral density λ 7→ |v∗i, j |
2(λ) of the undecimated

stationary process
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Z̃i, j,k =
∑
t∈Z

vi, j (k − t)ξt , k ∈ Z,

concentrates, as j → ∞, around the frequency λi,∞. In practical applications of the theorem,
the limiting frequencies {λi,∞, i ∈ 1, . . . , N } are given. However, one can often easily find
sequences (γ j ) j≥0 and (λi, j ) j≥0 that satisfy Conditions (3) and (4). In the particular case where
the λi,∞ are such that qλi,∞ ∈ 2πZ for all i = 1, . . . , N and some positive integer q, one
may take λi, j = λi,∞ and γ j as a multiple of q . This happens for instance when the limiting
frequencies are all at the origin, that is, λ1,∞ = · · · = λN ,∞ = 0 and γ j = 2 j .

Remark 3. The presence of the phase function Φi, j in (8) offers flexibility and implies that

γ
−1/2
j v∗i, j (γ

−1
j λ + λ0) converges to v∗i,∞(λ) up to a change of phase. Observe, however, that

Condition (9) requires that Φi, j and Φi ′, j be equal if the asymptotic frequencies λi,∞ and
λi ′,∞ are the same. If λ1,∞ < · · · < λN ,∞, Condition (8) is equivalent to requiring that

γ
−1/2
j |v∗i, j (γ

−1
j λ + λi, j )| converges to |v∗i,∞(λ)| for all i . However, because of Condition (9),

if some of the frequencies λ1,∞, . . . , λN ,∞ are equal, the latter condition does not imply
Conditions (8) and (9). The presence of the phase Φi, j is consistent with the fact that the
asymptotic covariance matrix Γ defined in (25) is invariant through a phase translation of the
functions v∗i,∞ for all i = 1, . . . , N , provided that these phase translations are identical for any
pair i, i ′ such that Ci,i ′ 6= 0, that is, λi,∞ = λi ′,∞; see (18).

Remark 4. Condition (6) states that if two limits λi,∞ and λi ′,∞ are equal, then the λi, j and
λi ′, j which converge to them must coincide for large enough j . Condition (5) has a similar
interpretation.

Remark 5. Conditions (6), (8) and (9) imply that, for all 1 ≤ i ≤ i ′ ≤ N such that λi,∞ = λi ′,∞,

lim
j→∞

γ−1
j [v

∗

i, jv
∗

i ′, j ](γ
−1
j λ+ λi, j ) = [v

∗

i,∞v
∗

i ′,∞](λ) for all λ ∈ R. (10)

Here z denotes the conjugate of the complex z.

Remark 6. Since vi, j (t) is real valued, we have

v∗i, j (−λ) = v
∗

i, j (λ). (11)

Thus, Conditions (7) and (10) imply that

sup
j≥0

sup
λ∈(−π,π)

γ
−1/2
j |v∗i, j (λ)|

(
1+ γ j

∣∣|λ| − λi, j
∣∣)δ <∞, (12)

lim
j→∞

γ−1
j [v

∗

i, jv
∗

i ′, j ](γ
−1
j λ− λi, j ) = [v

∗

i,∞v
∗

i ′,∞](−λ) for all λ ∈ R. (13)

In particular, if λi,∞ = λi ′,∞ = 0, by (5), (10) and (13), we have

[v∗i,∞v
∗

i ′,∞](λ) = [v
∗

i,∞v
∗

i ′,∞](−λ). (14)

Remark 7. Since (γ j ) is a diverging sequence and λi, j → λi,∞ ∈ [0, π), for any λ ∈ R, for j
large enough, we have γ−1

j λ + λi, j ∈ [0, π). Hence Conditions (7) and (8) imply that, for all
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i = 1, . . . , N ,

sup
λ∈R

∣∣v∗i,∞(λ)∣∣ (1+ |λ|)δ <∞. (15)

To better understand these assumptions, we start with a result on the asymptotic behavior of the
cross-covariance function for the array (1). In this proposition, we set, without loss of generality,
N = 2.

Proposition 1. Let {Zi, j,k, i = 1, 2, j ≥ 0, k ∈ Z} be an array of two-dimensional decimated
linear processes as defined by (1). Assume that Condition (B) holds for some λi,∞ ∈ [0, π) and
functions v∗i,∞, i = 1, 2, from R→ Z. Then, for all k, k′ ∈ Z, as j →∞,

Cov
(
Z1, j,k, Z2, j,k′

)
→ C1,2

∫
∞

−∞

w∗1,2(λ)e
iλ(k′−k)dλ, (16)

where, for any i, i ′ ∈ {1, 2},

w∗i,i ′(λ) =
1
2

[
v∗i,∞(−λ)v

∗

i ′,∞(−λ)+ v
∗

i,∞(λ)v
∗

i ′,∞(λ)
]
, λ ∈ R, (17)

and

Ci,i ′ =

0 if λi,∞ 6= λi ′,∞
1 if λi,∞ = λi ′,∞ = 0
2 if λi,∞ = λi ′,∞ > 0.

(18)

Proof. Using (1) and Parseval’s theorem, we have

Cov
(
Z1, j,k, Z2, j,k′

)
=

∑
t∈Z

v1, j (γ j k − t)v2, j (γ j k
′
− t) (19)

=

∫ π

−π

[v∗1, jv
∗

2, j ](λ)e
iγ jλ(k′−k)dλ. (20)

We now consider separately the three cases λ1,∞ 6= λ2,∞, λ1,∞ = λ2,∞ > 0 and
λ1,∞ = λ2,∞ = 0.

(1) Suppose λ1,∞ 6= λ2,∞. Then by (7), there is a constant C > 0 such that∣∣Cov
(
Z1, j,k, Z2, j,k′

)∣∣ ≤ Cγ j

∫ π

0
(1+ γ j |λ− λ1, j |)

−δ(1+ γ j |λ− λ2, j |)
−δdλ

→ 0 as j →∞, (21)

since γ j →∞, δ > 1/2 and |λ1, j − λ2, j | has a positive limit.

(2) Suppose λ1,∞ = λ2,∞ > 0. Setting λ = γ−1
j ξ + λ1, j and using (3), we have∫ π

0
[v∗1, jv

∗

2, j ](λ)e
iγ jλ(k′−k)dλ =

∫ γ j (π−λ1, j )

−γ jλ1, j

γ−1
j [v

∗

1, jv
∗

2, j ](γ
−1
j ξ + λ1, j )eiξ(k′−k)dξ

→

∫
∞

−∞

[v∗1,∞v
∗

2,∞](ξ)e
iξ(k′−k)dξ as j →∞, (22)
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where the limit follows from Conditions (6), (4), (7), (10) and dominated convergence.
Similarly we have∫ 0

−π

[v∗1, jv
∗

2, j ](λ)e
iγ jλ(k′−k)dλ→

∫
∞

−∞

[v∗1,∞v
∗

2,∞](−ξ)e
iξ(k′−k)dξ as j →∞,

by using (13) instead of (10). The last display, (20) and (22) yield

Cov
(
Z1, j,k, Z2, j,k′

)
→ 2

∫
∞

−∞

w∗1,2(ξ)e
iξ(k′−k)dξ as j →∞. (23)

(3) Suppose finally λ1,∞ = λ2,∞ = 0. Setting λ = γ−1
j ξ gives∫ π

−π

[v∗1, jv
∗

2, j ](λ)e
iγ jλ(k′−k)dλ =

∫ γ jπ

−γ jπ

γ−1
j [v

∗

1, jv
∗

2, j ](γ
−1
j ξ)eiξ(k′−k)dξ

→

∫
∞

−∞

[v∗1,∞v
∗

2,∞](ξ)e
iξ(k′−k)dξ

by using Conditions (5), (7) and (10) and dominated convergence. The last display, (21)
and (22) yield (16). �

3. Main results

We let
L
−→ denote the convergence in law. Our first result provides the asymptotic behavior

of the sample mean square of an array of a decimated linear sequence under a global assumption
on the behavior of the spectral density (the bound (7)). A local version of this assumption is
considered in Theorem 2.

Theorem 1. Let {Zi, j,k, i = 1, 2, j ≥ 0, k ∈ Z} be an array of N-dimensional decimated linear
processes as defined by (1). Assume (A-2) and that γ j is even for j large enough. For each
i = 1, . . . , N, we let λi,∞ denote a frequency in [0, π) and v∗i,∞ a continuous R→ Z function
such that Condition (B) holds. Then, for any diverging sequence (n j ),

n−1/2
j

n j−1∑
k=0

 Z2
1, j,k − E[Z2

1, j,k]

...

Z2
N , j,k − E[Z2

N , j,k]

 L
−→ N (0,Γ ), (24)

where Γ is the covariance matrix defined by

Γi,i ′ = 4πCi,i ′

∫ π

−π

∣∣∣∣∣∣
∑
p∈Z

w∗i,i ′(λ+ 2pπ)

∣∣∣∣∣∣
2

dλ, 1 ≤ i, i ′ ≤ N , (25)

where Ci,i ′ and w∗i,i ′ are defined in (18) and (17).

Remark 8. From (15), it follows that the doubly infinite sum in (25) is well defined and bounded
on λ ∈ R and hence Γ is well defined.

Remark 9. The index k appears n j times in the centered sum (24) and asymptotic normalization
occurs as j and n j tend to∞.

Remark 10. The presence of the factor γ j in (1), and hence of decimation, is essential for the
central limit theorem to hold in this generality because it ensures that the dependence of the
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Zi, j,k’s decreases sufficiently fast as j → ∞. Decimation of this type is typically encountered
in settings involving wavelets, or more generally filter banks; see [4].

Remark 11. In applications, the expectations in (24), which depend on j , will be approximated
by quantities that are independent of j . To see why this is possible, observe that, applying the
relation (16) in Proposition 1 with k = k′ = 0 and i = i ′ = 1, . . . , N , we get

lim
j→∞

E
[

Z2
i, j,0

]
=

∫
∞

−∞

∣∣v∗i,∞(λ)∣∣2 dλ <∞. (26)

Thus, when the rate of convergence to this limit is fast enough, the expectations in (24) can be

replaced by
∫
∞

−∞

∣∣∣v∗i,∞(λ)∣∣∣2 dλ, i = 1, . . . , N , which does not depend on j .

We have assumed in (7) a bound for v∗i, j (λ) for λ ∈ (−π, π). This bound implies that the
spectral density of the process Zi, j,� defined in (1) is bounded on (−π, π). We shall now weaken
this assumption by only assuming a local bound around the frequency λi, j as follows.

Theorem 2. Assume that all the conditions of Theorem 1 hold except that (7) is replaced by

sup
j≥0

sup
|λ−λi,∞|≤ε

γ
−1/2
j |v∗i, j (λ)|

(
1+ γ j

∣∣λ− λi, j
∣∣)δ <∞, (27)

where ε > 0 is arbitrarily small. Suppose in addition that

n1/2
j

∫ π

0
1(|λ− λi,∞| > ε)|v∗i, j (λ)|

2dλ→ 0 as j →∞. (28)

Then the conclusion of Theorem 1, that is, the CLT (24), still holds.

Remark 12. Since (7) is replaced by the local condition (27), we impose the additional
condition (28) involving λ’s not considered in (27). Condition (28), which is basically a condition
on the growth of n j , does not appear in the conditions of Theorem 1, where it was only required
that n j →∞.

4. Application to spectral density estimation

Let {Xu, u ∈ Z} be a standard linear process,

Xu =
∑
t∈Z

a(u − t)ξt , (29)

where {ξt , t ∈ Z} is a centered weak white noise with unit variance satisfying (A-2) and where
{a(t), t ∈ Z} is a real-valued sequence such that

∑
k a2

k <∞ with Fourier series

a∗(λ) = (2π)−1/2
∑
t∈Z

a(t)e−iλt . (30)

Then {Xk, k ∈ Z} admits the following spectral density:

f (λ) =
∣∣a∗(λ)∣∣2 , λ ∈ (−π, π).

We first consider the problem of estimating f (0) from T observations X1, . . . , XT .
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Let us denote by W a bounded R→ R function with compact support and by Ŵ its Fourier
transform,

Ŵ (ξ) =

∫
∞

−∞

W (t)e−iξ t dt.

Let (γ j ) be any diverging sequence of even integers.
We let N = 1, and λ1, j = λ1,∞ = 0 for all j ≥ 0, which yields (3)–(6) in Condition (B).
Define

Z1, j,k = γ
−1/2
j

∑
u∈Z

W (k − γ−1
j u)Xu . (31)

We assume that:

(C-1) As λ→ 0,

f (λ) = f (0)+ O(|λ|2). (32)

(C-2) The support of W is included in [−1, 0], supξ∈R |Ŵ (ξ)|(1+ |ξ |)β <∞ with β > 1 and∫
∞

−∞

∣∣Ŵ (λ)
∣∣2 dλ = 1. (33)

Assumptions (C-1) and (C-2) are related to the standard bias control of kernel estimates of the
spectral density.

Define

n j = [γ
−1
j (T + 1)]. (34)

Observe that (C-2) implies that, for all k = 0, . . . , n j − 1, W (k − γ−1
j u) vanishes for u ≤ 0 and

u ≥ T + 1. Hence the infinite sum in (31) can be written as

Z1, j,k = γ
−1/2
T

T∑
u=1

W (k − γ−1
j u)Xu . (35)

In other words, {Z1, j,k, k = 0, . . . , n j − 1} can be computed from the T observations
X1, . . . , XT . Thus

f̂T (0)
def
= n−1

T

nT−1∑
k=0

Z2
1,T,k (36)

can be used as an estimator of f (0). Here we put j = T so that the estimator only depends on the
number of observations T , the sequence (γT ) and the kernel W . The following theorem provides
a central limit result for f̂T (0).

Theorem 3. Assume (C-1) and (C-2) with β > 2. Let (γT ) be a diverging sequence of even
integers such that γ−1

T T →∞ and

T 1/2γ
1/2−2β
T → 0. (37)

Then, as T →∞,

E
[

f̂T (0)
]
= E

[
Z2

1,T,0

]
= f (0)+ O(γ−2

T ) (38)
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and

(γ−1
T T )1/2

{
f̂T (0)− E

[
Z2

1,T,0

]} L
−→ N (0, σ 2), (39)

where

σ 2
= 4π f (0)2

∫ π

−π

∑
p∈Z

∣∣Ŵ (λ+ 2pπ)
∣∣22

dλ.

Remark 13. Our CLT (39) can be compared with [1, Eq. 3.9], although the estimators are
different since ours involve a decimation and the one in [1] is expressed as a weighted integral
of the standard periodogram. In (39), our γT has a role similar to that of the q = qT for their
estimator. Our bias estimate (38) has a faster decrease than the corresponding one O(q−1) in [1];
see the last display in their Section 3. Our conditions also differ from those of [1]. Our condition
on the weight sequence a(t) is much more general, since we assume a polynomial decrease
neither of this sequence nor of a(t) − a(t + 1), as assumed for the corresponding (one-sided)
sequence (ψ j ) j≥0 in Assumption 2.1 of [1]. Standard results on spectral estimation (see e.g. [5,
Theorem 9.4.1]) usually assume the even stronger condition

∑
t |a(t)| < ∞. On the other hand

we do assume that the noise sequence {ξt } has a fourth finite moment (see (A-2)) while only
a finite 2 + ε moment (with ε > 0 arbitrarily small) is assumed in [1]. It is an open question
whether a similar moment condition can be used for our estimator f̂T (0).

Remark 14. The sequence (γT ) must satisfy both γ−1
T T → ∞ and (37). The former is

equivalent to nT → ∞, see (34). The decimation γT = 2T will not satisfy nT → ∞, nor
will γT = 1 satisfy (37). An intermediate decimation, for example, γT = [T a

], will work for
0 < a < 1 as long as the Fourier decay index β in (C-2) satisfies β > (1 + 1/a)/4. We also
assume in Theorem 3 that β > 2. Thus, if a ≤ 1/7, then we require β > (1+ 1/a)/4 and when
a ≥ 1/7, we require β > 2. Since γT = [T a

] the normalization coefficient (γ−1
T T )1/2 in (39) is

asymptotically equivalent to T (1−a)/2.

We now give an extension of Theorem 3 for estimating the spectral density f at several
frequencies 0 ≤ λ1,∞ < · · · < λN ,∞ < π from observations X1, . . . , XT . Given a sequence
of even integers (γT ), for each i = 1, . . . , N , we consider the point λi,T , closest to λi,∞, that
satisfies γT λi,T ∈ 2πZ+. For sake of brevity, we will not investigate the bias f (λi,∞)− f (λi,T )

as it depends both on the smoothness f and on the distance between λi,∞ and 2πγ−1
T Z+. It may

happen for instance that λi,∞ ∈ 2πγ−1
T Z+ for T large enough, and so λi,T = λ∞,T , in which

case this bias vanishes.
We define an array of N -dimensional decimated linear process by

Zi, j,k = γ
−1/2
j

∑
u∈Z

Wi, j (k − γ
−1
j u)Xu, i = 1, . . . , N , j ≥ 0, (40)

where Xu is defined in (29) and

Wi, j (t) = C1/2
i,i W (t) cos(γ jλi, j t), t ∈ R, (41)

with Ci,i defined in (18). The estimator (36) is then extended at frequencies λi,T , i = 1, . . . , N ,
as follows:

f̂T (λi,T )
def
= n−1

T

nT−1∑
k=0

Z2
i,T,k, i = 1, . . . , N ,
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with nT defined in (34). Observe that, as in (35), (C-2) implies that, for all i = 1, . . . , N , j ≥ 0
and k ∈ {0, . . . , nT − 1},

Zi, j,k = γ
−1/2
j

T∑
u=1

Wi, j (k − γ
−1
j u)Xu,

and thus f̂T (λi,T ) is an estimator based on the observations X1, . . . , XT .
Instead of Condition (C-1), we use now

(C
′

-1) For each i = 1, . . . , N , there exists a bounded real-valued sequence (ζi, j ) j≥1 such that,
as λ→ 0,

sup
j≥1

∣∣ f (λi, j + λ)− f (λi, j )− λζi, j
∣∣ = O(|λ|2). (42)

This condition is satisfied for instance by ζi, j = ḟ (λi, j ) if f has a bounded second derivative in
a neighborhood of λi,∞ or if λi, j = λi,∞ for j large enough and f has a finite second derivative
at λi,∞.

Theorem 4. Assume (C
′

-1) and (C-2) with β > 2. Let (γT ) be a diverging sequence of even
integers such that γ−1

T T →∞ and (37) holds. Let (λi, j )i=1,...,N , j=1,...,∞ be an array satisfying
Condition (B)(i). Then, as T →∞, for i = 1, . . . , N,

E
[

f̂T (λi,T )
]
= E

[
Z2

i,T,0

]
= f (λi,T )+ O(γ−2

T ) (43)

and

(γ−1
T T )1/2


f̂T (λ1,T )− E

[
Z2

1,T,0

]
...

f̂T (λN ,T )− E
[

Z2
N ,T,0

]
 L
−→ N (0,Γ ), (44)

where

Γi,i ′ = 4π f (λi,∞) f (λi ′,∞)
Ci,i ′

Ci,i Ci ′,i ′

∫ π

−π

∑
p∈Z

∣∣Ŵ (λ+ 2pπ)
∣∣22

dλ, (45)

where Ci,i ′ is defined in (18) and where Ŵ is the Fourier transform of the function W in (C-2).

5. Proof of Theorem 1

We first establish two central limit theorems which will be used in the proof of Theorem 1.
The first involves a sequence of linear filters of the sequence {ξt , t ∈ Z}.

Proposition 2. Define, for all i = 1, . . . , N, j ≥ 0, k ∈ Z,

Zi, j =
∑
t∈Z

vi, j (t)ξt , (46)

where for all i = 1, . . . , N and j ≥ 0, {vi, j (t), t ∈ Z} is real valued and satisfies
∑

t∈Z v
2
i, j (t) <

∞ and {ξt , t ∈ Z} satisfies (A-1). Assume that
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lim
j→∞

sup
t∈Z
|vi, j (t)| = 0 for all i = 1, . . . , N , (47)

lim
j→∞

∑
t∈Z

(
vi, j (t)vi ′, j (t)

)
= Σi,i ′ for all i, i ′ = 1, . . . , N , (48)

where Σ is a N × N given matrix. Then, as j →∞,[
Z1, j . . . Z N , j

]T L
−→ N (0,Σ ). (49)

Remark 15. A study on the weak convergence of such sequence without assuming Assumption
(A-1) can be found in [6].

Proof. This is a standard application of the Lindeberg–Feller central limit theorem. Using the
Cramér–Wold device for the multivariate central limit theorem, it is sufficient by (47) and (48)
to prove the result for N = 1, in which case we simply denote v1, j (t) by v j (t) and Σ by σ 2.
Let (m j ) be a sequence of integers tending to infinity with j , such that

∑
|t |≥m j

v2
j (t) ≤ 2− j . We

now show that the Lindeberg conditions hold for the sequence
∑
|t |≤m j

v j (t)ξt . The first holds
because, by (48),

lim
j→∞

∑
|t |≤m j

Var(v j (t)ξt ) = lim
j→∞

∑
|t |≤m j

v2
j (t)

def
= σ 2.

The second holds because, for all ε > 0,∑
|t |≤m j

E
[
v2

j (t)ξ
2
t 1(|v j (t)ξt | ≥ ε)

]
≤

(∑
t∈Z

v2
j (t)

)
E
[
ξ2

01(|ξ0| ≥ ε/S j )
]
,

where S j = supt∈Z |v j (t)|, and, by (47), the right-hand side of the last display tends to 0 as
j →∞. This concludes the proof. �

The second central limit theorem deals with m-dependent arrays. Recall that {Yk} is said to
be m-dependent if, for all p ≥ 1 and all k1, . . . , kp such that k1 + m ≤ k2, . . . , kp−1 + m ≤ kp,
Yk1 , . . . , Ykp are independent.

Proposition 3. Let m be a fixed integer and (n j ) a sequence of integers such that n j → ∞ as
j → ∞. Let {Y j,k, k = 0, . . . , n j − 1, j ≥ 1} be an array of Rd -valued random vectors, such
that, for each j ≥ 0, {Y j,k, k = 0, . . . , n j − 1} has zero mean, and is strictly stationary and
m-dependent. Assume that there exists a d × d matrix Γ and a centered stationary Rd -valued
process {Yk, k ≥ 0} with finite variance such that

Y j,�
L
−→ Y� as j →∞, (50)

lim
j→∞

Cov
(
Y j,k, Y j,k′

)
= Cov (Yk,Yk′) for all k, k′ ≥ 0 (51)

lim
l→∞

lim
j→∞

Cov

(
l−1/2

l−1∑
k=0

Y j,k

)
= Γ . (52)

Then we have, as j →∞,

n−1/2
j

n j−1∑
k=0

Y j,k
L
−→ N (0,Γ ). (53)
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Proof. We may suppose that d = 1 since the vector case follows by the Cramé–Wold device.
For convenience, we set Γ = σ 2. Let s be a positive integer larger than m. We decompose∑n j−1

k=0 Y j,k in sums of random variables spaced by m, as follows:

n j−1∑
k=0

Y j,k =

p j∑
k=0

S(s)j,k +

p j∑
k=0

T (s)j,k + R(s)j , (54)

where

S(s)j,k =

s−1∑
i=0

Y j,k(m+s)+i , T (s)j,k =

m−1∑
i=0

Y j,k(m+s)+s+i and R(s)j =

q j−1∑
i=0

Y j,p j (m+s)+i ,

and where p j and q j are the non-negative integers defined by the Euclidean division

n j = p j (m + s)+ q j with q j ∈ {0, . . . ,m + s − 1}. (55)

The m-dependent and the strict stationarity of the sequences Y j,� ensure that for all j ≥ 0

and all s ≥ m, S(s)j,� and T (s)j,� are sequences of centered independent and identically distributed
random variables. Hence, by (51), we have

lim
j→∞

p j∑
k=0

Var
(

p−1/2
j S(s)j,k

)
= lim

j→∞
Var

(
S(s)j,0

)
= Var

(
S(s)

)
, (56)

where

S(s) def
=

s−1∑
i=0

Yi ,

lim
j→∞

Var

(
p−1/2

j

p j∑
k=0

T (s)j,k

)
= lim

j→∞
Var

(
T (s)j,0

)
= Var

(
S(m)

)
(57)

and

lim sup
j→∞

Var
(

R(s)j

)
≤ max

{
Var

(
S(t)

)
: t = 0, 1, . . . ,m + s − 1

}
<∞. (58)

In addition, for any ε > 0,
p j∑

k=0

E
[
(p−1/2

j S(s)j,k)
21(p−1/2

j |S(s)j,k | > ε)
]
= E

[
(S(s)j,0)

21(p−1/2
j |S(s)j,k | > ε)

]
and hence, since p j →∞,

lim sup
j→∞

p j∑
k=0

E
[
(p−1/2

j S(s)j,k)
21(p−1/2

j |S(s)j,k | > ε)
]

≤ inf
M>0

lim sup
j→∞

E
[
(S(s)j,0)

21(|S(s)j,k | > M)
]
. (59)

But using (50), we have

S(s)j,0
L
−→ S(s) as j →∞.
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Hence, denoting by φM some continuous R+ → [0, 1] function satisfying 1(x ≤ M/2) ≤
φM (x) ≤ 1(x ≤ M), so that x2φM (x) is continuous and bounded, we have

E
[
(S(s)j,0)

21(|S(s)j,k | ≤ M)
]
≥ E

[
(S(s)j,0)

2φM (S
(s)
j,0)
]

→ E
[
(S(s))2φM (S(s))

]
as j →∞

→ E
[
(S(s))2

]
as M →∞.

Using (51), we have E
[
(S(s)j,0)

2
]
→ E

[
(S(s))2

]
as j →∞ and hence, for any M > 0,

lim sup
j→∞

E
[
(S(s)j,0)

21(|S(s)j,k | > M)
]
= E

[
(S(s))2

]
− lim inf

j→∞
E
[
(S(s)j,0)

21(|S(s)j,k | ≤ M)
]
.

The two last displays and (59) imply the second Lindeberg condition, namely,

lim sup
j→∞

p j∑
k=0

E
[
(p−1/2

j S(s)j,k)
21(p−1/2

j |S(s)j,k | > ε)
]
= 0 for any ε > 0.

Using this and (56), we may apply the Lindeberg–Feller CLT for arrays of independent r.v.’s and
we obtain

p−1/2
j

p j∑
k=0

S(s)j,k
L
−→ N

(
0,Var

(
S(s)

))
. (60)

By (52), we have

lim
s→∞

s−1Var
(

S(s)
)
= σ 2. (61)

Using (60) and (55) with j →∞ and then (61) with s →∞ yields

n−1/2
j

p j∑
k=0

S(s)j,k
L
−→
j→∞

N
(

0, (m + s)−1Var
(

S(s)
)) L
−→
s→∞

N
(

0, σ 2
)
.

On the other hand, by (54), (57) and (58), we have

lim sup
j→∞

E


n−1/2

j

n j−1∑
k=0

Y j,k − n−1/2
j

p j∑
k=0

S(s)j,k

2
 ≤ (m + s)−1Var

(
S(m)

)
→ 0

as s →∞. Using the last two displays and [7, Theorem 3.2], we obtain (53), which concludes
the proof. �

Proof of Theorem 1. The proof is in three steps. We show in a first step the convergence of the
process [Zi, j,k, i = 1, . . . , N , k = 0, . . . , n j ] as j →∞ towards a Gaussian limit. In the second
step we prove Theorem 1 under the additional assumption that the sequence

Y j,k
def
=

[
{Z2

1, j,k − E[Z2
1, j,k]} . . . {Z

2
N , j,k − E[Z2

N , j,k]}

]T
, k = 0, . . . , n j − 1

is m-dependent. The third step exhibits an m-dependent approximation and extends the m-
dependent case to the general case. The proof uses a number of auxiliary results proved in
Section 8.
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Step 1. We shall apply Proposition 2. By the relation (16) in Proposition 1, we get, for all
i, i ′ = 1, . . . , N and all k, k′ ∈ Z, as j →∞,

Cov
(
Zi, j,k, Zi ′, j,k′

)
→ Ci,i ′

∫
∞

−∞

w∗i,i ′(λ)e
iλ(k′−k)dλ. (62)

Moreover, by (7), one has, for all i = 1, . . . , N ,

sup
t∈Z

∣∣vi, j (t)
∣∣ ≤ 2(2π)−1/2

∫ π

0

∣∣∣v∗i, j (λ)

∣∣∣ dλ

≤ 2(2π)−1/2γ
−1/2
j

∫ γ j (π−λi, j )

−γ jλi, j

(1+ |λ|)−δdλ,

which, by (4), tends to 0 as j → ∞ for any δ > 1/2. Hence, by Proposition 2, for any p ≥ 1,
any i1, . . . , i p ∈ {1, . . . , N } and any k1, . . . , kp ∈ Z, we have, as j →∞,[

Zi1, j,k1 . . . Zi p, j,kp

]T L
−→ N (0,Σ ), (63)

where Σ is the covariance matrix with entries given for all 1 ≤ n, n′ ≤ p by

Σn,n′ = Cin ,in′

∫
∞

−∞

w∗in ,in′
(λ)eiλ(kn′−kn)dλ.

Expressing this integral as
∑

p

∫ π+2pπ
−π+2pπ , we get

Σn,n′ = Cin ,in′

∫ π

−π

∑
p∈Z

w∗in ,in′
(λ+ 2pπ)

 eiλ(kn′−kn)dλ.

The convergence (63) can be written equivalently as[
Z1, j,� . . . Z N , j,�

]T L
−→ Z�, (64)

as j → ∞, where {Zk = [Z1,∞,k . . . Z N ,∞,k]
T, k ≥ 0} is a stationary Gaussian RN -valued

process with spectral density matrix function D with entries

Di,i ′(λ) = Ci,i ′
∑
p∈Z

w∗in ,in′
(λ+ 2pπ), 1 ≤ i, i ′ ≤ N .

Step 2. In this step, we prove (24), assuming that for each j ≥ 1, {Y j,k, k = 0, . . . , n j − 1} is
m-dependent. We shall apply Proposition 3 under this additional assumption. We thus need to
show that (50)–(52) hold. Relations (26), (64) and the continuous mapping theorem imply (50)
with

Yk =

[
{Z2

1,∞,k − E[Z2
1,∞,k]} . . . {Z

2
N ,∞,k − E[Z2

N ,∞,k]}

]T
.

Since Z� is Gaussian, we have, for all k, k′ ≥ 0 and all i, i ′ = 1, . . . , N ,

Cov
(
Yk,i ,Yk′,i ′

)
= 2Cov2 (Zi,∞,k, Zi ′,∞,k′

)
= 2C2

i,i ′

(∫
∞

−∞

w∗i,i ′(λ)e
iλ(k′−k)dλ

)2

.
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Hence the relation (158) in Corollary 1 and the previous display yield (51). The final
condition (52) follows from the relation (159) of Corollary 1 with a covariance matrix Γ with
entries (25). Applying Proposition 3 then yields (24), with Γ given by (25).
Step 3. Let K (t) be a non-negative infinitely differentiable function defined on t ∈ R whose
support is included in [−1/2, 1/2] and such that K (0) = 1. We will denote by K̂ its Fourier
transform,

K̂ (ξ) =
∫
∞

−∞

K (t)e−iξ t dt.

Observe that, by the assumptions on K , K̂ (ξ) decreases faster than any polynomial as |ξ | → ∞.
In particular K̂ (ξ) is integrable on ξ ∈ R and, for all t ∈ R,

K (t) =
1

2π

∫
∞

−∞

K̂ (ξ)eiξ t dξ. (65)

The function K will be used to approximate the v
(m)
i, j sequence by a sequence whose

dependence structure can be controlled. We thus define, for any i = 1, . . . , N , j ≥ 0 and m ≥ 1,

v
(m)
i, j (t) = vi, j (t)K (t/(mγ j )),

which vanishes for all |t | ≥ mγ j/2, and we define Z (m)i, j,k and v∗(m)i, j (λ) accordingly.
Let m be a fixed integer. Then, for all j ≥ 0,

{[Z (m)1, j,k . . . Z (m)N , j,k]
T, k ∈ Z}

is an m-dependent sequence of vectors. We shall now show that {v∗(m)i, j , j ≥ 0} satisfy conditions
similar to (7) and (8) and then apply Step 2. Using (65) and (2) in the equation

v
∗(m)
i, j (λ) = (2π)−1/2

∑
t∈Z

vi, j (t)K (t/(mγ j ))e−iλt ,

we get that

v
∗(m)
i, j (λ) =

m

2π

∫
∞

−∞

K̂ (mξ)v∗i, j (λ− γ
−1
j ξ)dξ. (66)

It follows from Condition (7) that there exists a constant C > 0 such that for all j ≥ 0 and
λ ∈ [0, π),∣∣∣v∗i, j (λ)

∣∣∣ ≤ Cγ 1/2
j (1+ |γ jλ− γ jλi, j |)

−δ. (67)

Using (11) and the (2π)-periodicity of v∗i, j , we can express (67) using the symmetric (2πγ j )-

periodic function h2πγ j ,γ jλi, j (ξ) defined in Lemma 5 and equal to (1 + |ξ − γ jλi, j |)
−δ for

0 ≤ ξ ≤ πγ j . With ξ = γ jλ, one gets∣∣∣v∗i, j (λ)

∣∣∣ ≤ Cγ 1/2
j h2πγ j ,γ jλi, j (γ jλ), j ≥ 0, λ ∈ R.

Let g(t) = m|K̂ (mt)| and observe that ‖g‖1 = ‖K̂‖1 <∞ and

g(t) ≤ c0 m(m|t |)−δ−1
≤ c0|t |

−δ−1 for all |t | ≥ 1 and m ≥ 1,
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where c0 is a positive constant such that |K̂ (u)| ≤ c0|u|−δ−1 for |u| ≥ 1. Applying these bounds
to (66) gives∣∣∣v∗(m)i, j (λ)

∣∣∣ ≤ Cγ 1/2
j

∫
∞

−∞

g(ξ)h2πγ j ,γ jλi, j (γ jλ− ξ)dξ.

Applying Lemma 5 to this convolution, we get∣∣∣v∗(m)i, j (λ)

∣∣∣ ≤ Cγ 1/2
j (1+ γ j |λ− λi, j |)

−δ,

for different constants C depending neither on m ≥ 1, j ≥ 0 nor on λ ∈ [0, π). One has therefore
the following version of (7) for v∗(m)i, j , uniform in m ≥ 1:

sup
j≥0

sup
m≥1

sup
λ∈[0,π)

γ
−1/2
j |v

∗(m)
i, j (λ)|(1+ γ j |λ− λi, j |)

δ <∞. (68)

To get a version of (8) for v∗(m)i, j , observe that, by (66), we have

γ
−1/2
j v

∗(m)
i, j (γ−1

j λ+ λi, j ) =
m

2π

∫
∞

−∞

K̂ (mξ)
[
γ
−1/2
j v∗i, j (γ

−1
j (λ− ξ)+ λi, j )

]
dξ.

Condition (7) implies that the term in brackets is bounded independently of ξ and j and hence
by (8) and dominated convergence, one has

lim
j→∞

γ
−1/2
j v

∗(m)
i, j (γ−1

j λ+ λi, j )eiΦi, j (λ) = v
∗(m)
i,∞ (λ) for all λ ∈ R, (69)

where

v
∗(m)
i,∞ (λ)

def
=

m

2π

∫
∞

−∞

K̂ (mξ)v∗i,∞(λ− ξ)dξ. (70)

Note that v∗(m)i,∞ (λ) is an approximating sequence of v∗i,∞(λ) in the sense that, since v∗i,∞ is

bounded (by (15)) and continuous (by hypothesis), and since (2π)−1
∫
∞

−∞
K̂ (u)du = K (0) = 1,

for all λ ∈ R,

v
∗(m)
i,∞ (λ) =

1
2π

∫
∞

−∞

K̂ (u)v∗i,∞(λ− u/m)du → v∗i,∞(λ) as m →∞. (71)

Relations (68) and (69) are the corresponding versions of Conditions (7) and (8) for v∗(m)i, j and,
since we are in the m-dependent case, we may apply the result proved in Step 2, and obtain, as
j →∞,

n−1/2
j



n j−1∑
k=0

{Z (m)21, j,k − E[Z (m)21, j,k]}

...
n j−1∑
k=0

{Z (m)2N , j,k − E[Z (m)2N , j,k]}


L
−→ N (0,Γ (m)), (72)

where Γ (m) is the covariance matrix with entries
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Γ (m)
i,i ′

def
= 2πCi,i ′

∫ π

−π

∣∣∣∣∣∣
∑
p∈Z

w
∗(m)
i,i ′ (λ+ 2pπ)

∣∣∣∣∣∣
2

dλ, 1 ≤ i, i ′ ≤ N , (73)

where w∗(m)i,i ′ is the equivalent of w∗i,i ′ in (17),

w
∗(m)
i,i ′ (λ) =

1
2

[
v
∗(m)
i,∞ (−λ)v

∗(m)
i ′,∞ (−λ)+ v

∗(m)
i,∞ (λ)v

∗(m)
i ′,∞ (λ)

]
, λ ∈ R.

To obtain the corresponding result (24) for the {Zi, j,k} sequence, we apply [7, Theorem 3.2]
as follows. We show that

lim
m→∞

Γ (m)
i,i ′ = Γi,i ′ 1 ≤ i, i ′ ≤ N (74)

and, for all i = 1, . . . , N ,

lim
m→∞

lim
j→∞

Var

n−1/2
j

n j−1∑
k=0

Z (m)2i, j,k − n−1/2
j

n j−1∑
k=0

Z2
i, j,k

 = 0. (75)

Relation (74) says that the RHS of (72) converges in distribution to the RHS of (24) and the
relation (75) says that the LHS of (72) is a good approximation to the LHS (24) on choosing m
arbitrarily large.

To prove (75), it is sufficient to establish the following equalities for all i = 1, . . . , N :

lim
m→∞

lim
j→∞

Cov

n−1/2
j

n j−1∑
k=0

Z (m)2i, j,k , n−1/2
j

n j−1∑
k=0

Z2
i, j,k


= lim

m→∞
lim

j→∞
Var

n−1/2
j

n j−1∑
k=0

Z (m)2i, j,k

 = lim
j→∞

Var

n−1/2
j

n j−1∑
k=0

Z2
i, j,k

 .
Using the relation (159) of Corollary 1, the limits as j → ∞ (and hence n j → ∞) in the
previous display are, respectively,

Γ (m,∞)
i,i

def
= 2πCi,i ′

∫ π

−π

∣∣∣∣∣∣
∑
p∈Z

w
∗(m,∞)
i,i ′ (λ+ 2pπ)

∣∣∣∣∣∣
2

dλ, Γ (m)
i,i and Γi,i ,

where Γ (m)
i,i is defined in (73) and Γi,i in (25) and

w
∗(m,∞)
i,i ′ (λ) =

1
2

[
v
∗(m)
i,∞ (−λ)v∗i ′,∞(−λ)+ v

∗(m)
i,∞ (λ)v∗i ′,∞(λ)

]
, λ ∈ R.

Hence to prove (74) and (75), it is sufficient to show that

lim
m→∞

Γ (m,∞)
i,i ′ = lim

m→∞
Γ (m)

i,i ′ = Γi,i ′ , i, i ′ = 1, . . . , N . (76)

Observe first that the relations (68) and (69) imply

sup
λ∈R

sup
m≥1

∣∣∣v∗(m)i,∞ (λ)

∣∣∣ (1+ |λ|)δ <∞, (77)
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which is the uniform version of (15). Eq. (76) now follows from (71), (68) and (77), and
dominated convergence. �

6. Proof of Theorem 2

The following proposition is the key point for proving Theorem 2 since it shows how
Condition (7) in Theorem 1 can be recovered for an approximation of the sample mean square,
when using the alternative Condition (27). Condition (28) in Theorem 2 can then be used to
control the sharpness of the approximation.

Proposition 4. Let {Z1, j,k, i = 1, 2, j ≥ 0, k ∈ Z} be an array of one-dimensional decimated
linear processes as defined by (1). Assume that {v1, j (t), j ≥ 0, t ∈ Z} satisfies (27) for δ > 1/2,
a sequence (λ1, j ) taking its values in [0, π) and some ε > 0. Then there exists an array
{v̂1, j (t), j ≥ 0, t ∈ Z} whose Fourier series coincide with those of {v1, j (t), j ≥ 0, t ∈ Z}
in ε-neighborhoods of the frequencies {λ1, j , j ≥ 0} and satisfying (7), that is, such that

v̂∗1, j (λ) = v
∗

1, j (λ) for all λ ∈ (−π, π) such that |λ− λ1, j | ≤ ε, (78)

sup
j≥0

sup
λ∈[0,π)

γ
−1/2
j |v̂∗1, j (λ)|(1+ γ j |λ− λi, j |)

δ <∞, (79)

and the following approximation holds:

n−1/2
j

n j−1∑
k=0

{Z2
1, j,k − E[Z2

1, j,k]}

 = n−1/2
j

n j−1∑
k=0

{Ẑ2
1, j,k − E[Ẑ2

1, j,k]} + R j , (80)

where

Ẑ1, j,k =
∑
t∈Z

v̂1, j (γ j k − t)ξt , (81)

and, for some positive constant C not depending on j ,

E
[∣∣R j

∣∣] ≤ C
[
n1/2

j I j + I 1/2
j

]
, (82)

where

I j
def
=

∫ π

0
1(|λ− λ1,∞| > ε)

∣∣∣v∗1, j (λ)

∣∣∣2 dλ. (83)

Proof. Let L0 = [−λ1,∞ − ε,−λ1,∞ + ε] ∪ [λ1,∞ − ε, λ1,∞ + ε]. We write

v∗1, j (λ) = v̂
∗

1, j (λ)+ ṽ
∗

1, j (λ), λ ∈ (−π, π),

where v̂∗1, j (λ) = 1L0(λ)v
∗

1, j (λ) so that (78) holds. We define v̂1, j , ṽ1, j accordingly, so that

v1, j (t) = v̂1, j (t)+ ṽ1, j (t) and, since v̂∗1, j and ṽ∗1, j are in L2(−π, π), v̂1, j and ṽ1, j are in l2(Z).
Hence Z1, j,k = Ẑ1, j,k + Z̃1, j,k with Ẑ1, j,k defined by (81) and

Z̃1, j,k =
∑
t∈Z

ṽ1, j (γ j k − t)ξt . (84)

Moreover, by (27) and the definition of v̂∗1, j , Condition (79) holds.
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We now show that the remainder R j defined by (80) satisfies (82). Observe that Ẑ1, j,k and
Z̃1, j,k are centered and, since E[Ẑ1, j,k Z̃1, j,k] =

∫ π
−π
v̂∗1, j (λ)ṽ

∗

1, j (λ)dλ = 0, uncorrelated. Thus

we get E[Z2
1, j,k] = E[Ẑ2

1, j,k] + E[Z̃2
1, j,k] and hence the remainder R j defined by (80) is

R j = Pj + 2Q j with (85)

Pj = n−1/2
j

n j−1∑
k=0

{Z̃2
1, j,k − E[Z̃2

1, j,k]} and Q j = n−1/2
j

n j−1∑
k=0

Z̃1, j,k Ẑ1, j,k . (86)

We have

E[|Pj |] ≤ 2n1/2
j E[Z̃2

1, j,0] = 2n1/2
j

∑
t∈Z

ṽ2
1, j (t) = 4n1/2

j I j (87)

by the Parseval theorem and the definitions of ṽ∗1, j and I j .

Using that Ẑ1, j,k and Z̃1, j,k′ are centered and uncorrelated, we have, using a standard formula
for cumulants of products, for all k, k′ ∈ Z,

Cov
(
Z̃1, j,k Ẑ1, j,k, Z̃1, j,k′ Ẑ1, j,k′

)
= Cov

(
Z̃1, j,k, Z̃1, j,k′

)
Cov

(
Ẑ1, j,k, Ẑ1, j,k′

)
+ cum

(
Z̃1, j,k, Ẑ1, j,k, Z̃1, j,k′ , Ẑ1, j,k′

)
.

Hence, Var
(
Q j
)
= A j + B j where

A j = n−1
j

n j−1∑
k=0

n j−1∑
k′=0

Cov
(
Z̃1, j,k, Z̃1, j,k′

)
Cov

(
Ẑ1, j,k, Ẑ1, j,k′

)
and B j = n−1

j

n j−1∑
k=0

n j−1∑
k′=0

cum
(
Z̃1, j,k, Ẑ1, j,k, Z̃1, j,k′ , Ẑ1, j,k′

)
.

Denote by f̂ j and f̃ j the respective spectral densities of the weakly stationary processes Ẑ1, j,�
and Z̃1, j,�. Replacing the covariances in the definition of A j by their respective expressions as
Fourier coefficients of the spectral density, e.g. Cov

(
Z̃1, j,k, Z̃1, j,k′

)
=
∫ π
−π

ei(k−k′)λ f̃ j (λ)dλ, we
get

A j = n−1
j

∫ π

−π

∫ π

−π

f̂ j (λ) f̃ j (λ
′)

∣∣∣∣∣∣
n j−1∑
k=0

eik(λ+λ′)

∣∣∣∣∣∣
2

dλdλ′,

which implies that

0 ≤ A j ≤ 2π sup
λ∈(−π,π)

f̂ j (λ)×

∫ π

−π

f̃ j (λ
′)dλ′, (88)

where, in the last inequality, we used that, for any λ′,
∫ π
−π

∣∣∣∑n j−1
k=0 eik(λ+λ′)

∣∣∣2 dλ = 2πn j .

Observe that, by definition of Ẑ1, j,k in (81),

Cov
(
Ẑ1, j,0, Ẑ1, j,k

)
= (2π)

∫ π

−π

∣∣∣v̂∗1, j (λ)

∣∣∣2 eiγ j kλdλ.
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Using Lemma 4 with the (2π)-periodic function g(λ) =
∣∣∣v̂∗1, j (λ)

∣∣∣2 eiγ j kλ, we get

Cov
(
Ẑ1, j,0, Ẑ1, j,k

)
= (2π)γ−1

j

∫ π

−π

γ j−1∑
p=0

∣∣∣v̂∗1, j (γ
−1
j (λ+ 2pπ))

∣∣∣2
 eikλdλ.

Hence we have f̂ j (λ) = (2π)−1γ−1
j

∑γ j−1
p=0

∣∣∣v̂∗1, j (γ
−1
j (λ+ 2pπ))

∣∣∣2. Using (79), since |γ−1
j (λ+

2pπ)| < π for 0 ≤ p ≤ γ j − 1 and −γ jπ < λ < −γ jπ + 2π , we get

f̂ j (λ) ≤ C
γ j−1∑
p=0

(
1+

∣∣|λ+ 2pπ | − γ jλ1, j
∣∣)−2δ

, λ ∈ (−γ jπ,−γ jπ + 2π).

Using (123) in Lemma 6 and that f̂ j is (2π)-periodic, we obtain

sup
j≥0

sup
λ∈(−π,π)

f̂ j (λ) <∞. (89)

Moreover, we have∫ π

−π

f̃ j (λ
′)dλ′ = Var

(
Z̃1, j,0

)
=

∑
t∈Z

ṽ2
1, j (t) =

∫ π

−π

∣∣∣ṽ∗1, j (λ)

∣∣∣2 dλ, (90)

by the Parseval theorem. Hence by (88), there is a positive constant C such that∣∣A j
∣∣ ≤ C

∫ π

−π

∣∣∣ṽ∗1, j (λ)

∣∣∣2 dλ. (91)

We now consider B j . Using (A-2) and the definitions of Z̃1, j,k and Ẑ1, j,k in (81) and (84),

cum
(
Z̃1, j,k, Ẑ1, j,k, Z̃1, j,k′ , Ẑ1, j,k′

)
= κ4

∑
t∈Z

ṽ1, j (γ j k − t )̂v1, j (γ j k − t )̃v1, j (γ j k
′
− t )̂v1, j (γ j k

′
− t).

Hence

|B j | ≤ κ4

∑
t,τ∈Z

∣∣̃v1, j (t )̂v1, j (t )̃v1, j (t + γ jτ )̂v1, j (t + γ jτ)
∣∣

≤ κ4

(∑
t∈Z

∣∣̃v1, j (t )̂v1, j (t)
∣∣)2

≤ κ4

∑
t∈Z

∣∣̃v1, j (t)
∣∣2 ×∑

t∈Z

∣∣̂v1, j (t)
∣∣2

= κ4

∫ π

−π

∣∣∣ṽ∗1, j (λ)

∣∣∣2 dλ×
∫ π

−π

∣∣∣v̂∗1, j (λ)

∣∣∣2 dλ. (92)

By definition of v̂∗1, j and (89), we have
∫ π
−π

∣∣∣v̂∗1, j (λ)

∣∣∣2 dλ = Var
(
Ẑ1, j,0

)
=
∫ π
−π

f̂ j (λ)dλ ≤ C ,

and hence

B j ≤ C
∫ π

−π

∣∣∣ṽ∗1, j (λ)

∣∣∣2 dλ, (93)
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where C denotes a positive constant not depending on j . The bounds (91) and (93) and the
definition of ṽ∗1, j yield

E
[

Q2
j

]
= Var(Q j ) = A j + B j ≤ 2C

∫ π

−π

∣∣∣ṽ∗1, j (λ)

∣∣∣2 dλ

≤ 4C
∫ π

0
1
(
|λ− λ1,∞| > ε

) ∣∣∣v∗1, j (λ)

∣∣∣2 dλ = 4C I j

by the definitions of ṽ∗1, j and I j . This, with (85), (87) and Jensen’s inequality yields (82), which
concludes the proof. �

Proof of Theorem 2. The general case can easily be adapted from the case N = 1, which we
assume here. We apply Proposition 4. It follows from (78) and (79) that the assumptions of
Theorem 1 are verified for Ẑ1, j,k and we obtain

n−1/2
j

n j−1∑
k=0

{Ẑ2
1, j,k − E[Ẑ2

1, j,k]}

 L
−→ N (0,Γ ).

It follows from (28) that R j
P
−→ 0 as j →∞. Hence (80) yields the CLT (24). �

7. Proof of Theorems 3 and 4

By setting N = 1 and λ1, j = 0 for j = 1, 2, . . . ,∞ in Theorem 4 and observing that (C-1)
implies (C

′

-1) with ζ1, j = 0, we obtain Theorem 3. Hence we only prove Theorem 4. We shall
use the following lemmas.

Lemma 1. Assume (C
′

-1) and (C-2). Let (γ j ) and (λi, j )1≤i≤N , j=0,...,∞ satisfy
Condition (B)(i) in Section 2. For ε > 0 small enough, if β > 2, then for all i = 1, . . . , N,∣∣∣∣2 ∫ π

0
1(|λ− λi, j | ≤ ε)γ j

∣∣Ŵi, j (γ jλ)
∣∣2 f (λ)dλ− f (λi, j )

∣∣∣∣ = O
(
γ−2

j

)
, (94)

where Ŵi, j is the Fourier transform of Wi, j defined in (41).

Proof. We first consider the case λi,∞ = 0. By Condition (B)(i), λi, j = 0 and Wi, j = W for j
large enough and (94) can be written as∣∣∣∣∫ ε

−ε

γ j
∣∣Ŵ (γ jλ)

∣∣2 f (λ)dλ− f (0)

∣∣∣∣ = O
(
γ−2

j

)
. (95)

Using (32), for ε > 0 small enough, the left-hand side of (95) is at most∣∣∣∣ f (0)
∫ ε

−ε

γ j
∣∣Ŵ (γ jλ)

∣∣2 dλ− f (0)

∣∣∣∣+ C

∣∣∣∣∫ ε

−ε

γ j
∣∣Ŵ (γ jλ)

∣∣2 λ2dλ

∣∣∣∣ , (96)

where C is a positive constant. To evaluate the first integral in (96) we write
∫ ε
−ε
=∫

∞

−∞
−
∫
−ε

−∞
−
∫
∞

ε
. Using (C-2), one gets∫ ε

−ε

γ j
∣∣Ŵ (γ jλ)

∣∣2 dλ = 1+ O
(
γ

1−2β
j

)
. (97)
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Defining C ′ =
∫
∞

−∞

∣∣Ŵ (λ)
∣∣2 λ2dλ, the second integral in (96) is bounded by∫

∞

−∞

γ j
∣∣Ŵ (γ jλ)

∣∣2 λ2dλ = C ′γ−2
j . (98)

Since C ′ <∞ for β > 3/2 by (C-2), we obtain (95) for β > 3/2.
The stronger condition β > 2 will be useful for the case λi,∞ > 0, which we now consider.
By (C

′

-1), we may choose ε > 0 small enough so that, for all λ ∈ [λi, j − ε, λi, j + ε] and j ≥ 0,∣∣ f (λ)− f (λi, j )− (λ− λi, j )ζi, j
∣∣ ≤ C |λ− λi, j |

2, (99)

where C is a positive constant. In particular, since (ζi, j ) j is assumed bounded in (C
′

-1), f is
bounded in ∪ j [λi, j − ε, λi, j + ε]. We also impose ε < λi,∞/2, so that, since λi, j → λi,∞, for j
large enough,

[λi, j − ε, λi, j + ε] ⊂ [λi,∞ − 2ε, λi,∞ + 2ε] ⊂ (0, π). (100)

Hence in the following we may replace
∫ π

0 1(|λ − λi, j | ≤ ε)(. . .)dλ by
∫ λi, j+ε

λi, j−ε
(. . .)dλ. In view

of (41), the Fourier transform of Wi, j is given by

Ŵi, j (ξ) =
C1/2

i,i

2

[
Ŵ (ξ − γ jλi, j )+ Ŵ (ξ + γ jλi, j )

]
, ξ ∈ R. (101)

By (100) and (C-1), we have, for j large enough,

sup
|λ−λi, j |≤ε

∣∣Ŵ (γ j (λ+ λi, j ))
∣∣ = O(γ−βj ). (102)

It follows that, using
∫ π

0 f (λ)dλ <∞,∫ λi, j+ε

λi, j−ε

γ j
∣∣Ŵ (γ jλ+ γ jλi, j )

∣∣2 f (λ)dλ = O(γ 1−2β
j ),

and, using that f is bounded in ∪ j [λi, j − ε, λi, j + ε] and
∫
∞

−∞
γ j
∣∣Ŵ (γ jξ)

∣∣ dξ = ‖Ŵ‖1 <∞,∫ λi, j+ε

λi, j−ε

γ j
∣∣Ŵ (γ j (λ− λi, j ))

∣∣ ∣∣Ŵ (γ j (λ+ λi, j ))
∣∣ f (λ)dλ = O(γ−βj ).

Since λi,∞ > 0, we have Ci,i = 2 and it follows from (101) that, for all ξ ∈ R,∣∣∣2 ∣∣Ŵi, j (ξ)
∣∣2 − ∣∣Ŵ (ξ − γ jλi, j )

∣∣2∣∣∣
≤
∣∣Ŵ (ξ + γ jλi, j )

∣∣2 + 2
∣∣Ŵ (ξ − γ jλi, j )

∣∣ ∣∣Ŵ (ξ + γ jλi, j )
∣∣ .

The last three displays give that

2
∫ λi, j+ε

λi, j−ε

γ j
∣∣Ŵi, j (γ jλ)

∣∣2 f (λ)dλ

=

∫ λi, j+ε

λi, j−ε

γ j
∣∣Ŵ (γ j (λ− λi, j ))

∣∣2 f (λ)dλ+ O(γ 1−2β
j + γ

−β
j ).

Moreover, by symmetry,
∫ λi, j+ε

λi, j−ε
γ j
∣∣Ŵ (γ j (λ− λi, j ))

∣∣2 (λ−λi, j )dλ = 0. Using (99) and the last
two relations, the left-hand side of (94) is at most
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∫ ε

−ε

γ j
∣∣Ŵ (γ jλ)

∣∣2 dλ− f (λi, j )

∣∣∣∣
+C

∣∣∣∣∫ ε

−ε

γ j
∣∣Ŵ (γ jλ)

∣∣2 λ2dλ

∣∣∣∣+ O(γ 1−2β
j + γ

−β
j ),

where C is a positive constant. Using (97) and (98), we get that the left-hand side of (94) is at
most O(γ−2

j + γ
1−2β
j + γ

−β
j ); hence (94) since we assumed β > 2. �

Lemma 2. Assume (C-2). Let (γ j ) and (λi, j )1≤i≤N , j=0,...,∞ satisfy Condition (B)(i). Define
for all i = 1, . . . , N and j ≥ 0,

Bi, j (λ)
def
=

∑
p∈Z

γ
1/2
j Ŵi, j (γ j (λ+ 2pπ)), (103)

where Ŵi, j is the Fourier transform of Wi, j defined in (41). Then the following assertions hold.

(i) There is a positive constant C such that, for all j ≥ 0 and λ ∈ (−π, π),∣∣∣γ−1/2
j Bi, j (λ)− Ŵi, j (γ jλ)

∣∣∣ ≤ Cγ−βj , (104)∣∣∣∣∣Bi, j (λ)
∣∣2 − γ j

∣∣Ŵi, j (γ jλ)
∣∣2∣∣∣ ≤ C

[
γ

1−β
j

∣∣Ŵi, j (γ jλ)
∣∣+ γ 1−2β

j

]
, (105)

(ii) For any positive ε,

sup
λ∈[0,π)

1(|λ− λi,∞| > ε)
∣∣Bi, j (λ)

∣∣ = O(γ 1/2−β
j ). (106)

(iii) For an arbitrarily small ε > 0,

sup
j≥0

sup
|λ−λi,∞|≤ε

γ
−1/2
j

∣∣Bi, j (λ)
∣∣ (1+ γ j |λ− λi, j |)

β <∞. (107)

Proof. By (103) and (101), we have Bi, j (λ) = γ
1/2
j Ŵi, j (γ jλ)+ Ri, j (λ), where

Ri, j (λ) =
∑
p 6=0

γ
1/2
j Ŵi, j (γ j (λ+ 2pπ))

=
C1/2

i,i

2

∑
s=−1,1

∑
p 6=0

γ
1/2
j Ŵ (γ j (λ+ sλi, j + 2pπ)).

Since λi, j → λi,∞ ∈ [0, π), there exists η ∈ (0, 2) such that, for j large enough, s = −1, 1 and
all λ ∈ (−π, π), |λ+ sλi, j | < ηπ . Using (C-2), since β > 1, we thus have for j large enough,

sup
λ∈(−π,π)

∣∣Ri, j (λ)
∣∣ ≤ Cγ 1/2

j

∑
p 6=0

(1+ (2|p| − η)γ jπ)
−β
= O(γ 1/2−β

j ).

This bound implies (104).
The bound (105) follows from (104) and∣∣∣|z1|

2
− |z2|

2
∣∣∣ ≤ 2|z2| × |z1 − z2| + |z1 − z2|

2

applied with z1 = Bi, j (λ) and z2 = γ
1/2
j Ŵi, j (γ jλ).
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By (5) and (4) in Condition (B)(i), we have |λi, j − λi,∞| < ε/2 for j large enough, which
implies |λ−λi, j | ≥ |λ−λi,∞|−ε/2. Thus, |λ−λi,∞| > ε implies |λ−λi, j | > ε/2 and by (C-2),

sup
λ∈[0,π)

1(|λ− λi,∞| > ε)
∣∣Ŵ (γ jλ− γ jλi, j )

∣∣ = O(γ−βj ). (108)

But we also have

sup
λ∈[0,π)

1(|λ− λi,∞| > ε)
∣∣Ŵ (γ jλ+ γ jλi, j )

∣∣ = O(γ−βj ). (109)

Indeed, if λi,∞ = 0, the left-hand sides of (109) and (108) are the same for j large enough by (5)
in Condition (B)(i) and, if λi,∞ > 0, λ ∈ [0, π) implies that λ+ λi, j ≥ λi, j ≥ λi,∞/2 > 0 for j
large enough by (4) in Condition (B)(i).

With (101), the bounds (108) and (109) imply

sup
λ∈[0,π)

1(|λ− λi,∞| > ε)
∣∣Ŵi, j (γ jλ)

∣∣ = O(γ−βj ).

This bound and the relation (104) yield (106).
We now prove (107). By (C-2), we have

sup
j≥0

sup
λ∈R

∣∣Ŵ (
γ jλ− γ jλi, j

)∣∣ (1+ γ j |λ− λi, j |
)β
<∞.

If λi,∞ > 0, we may apply (102) for ε small enough, and, by (101), we get that, for all λ such
that |λ− λi,∞| ≤ ε,

|Ŵi, j (γ jλ)| ≤ C
(
1+ γ j |λ− λi, j |

)−β
+ O

(
γ
−β
j

)
(110)

where C and the O-term do not depend on λ. If λi,∞ = 0, Wi, j = W for j large enough and
the last display holds as a direct consequence of the previous one. The bound (110) and the
relation (104) yield (107). �

Lemma 3. Assume (C
′

-1) and (C-2). Let (γ j ) and (λi, j )1≤i≤N , j=0,...,∞ satisfy
Condition (B)(i) and define, for all i = 1, . . . , N and j ≥ 0,

vi, j (s)
def
= γ

−1/2
j

∑
v∈Z

Wi, j (γ
−1
j (s − v))a(v), s ∈ Z (111)

v∗i,∞(λ)
def
= C−1/2

i,i a∗(λi,∞)Ŵ (λ), λ ∈ R, (112)

where Ci,i is defined in (18), a(v) is the kernel in (29) and a∗(λ) its Fourier series (30). Then for
some arbitrarily small ε > 0, for all i = 1, . . . , N,

sup
j≥0

sup
|λ−λi,∞|≤ε

γ
−1/2
j

∣∣∣v∗i, j (λ)

∣∣∣ (1+ γ j |λ− λi, j |)
β <∞, (113)

lim
j→∞

γ
−1/2
j v∗i, j (γ

−1
j λ+ λi, j )eiΦi, j (λ) = v∗i,∞(λ) for all λ ∈ R, (114)

where Φi, j (λ) is an array of [−π, π)-valued functions defined on λ ∈ R satisfying Condition (9).
Moreover, as j →∞,∫ π

0
1(|λ− λi, j | > ε)|v∗i, j (λ)|

2dλ = O
(
γ

1−2β
j

)
. (115)
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Proof. By (30), the Fourier series (2) of vi, j (s) is given by

v∗i, j (λ) = γ
−1/2
j a∗(λ)

∑
u∈Z

Wi, j (γ
−1
j u)e−iλu, λ ∈ (−π, π). (116)

Moreover we have, for all u ∈ Z,

Wi, j (γ
−1
j u) =

1
2π

∫
∞

−∞

γ j Ŵi, j (γ jξ)eiuξdξ

=
1

2π

∫ π

−π

∑
p∈Z

γ j Ŵi, j (γ j (λ+ 2pπ))

 eiuλdλ,

and hence the term in brackets is the Fourier series of {Wi, j (γ
−1
j u), u ∈ Z} and thus∑

u∈Z
Wi, j (γ

−1
j u)e−iλu

=

∑
p∈Z

γ j Ŵi, j (γ j (λ+ 2pπ)),

which is some times called the Poisson formula. Inserting this in (116), we obtain

v∗i, j (λ) = a∗(λ)Bi, j (λ), λ ∈ (−π, π), (117)

where Bi, j is the (2π)-periodic function defined by (103).
Applying (117) and (107) and that |a∗(λ)| =

√
f (λ) is bounded in a neighborhood of the

origin by (C
′

-1), we get (113).
Applying (117) and (104), we have, as j →∞,

γ
−1/2
j v∗i, j (γ

−1
j λ+ λi, j ) = a∗(γ−1

j λ+ λi, j )Ŵi, j (λ+ γ jλi, j )+ O(γ−βj ).

By (C
′

-1), since |a∗| =
√

f , λi, j → λi,∞ and γ j → ∞, we have, for all λ ∈ R,
|a∗(γ−1

j λ+ λi, j )| → |a∗(λi,∞)|. Hence defining Φi, j (λ) as the phase of a∗(γ−1
j λ+ λi, j ) minus

the phase of a∗(λi,∞), we have, for all λ ∈ R,

lim
j→∞

a∗(γ−1
j λ+ λi, j )eiΦi, j (λ) = a∗(λi,∞).

Moreover, in view of (6), the array Φi, j (λ) satisfies (9). By (101) we have

Ŵi, j (λ+ γ jλi, j ) =
C1/2

i,i

2

[
Ŵ (λ)+ Ŵ (λ+ 2γ jλi, j )

]
, λ ∈ R.

Hence if λi,∞ = 0, we get

Ŵi, j (λ+ γ jλi, j ) = Ŵ (λ) = C−1/2
i,i Ŵ (λ), λ ∈ R,

for j large enough, and if λi,∞ > 0, λ+ 2γ jλi, j →∞ and by (C-1), (18), we get

lim
j→∞

Ŵi, j (λ+ γ jλi, j ) =
C1/2

i,i

2
Ŵ (λ) = C−1/2

i,i Ŵ (λ), λ ∈ R.

The last five displays give (114).
Applying (117) and (106) and

∫ π
−π
|a∗(λ)|2dλ <∞, we obtain (115). �
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Proof of Theorem 4. By (29) and (40), we have for all i = 1, . . . , N ,

Zi, j,k =
∑
t∈Z

γ
−1/2
j

∑
u∈Z

Wi, j (k − γ
−1
j u)a(u − t)ξt

=

∑
t∈Z

γ
−1/2
j

∑
v∈Z

Wi, j (k − γ
−1
j t − γ−1

j v)a(v)ξt

=

∑
t∈Z

vi, j (γ j k − t)ξt ,

where vi, j is defined in (111). Thus {Zi, j,t , j ≥ 0, t ∈ Z} is an array of N -dimensional decimated
linear processes as in Definition 1.

We are now in a position to show first (43) then (44). Applying (20), we have

E
[

Z2
i, j,0

]
= Var

(
Zi, j,0

)
=

∫ π

−π

∣∣∣v∗i, j (λ)

∣∣∣2 dλ = 2
∫ π

0

∣∣∣v∗i, j (λ)

∣∣∣2 dλ.

Using (117) and (115) and then (105), this gives for any ε > 0 small enough,

E
[

Z2
i, j,0

]
= 2

∫ π

0
1(|λ− λi, j | ≤ ε)

∣∣a∗(λ)Bi, j (λ)
∣∣2 dλ+ O

(
γ

1−2β
j

)
= 2

∫ π

0
1(|λ− λi, j | ≤ ε)γ j

∣∣a∗(λ)Ŵi, j (γ jλ)
∣∣2 dλ

+O

(
γ

1−β
j

∫
∞

−∞

∣∣Ŵi, j (γ jλ)
∣∣ dλ

)
+ O

(
γ

1−2β
j

)
.

In the last line, since |a∗(λ)|2 = f (λ), by Lemma 1, the first term is f (λi, j ) + O
(
γ−2

j

)
and,

by a change of variable, the second term is less than O(γ−βj ‖Ŵi, j‖1) = O(γ−βj ) by (101) since

‖Ŵ‖1 <∞ for β > 1 by (C-2). Hence (43) follows since β > 2.
Condition (B)(i) is satisfied by assumption. In view of Lemma 3, the relations (8) and (9)

in Condition (B) hold, as well as the relation (27) of Theorem 2 (recall that in that theorem,
the relation (27) replaces the relation (7) in Condition (B)). The bound (115) yields (28) under
the condition γ 1−2β

j = o(n−1/2
j ), where n j is given by (34). The assumption (37) implies that

condition for j = T . We have also nT ∼ γ−1
T T → ∞. Finally, since (A-2) is assumed in the

definition (29) of {Xu}, we may apply Theorem 2 with j = T and obtain (44). In view of (112)
and (25), the limiting covariance Γi,i ′ is given by (45). �

8. Technical lemmas

The following lemma will be used several times.

Lemma 4. Let g be a (2π)-periodic locally integrable function. Then for all positive integer γ ,
the function defined by

gγ (λ) =
γ−1∑
p=0

g(γ−1(λ+ 2pπ))

is (2π)-periodic. Moreover, one has∫ π

−π

g(λ)dλ = γ−1
∫ π

−π

gγ (λ)dλ. (118)
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Proof. Observe that, for all λ ∈ R,

gγ (λ+ 2π) =
γ−1∑
p=0

g
(
γ−1 (λ+ (p + 1) 2π)

)

=

γ−1∑
p=1

g
(
γ−1 (λ+ 2pπ)

)
+ g

(
γ−1 (λ+ γ 2π)

)
= gγ (λ),

since g(γ−1(λ+ γ 2π)) = g(γ−1λ) by the (2π)-periodicity of g. Hence gγ (λ) is (2π)-periodic.
With a change of variable, one gets

γ−1
∫ 2π

0
gγ (λ)dλ =

γ−1∑
p=0

∫ 2πγ−1

0
g(ξ + 2pπγ−1)dξ =

∫ 2π

0
g(ξ)dξ.

Relation (118) follows by (2π)-periodicity of the integrands. �

The next lemma relates the rates of decrease of two functions with the rate of decrease of their
convolution.

Lemma 5. Let δ > 0. For all T > 0 and t0 ∈ [0, T/2), we let hT,t0(t), t ∈ R be the even and
T -periodic function such that

hT,t0(t) = (1+ |t − t0|)
−δ for all t ∈ [0, T/2].

Let g be an integrable non-negative function on R such that

g(t) ≤ c0|t |
−δ−1 for |t | ≥ 1. (119)

Then there exists a positive constant c, depending only on δ, ‖g‖1 =
∫
∞

−∞
g(s)ds and c0 such

that, for all T > 0, t0 ∈ [0, T/2), and t ∈ [0, T/2],

g ∗ hT,t0(t) =
∫
∞

−∞

g(t − u)hT,t0(u)du ≤ c(1+ |t − t0|)
−δ. (120)

Proof. Let t0 ∈ [0, T/2). We shall use the bound, valid for all t ∈ R,

g ∗ hT,t0(t) ≤ ‖g‖1. (121)

This bound yields (120) only for t close enough to t0. We shall derive a different bound valid
only for t ∈ [0, T/2] with |t − t0| ≥ 2, namely

g ∗ hT,t0(t) ≤ 21−δc0δ
−1
|t − t0|

−δ
+ ‖g‖1(1+ |t − t0|/2)−δ. (122)

Applying (121) for |t − t0| ≤ 2 and (122) for |t − t0| ≥ 2 yields (120).
Hence it only remains to establish (122) for t ∈ [0, T/2] with |t − t0| ≥ 2. We shall suppose

that t ∈ [t0 + 2, T/2] (the case t ∈ [0, t0 − 2] is obtained similarly). Let u be such that
|t − u| ≤ |t − t0|/2. Then t − (t − t0)/2 ≤ u ≤ t + (t − t0)/2 and thus, using that t ≤ T/2
implies t + t/2 ≤ T − t/2, we get (t + t0)/2 ≤ u ≤ T − (t + t0)/2. Observe that the middle
point between (t+ t0)/2 and T − (t+ t0)/2 is T/2. Since hT,t0(u) is decreasing on [t0, T/2], and
symmetric around T/2, we get hT,t0(u) ≤ hT,t0((t + t0)/2) = (1+ |t − t0|/2)−δ . Hence we may
bound hT,t0(u) by 1 for |t − u| > |t − t0|/2 and by (1+ |t − t0|/2)−δ otherwise, which gives∫

∞

−∞

g(t − u)hT,t0(u)du ≤
∫
|s|>|t−t0|/2

g(s)ds + ‖g‖1(1+ |t − t0|/2)−δ.
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Since |t − t0| ≥ 2 we may apply the bound (119) in the integral of the RHS of the previous
display. Hence we get (122), which concludes the proof. �

The following lemma is used, in particular, to bound f̂ j in the proof of Theorem 2. It will be
used again in the proof of Lemma 9 below. Applying it, one can bound g j,γ j (λ) independently
of j and λ, where g j,γ j is defined as in Lemma 4 with g replaced by g j , and the sequence g j
satisfies a uniform bound of the form (7), namely

sup
j≥0

sup
λ∈[−π,π)

|g j (λ)|
(
1+ γ

∣∣|λ| − λ j
∣∣)δ <∞,

with λ j → λ∞ ∈ [0, π) as j →∞.

Lemma 6. Let δ > 1/2. Then

sup
t∈R

sup
t ′∈R

∑
p∈Z

(
1+

∣∣|t + 2pπ | − t ′
∣∣)−2δ

<∞. (123)

Moreover, as u →∞,

sup
t∈R

sup
t ′∈R

∑
p∈Z

(
1+

∣∣|t + 2pπ | − t ′
∣∣)−δ (1+ ∣∣|t + 2pπ | − t ′ − u

∣∣)−δ → 0. (124)

Proof. Let S(t, t ′) =
∑

p∈Z(3π +
∣∣|t + 2pπ | − t ′

∣∣)−2δ . Since, for any t ′, t 7→ S(t, t ′) is (2π)-
periodic we have

sup
t∈R

sup
t ′∈R

S(t, t ′) = sup
t ′∈R

sup
t :|t−t ′|≤π

S(t, t ′). (125)

Suppose that t, t ′ ∈ R are such that |t − t ′| ≤ π . Then for any a, b ∈ R, we have, if t + a ≥ 0,∣∣|t + a| − t ′ − b
∣∣ ≥ |a − b| − π, (126)

and, if t + a ≤ 0,∣∣|t + a| − t ′ − b
∣∣ = ∣∣t − t ′ + 2t ′ + a + b

∣∣ ≥ |2t ′ + a + b| − π. (127)

Adding 3π to each of the last two displays with a = 2pπ and b = 0, we get that, for all
|t − t ′| ≤ π and p ∈ Z,(

3π +
∣∣|t + 2pπ | − t ′

∣∣)−2δ
≤ (2|p|π + 2π)−2δ

+
(
|2t ′ + 2pπ | + 2π

)−2δ
. (128)

Since
∑

p∈Z(2|p|π + π)−2δ < ∞ and supt ′∈R
∑

p∈Z(|2t ′ + 2pπ | + π)−2δ < ∞, the
relation (125) gives that supt∈R supt ′∈R S(t, t ′) <∞ and (123) follows.

We now prove (124). Let

S(t, t ′, u) =
∑
p∈Z

(
3π +

∣∣|t + 2pπ | − t ′
∣∣)−δ (3π + ∣∣|t + 2pπ | − t ′ − u

∣∣)−δ .
As above, we have

sup
t∈R

sup
t ′∈R

S j (t, t ′) = sup
t ′∈R

sup
t :|t−t ′|≤π

S j (t, t ′). (129)
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Suppose that t, t ′ ∈ R are such that |t − t ′| ≤ π . Adding 3π to (126) and (127) with a = 2pπ
and b = u, we have(

3π +
∣∣|t + 2pπ | − t ′ − u

∣∣)−δ ≤ (|2pπ − u| + 2π)−δ + (|2t ′ + 2pπ + u| + 2π)−δ.

Using (129), (128) and the previous display, we obtain

sup
t∈R

sup
t ′∈R

S(t, t ′, u) ≤
∑
p∈Z

(|2pπ | + 2π)−δ(|2pπ − u| + 2π)−δ

+ sup
t ′∈R

∑
p∈Z

(|2t ′ + 2pπ | + 2π)−δ(|2t ′ + 2pπ + u| + 2π)−δ

+ sup
t ′∈R

∑
p∈Z

(|2pπ | + 2π)−δ(|2t ′ + 2pπ + u| + 2π)−δ

+ sup
t ′∈R

∑
p∈Z

(|2t ′ + 2pπ | + 2π)−δ(|2pπ − u| + 2π)−δ.

Since the three functions in t ′ appearing in the right-hand side of the last display are π -
periodic the supt ′∈R can be replaced by sup|t ′|≤π/2. Since |2t ′ + 2pπ | ≥ |2pπ | − π and
|2t ′ + 2pπ + u| ≥ |2pπ + u| − π for |t ′| ≤ π/2, we thus obtain

sup
t∈R

sup
t ′∈R

S(t, t ′, u) ≤ 4
∑
p∈Z

(|2pπ | + π)−δ(|2pπ + u| + π)−δ → 0 as u →∞,

which conclude the proof. �

The following lemma will be used in the proof of Lemma 9.

Lemma 7. Let p be a positive integer. For all Cp-valued functions g ∈ L2(−π, π) and n ≥ 1,
define

Mn(g)
def
=

{∑
k∈Z

(
1−
|k|

n

)
+

|ck |
2

}1/2

=

{
n−1∑

k=−n+1

(
1−
|k|

n

)
|ck |

2

}1/2

, (130)

where ck = (2π)−1/2
∫ π
−π

g(λ)eikλdλ and | · | denotes the Euclidean norm in any dimension.
Then, for all g1 and g2 in L2(−π, π),

|Mn(g1)− Mn(g2)| ≤

(∫ π

−π

|g1(λ)− g2(λ)|
2dλ

)1/2

. (131)

Moreover, for all g in L2(−π, π), as n→∞,

Mn(g)→
(∫ π

−π

|g(λ)|2dλ
)1/2

. (132)

Proof. See [8, Lemma 1 (Appendix B)]. �

The following lemmas are used to compute the limiting covariances (73) and (25).

Lemma 8. Let {Zi, j,k, i = 1, 2, j ≥ 0, k ∈ Z} be an array of two-dimensional decimated linear
processes as defined by (1). Assume (A-2). Then for all j ≥ 0 and all n ≥ 1, one has
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1
n

Cov

(
n−1∑
k=0

Z2
1, j,k,

n−1∑
k=0

Z2
2, j,k

)
= 2A j (n)+ κ4 B j (n), (133)

where

A j (n) =
n−1∑

τ=−n+1

(1− |τ |/n)

(∑
u∈Z

v1, j (u)v2, j (γ jτ + u)

)2

(134)

and

B j (n) =
∑
u∈Z

v2
1, j (u)

n−1∑
τ=−n+1

(1− |τ |/n)v2
2, j (γ jτ + u). (135)

Proof. Using a standard formula for cumulants of products, we have

Cov

(
n−1∑
k=0

Z2
1, j,k,

n−1∑
k=0

Z2
2, j,k

)
=

n−1∑
k=0

n−1∑
k′=0

Cov
(

Z2
1, j,k, Z2

2, j,k′

)
= 2

n−1∑
k=0

n−1∑
k′=0

Cov2 (Z1, j,k, Z2, j,k′
)

+

n−1∑
k=0

n−1∑
k′=0

cum
(
Z1, j,k, Z1, j,k, Z2, j,k′ , Z2, j,k′

)
.

By definition of {Zi, j,k, i = 1, 2, k ∈ Z} the covariance and the fourth-order cumulant in the
previous display read respectively

Cov
(
Z1, j,k, Z2, j,k′

)
=

∑
t∈Z

v1, j (γ j k − t)v2, j (γ j k
′
− t)

and cum
(
Z1, j,k, Z1, j,k, Z2, j,k′ , Z2, j,k′

)
= κ4

∑
t∈Z

v2
1, j (γ j k − t)v2

2, j (γ j k
′
− t).

Hence we obtain (133). �

Lemma 9. Let A j (n) and B j (n) be defined by (134) and (135), respectively, and v∗i, j by (2).
Then the following inequalities hold for all j ≥ 0 and all n ≥ 1:

A j (n) ≤ 2π
∫ π

−π

∣∣∣∣∣∣γ−1
j

γ j−1∑
p=0

[v∗1, jv
∗

2, j ](γ
−1
j (λ+ 2πp))

∣∣∣∣∣∣
2

dλ (136)

B j (n) ≤
∫ π

−π

∣∣∣v∗1, j (λ)

∣∣∣2 dλ
∫ π

−π

γ−1
j

γ j−1∑
p=0

∣∣∣v∗2, j (γ
−1
j (λ+ 2πp))

∣∣∣
2

dλ. (137)

Suppose moreover that γ j → ∞ as j → ∞, γ j is an even integer for j large enough and that
Condition (B) holds for some λi,∞ ∈ [0, π) and R → Z functions v∗i,∞, i = 1, 2. Then, as
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(n, j) jointly tends to (∞,∞),

A j (n)→ 2πC1,2

∫ π

−π

∣∣∣∣∣∣
∑
p∈Z

w∗1,2(λ+ 2πp)

∣∣∣∣∣∣
2

dλ, (138)

where C1,2 and w∗1,2 are defined in (18) and (17) respectively. Moreover,

lim
j→∞

sup
n≥1

∣∣B j (n)
∣∣ = 0. (139)

Proof. Step 1. Using properties of the convolution of square summable sequences, we have, for
all t ∈ Z,∑

u∈Z
v1, j (u)v2, j (t + u) =

∫ π

−π

v∗1, j (λ)v
∗

2, j (λ)e
itλdλ.

For any τ ∈ Z, applying Lemma 4 to the (2π)-periodic function λ 7→ v∗1, j (λ)v
∗

2, j (λ)e
iγ j τλ, one

gets ∑
u∈Z

v1, j (u)v2, j (γ jτ + u)

= (2π)−1/2
∫ π

−π

(2π)1/2γ−1
j

γ j−1∑
p=0

v∗1, j (ξ j,p(λ))v
∗

2, j (ξ j,p(λ))

 eiτλdλ,

where ξ j,p(λ)
def
= γ−1

j (λ+ 2πp). (140)

Using the notation of Lemma 7, we can express A j (n) defined in (134) as

A j (n) =
(
Mn(g j )

)2 (141)

where g j (λ) = (2π)1/2γ
−1
j

γ j−1∑
p=0

v∗1, j (ξ j,p(λ))v
∗

2, j (ξ j,p(λ)). (142)

The bound (131) in Lemma 7 with g1 = g j and g2 = 0 thus gives (136).
Step 2. Let us now show (137). Since

v2, j (γ jτ + u) = (2π)−1/2
∫ π

−π

v∗2, j (λ)e
iλ(γ j τ+u)dλ,

we can apply Lemma 4 to the (2π)-periodic function λ 7→ v∗2, j (λ)e
iλ(γ j τ+u) for all u and τ in Z

and get

v2, j (γ jτ + u) = (2π)−1/2
∫ π

−π

γ−1
j

γ j−1∑
p=0

v∗2, j (ξ j,p(λ))eiuξ j,p(λ)

 eiτλdλ.

Using the Parseval formula, we get, for all u ∈ Z,

n−1∑
τ=−n+1

(1− |τ |/n)v2
2, j (γ jτ + u) ≤

∑
τ∈Z

v2
2, j (γ jτ + u)
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=

∫ π

−π

∣∣∣∣∣∣γ−1
j

γ j−1∑
p=0

v∗2, j (ξ j,p(λ))eiuξ j,p(λ)

∣∣∣∣∣∣
2

dλ

≤

∫ π

−π

γ−1
j

γ j−1∑
p=0

∣∣∣v∗2, j (ξ j,p(λ))

∣∣∣
2

dλ.

Observing that the resulting bound is independent of u ∈ Z and using the Parseval formula∑
u∈Z v

2
1, j (u) =

∫ π
−π

∣∣∣v∗1, j (λ)

∣∣∣2 dλ, we obtain the bound (137) for B j (n) defined in (135).

Step 3. We now establish the limit (138) successively in the cases λ1,∞ 6= λ2,∞ and λ1,∞ =

λ2,∞. The (2π)-periodicity of v∗1, jv
∗

2, j and Lemma 4 entail that g j (defined in (142)) is (2π)-
periodic. By definition of Mn in Lemma 7, it follows that, for any j ≥ 0 and any τ ∈ R,

Mn(g j ) = Mn(g
(τ )
j ) with g(τ )j (λ) = g j (λ− τ), λ ∈ R, (143)

since the modulus of the Fourier coefficients of g j and g(τ )j are equal. In the following we will
take τ = πγ j . Observe that, for all p ∈ {0, . . . , γ j − 1}, λ ∈ (0, 2π) and j ≥ 0,

ξ j,p(λ− πγ j ) ∈ (−π, π). (144)

Consider the case where λ1,∞ 6= λ2,∞, which, by (4), implies

γ j |λ1, j − λ2, j | → ∞ as j →∞. (145)

Using (142)–(144) and (12), we have, for some constant C > 0, for all j ≥ 0,

sup
λ∈(0,2π)

∣∣∣g(πγ j )

j (λ)

∣∣∣ = sup
λ∈(0,2π)

∣∣g j (λ− πγ j )
∣∣

≤ C
γ j−1∑
p=0

∏
i=1,2

(
1+ γ j

∣∣|ξ j,p(λ− πγ j )| − λi, j
∣∣)−δ

≤ C sup
t,t ′∈R

∑
p∈Z

(
1+

∣∣|t + 2πp| − t ′
∣∣)−δ

×
(
1+

∣∣|t + 2πp| − t ′ − γ j |λ1, j − λ2, j |
∣∣)−δ

→ 0 as j →∞,

by (145) and (124) in Lemma 6. Applying (141), (143) and the bound (131) in Lemma 7 with
g1 = g j and g2 = 0 yields

A j (n) =
(

Mn(g
(πγ j )

j )
)2
≤

∫ π

−π

∣∣∣g(πγ j )

j

∣∣∣2 dλ.

The last two displays and the (2π)-periodicity of g j imply A j (n) → 0 as j → ∞. This
proves (138) since by (18), C1,2 = 0 when λ1,∞ 6= λ2,∞.

We now consider the case λ1,∞ = λ2,∞. By Conditions (6) and (9), we have λ1, j = λ2, j and
Φ1, j ≡ Φ2, j for j large enough. Let p j = γ jλ1, j/(2π)+ γ j/2 so that

λ1, j = λ2, j = 2πγ−1
j p j − π. (146)



3038 F. Roueff, M.S. Taqqu / Stochastic Processes and their Applications 119 (2009) 3006–3041

By Condition (3) and since γ j is even for j large enough by assumption, we get that p j is an
integer for j large enough. Writing

γ j−1∑
p=0

=

[γ j /2]−1∑
p=0

+

γ j−1∑
p=[γ j /2]

=

[γ j /2]−(γ j−p j )−1∑
q=−(γ j−p j )

+

γ j−p j−1∑
r=[γ j /2]−p j

,

where q = p − (γ j − p j ) and r = p − p j and observe that, with these definitions, (140)
and (146), we have ξ j,q(λ) = γ−1

j (λ + 2πq) = γ−1
j [(λ − πγ j ) + 2πp] + 2πγ−1

j p j − π =

ξ j,p(λ−πγ j )+λ1, j , and, similarly, ξ j,q(λ) = ξ j,p(λ−πγ j )−λ1, j , so g
(πγ j )

j (λ) = g j (λ−πγ j )

defined in (143) and (142) can be expressed as

g
(πγ j )

j (λ) = (2π)1/2

[γ j /2]−(γ j−p j )−1∑
q=−(γ j−p j )

v∗1, jv
∗

2, j

γ j
(ξ j,q(λ)− λ1, j )

+

γ j−p j−1∑
r=[γ j /2]−p j

v∗1, jv
∗

2, j

γ j
(ξ j,r (λ)+ λ1, j )

 . (147)

Since lim j→∞ γ j = ∞ and, by Condition (4), lim j→∞ λi, j = λi,∞ ∈ [0, π), we have
lim j→∞ γ

−1
j p j ∈ [1/2, 1) and thus

− (γ j − p j )→−∞ and γ j − p j − 1→∞, (148)

namely, in (147), the upper limit of the first sum tends to ∞ and the bottom limit of the
second sum tends to −∞. We now consider the remaining limits. If λ1,∞ = λ2,∞ > 0, then
lim j→∞ γ

−1
j p j falls in the open interval (1/2, 1) and thus

[γ j/2] − (γ j − p j )− 1→∞ and [γ j/2] − p j →−∞. (149)

If λ1,∞ = λ2,∞ = 0, using (5), (146) implies p j = γ j/2 and thus, for j large enough so that p j
is integer valued and γ j even,

[γ j/2] − (γ j − p j )− 1 = −1 and [γ j/2] − p j = 0. (150)

In view of (140), Conditions (6)–(9) (which imply (10), (12) and (13)), (148)–(150) and
dominated convergence yield, for all λ ∈ (0, 2π),

g
(πγ j )

j (λ)→ g∞(λ) as j →∞, (151)

where

g∞(λ) = (2π)1/2

∑
q∈Z
[v∗1,∞v

∗

2,∞](−λ− 2πq)+
∑
r∈Z
[v∗1,∞v

∗

2,∞](λ+ 2πr)


if λ1,∞ = λ2,∞ > 0, and

g∞(λ) = (2π)1/2
[
−1∑

q=−∞

[v∗1,∞v
∗

2,∞](−λ− 2πq)+
∞∑

r=0

[v∗1,∞v
∗

2,∞](λ+ 2πr)

]
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if λ1,∞ = λ2,∞ = 0. By definition of w∗ in (17) and using (14), one has [v∗1,∞v
∗

2,∞](−λ) =

[v∗1,∞v
∗

2,∞](λ) = w
∗

1,2(λ); the two previous displays read

g∞(λ) = (2π)1/2C1,2

∑
p∈Z

w∗1,2(λ+ 2πp). (152)

Conditions (7) and (8) imply (15), and thus that g∞(λ) is bounded, and hence square integrable
on λ ∈ (−π, π). Moreover, applying the same dominated convergence argument as above, one
has

lim
j→0

∫ π

−π

∣∣∣g(πγ j )

j (λ)− g∞(λ)
∣∣∣2 dλ = 0. (153)

One gets by (143), (131) and (153)∣∣Mn(g j )− Mn(g∞)
∣∣2 ≤ ∫ π

−π

∣∣g j (λ)− g∞(λ)
∣∣2 dλ→ 0 as j →∞. (154)

By applying the limit (132) with g = g∞, one gets

Mn(g∞)
2
→

∫ π

−π

|g∞(λ)|
2dλ (155)

as n → ∞. Hence, setting Mn(g j ) =
(
Mn(g j )− Mn(g∞)

)
+ Mn(g∞), the limit (138) follows

from (141), (152), (154) and (155).
Step 4. We now establish the limit (139). By Condition (7), we have

sup
j≥0

∫ π

−π

∣∣∣v∗1, j (λ)

∣∣∣2 dλ <∞. (156)

Using arguments similar to those above and Condition (7), we have∫ π

−π

γ−1
j

γ j−1∑
p=0

∣∣∣v∗2, j (ξ j,p(λ))

∣∣∣
2

dλ

= γ−1
j

∫ 2π

0

γ j−1∑
p=0

γ
−1/2
j

∣∣∣v∗2, j (ξ j,p(λ− πγ j ))

∣∣∣
2

dλ

≤ Cγ−1
j

∫ 2π

0

γ j−1∑
p=0

(
1+

∣∣|λ+ 2π(p − γ j/2)| − γ jλ2, j
∣∣)−δ2

dλ. (157)

Using that ‖a + b| − c| ≥ ‖b| − c| − |a| and λ ∈ [0, 2π ], we have∣∣|λ+ 2π(p − γ j/2)| − γ jλ2, j
∣∣ ≥ ∣∣2π |p − γ j/2| − γ jλ2, j

∣∣− 2π.

Take j large enough so that γ j is even. Since λ2, j ∈ [0, π), as p ∈ {0, . . . , γ j − 1},
2π |p − γ j/2| − γ jλ2, j is a sequence of numbers with lag 2π and belonging to [−γ jπ, γ jπ ]

and can thus be written as a sequence 2πq + c, where q belongs to {−γ j/2, . . . , γ j/2} and c to
[−π, π] so that∣∣2π |p − γ j/2| − γ jλ2, j

∣∣− 2π ≥ 2π |q| − 3π.
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From the last two displays, we have(
5π +

∣∣|λ+ 2π(p − γ j/2)| − γ jλ2, j
∣∣)−δ ≤ (2π)−δ(1+ |q|)−δ,

with q describing {−γ j/2, . . . , γ j/2} as p describes {0, . . . , γ j − 1}. Inserting this bound
in (157), we get∫ π

−π

γ−1
j

γ j−1∑
p=0

∣∣∣v∗2, j (ξ j,p(λ))

∣∣∣
2

dλ ≤ Cγ−1
j

γ j /2∑
q=0

(1+ q)−δ

2

for some constant C not depending on j ≥ 0. Since the last right-hand side of the previous
display tends to 0 as j →∞ for any δ > 1/2, with (156) and (137), we obtain (139). �

Remark 16. The factor 4π = 2×2π in (25) is due to the factor 2 in the right-hand side of (133)
and the presence of 2π in the right-hand side of (138).

Corollary 1. Let {Zi, j,k, i = 1, 2, j ≥ 0, k ∈ Z} be an array of two-dimensional decimated
linear processes as defined by (1). Assume (A-2), that γ j is even for j large enough and that
Condition (B) holds for some λi,∞ ∈ [0, π) and R→ Z functions v∗i,∞, i = 1, 2. Then, for all
k, k′ ∈ Z, as j →∞,

Cov
(

Z2
1, j,k, Z2

2, j,k′

)
→ 2C2

1,2

(∫
∞

−∞

w∗1,2(λ)e
iλ(k′−k)dλ

)2

, (158)

where C1,2 and w∗1,2 are defined in (18) and (17), and, as (n, j) jointly tends to (∞,∞),

1
n

Cov

(
n−1∑
k=0

Z2
1, j,k,

n−1∑
k=0

Z2
2, j,k

)
→ 4πC1,2

∫ π

−π

∣∣∣∣∣∣
∑
p∈Z

w∗1,2(λ+ 2πp)

∣∣∣∣∣∣
2

dλ. (159)

Proof. Setting n = 1 in (133) and (134) and replacing v1, j (−t) by v1, j (γ j k − t) and v2, j (−t)
by v2, j (γ j k′ − t) so that Z1, j,0 is replaced by Z1, j,k and Z2, j,0 by Z2, j,k′ , we get

Cov
(

Z2
1, j,k, Z2

2, j,k′

)
= 2A j (1)+ κ4 B j (1)

= 2

(∑
t∈Z

v1, j (γ j k − t)v2, j (γ j k
′
− t)

)2

+ κ4 B j (1),

and thus (158) follows from (139), (19) and (16).
Relation (159) is obtained by applying Lemmas 8 and 9. �
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