
Discrete Applied Mathematics 156 (2008) 2855–2866
www.elsevier.com/locate/dam

A covering problem that is easy for trees but NP-complete for
trivalent graphs

Rolf Bardeli∗, Michael Clausen, Andreas Ribbrock

Institut für Informatik III, Universität Bonn, Römerstraße 164, D-53117 Bonn, Germany

Received 24 November 2006; received in revised form 19 October 2007; accepted 27 November 2007
Available online 3 January 2008

Abstract

By definition, a P2-graph Γ is an undirected graph in which every vertex is contained in a path of length two. For such a graph,
pc(Γ) denotes the minimum number of paths of length two that cover all n vertices of Γ . We prove that dn/3e ≤ pc(Γ) ≤ bn/2c

and show that these upper and lower bounds are tight. Furthermore we show that every connected P2-graph Γ contains a spanning
tree T such that pc(Γ) = pc(T). We present a linear time algorithm that produces optimal 2-path covers for trees. This is contrasted

by the result that the decision problem pc(Γ)
?
= n/3 is NP-complete for trivalent graphs. This graph theoretical problem originates

from the task of searching a large database of biological molecules such as the Protein Data Bank (PDB) by content.
c© 2007 Elsevier B.V. All rights reserved.

Keywords: Covering problems; 2-path cover; Edge cover; Optimal tree cover; Tiling problems; Trivalent graphs

1. Introduction

We examine the following graph theoretical problem. Let Γ denote a P2-graph, i.e., Γ is a finite undirected graph
in which every vertex is contained in a path of length two. For such a graph, pc(Γ) denotes the minimum number
of paths of length two that cover all n vertices of Γ . The problem of constructing a minimizer for pc(Γ) arises as a
subproblem in a method for searching large molecule databases by content (see Section 2).

Covering problems are plentiful in graph theory. Most prominently, the questions of finding a minimal set of edges
that cover all vertices (EDGE COVER) and finding a minimal set of vertices that cover all edges (VERTEX COVER),
respectively, are fundamental in graph theory. In contrast to the EDGE COVER problem, which is in P [6], most other
covering problems are typically found to be NP-complete.

Covering with paths of length 2 is related to the EDGE COVER problem: form a dual graph from a given P2-graph
by introducing a vertex for each edge and connecting two such vertices by an edge whenever the corresponding edges
in the original graph meet at a vertex. Now each path of length 2 corresponds to an edge in the dual. Admittedly, this
only shows a relation of the problems up to a certain degree, because a vertex in the original graph may correspond
to multiple edges in an optimal edge cover of the dual. On the other hand, the problem under consideration is an

∗ Corresponding author. Fax: +49 228734402.
E-mail address: bardeli@iai.uni-bonn.de (R. Bardeli).

0166-218X/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2007.11.021

http://www.elsevier.com/locate/dam
mailto:bardeli@iai.uni-bonn.de
http://dx.doi.org/10.1016/j.dam.2007.11.021

2856 R. Bardeli et al. / Discrete Applied Mathematics 156 (2008) 2855–2866

instance of the problem of covering graphs with isomorphic subgraphs, which has been shown to be NP-complete by
Kirkpatrick and Hell [4].

In this paper, we begin with a concise overview of how the graph theoretical problem arises from the task of
searching large molecule databases by content. In Section 3 we prove for every P2-graph Γ with n vertices that
dn/3e ≤ pc(Γ) ≤ bn/2c and show that these upper and lower bounds are tight. If T is a spanning tree of the
connected P2-graph Γ then pc(T) ≥ pc(Γ). We prove that such a Γ contains a spanning tree T with pc(Γ) = pc(T).
In Section 4 we present a linear time algorithm that produces optimal 2-path covers for trees. Finally, we show that the

decision problem pc(Γ)
?
= n/3 is NP-complete for general P2-graphs as well as for the subclass of trivalent graphs.

Trivalent graphs are graphs with no more than three edges incident at any vertex. Completeness results are obtained
by reduction from certain tiling problems.

2. A motivating application

We begin by considering the task of searching a large molecule database by content. As an example, the Protein
Data Bank [1,8] contains three-dimensional structures of more than 45,000 biological macromolecules such as
proteins, nucleic acids, and protein complexes. In a simplified setting, each molecule is represented by a finite
attributed graph M = (V, E, a). Here, the elements of the finite vertex set V ⊂ R3 describe the centers of the
atoms involved in the molecule, the edge set E corresponds to the bonds and a: V → A denotes a function that
specifies the type a(v) ∈ A := {C, N , O, P, S, . . .} of the atom located at v ∈ V . In this setting, a molecule is
illustrated by a ball and stick model.

As a chemical entity, a molecule will remain unchanged if it is translated or rotated in Euclidean 3-space. More
precisely, the special Euclidean group G = SE(3) of all solid motions acts on such finite attributed graphs via
g(V, E, a) := (gV, gE, ga), where gV := {gv | v ∈ V }, gE := {{gv, gw} | {v, w} ∈ E}, and (ga)(gv) := a(v), for
all elements v ∈ V and g ∈ G. Strictly speaking, a molecule is a whole G-orbit: G(V, E, a) := {g(V, E, a) | g ∈ G}.
Consequently, each of the G-equivalent elements of the G-orbit only represents this molecule. Another consequence
is a modified notion of containment: let M = (V, E, a) and M ′

= (V ′, E ′, a′) be two attributed graphs. By definition,
M is G-contained in M ′, for short: M ⊆G M ′, iff there is a solid motion g ∈ G such that gV ⊆ V ′, gE ⊆ E ′, and ga
is the restriction of a′ to gV . If g = 1, then M is said to be contained in M ′, abbreviated M ⊆ M ′.

Now think of a large molecule database M consisting of a sequence M = (M1, . . . , MN) of attributed graphs
Mi = (Vi , Ei , ai) representing N molecules. Suppose a content-based query Q is specified by another attributed
graph, Q = (V, E, a), representing parts of a possible molecule. One task is then to find all i such that Q is G-
contained in Mi . A more demanding task is to compute all pairs (g, i) ∈ G × [1 : N] := G × {1, 2, . . . , N } such that
gQ is contained in Mi . In the sequel, we will focus on this second task, which more formally requires one to compute
the set

GM(Q) := {(g, i) ∈ G × [1 : N] | gQ ⊆ Mi }

of all (G,M)-matches with respect to the query Q. More realistic models ask for those (g, i) such that gQ is “near”
a Q′ contained in Mi . Such tasks go beyond the scope of this motivating section. Interested readers are referred to [7].

In our context, a barbell is a connected attributed graph with two vertices. In other words, a barbell is a pair of
bonded atoms. Barbells can be viewed as the building blocks of molecules: every molecule is obtained by gluing
together suitable barbells. We call GM(B) := {(g, i) ∈ G × [1 : N] | gB ⊆ Mi } the (G,M)-inverted list of the
barbell B. If Barb(Q) denotes the set of all barbells contained in Q and if Barb(Q) covers Q, i.e., every element of
Q is contained in at least one barbell of Q, it is easy to prove that

GM(Q) =

⋂
B∈Barb(Q)

GM(B). (1)

[In fact, as Barb(Q) covers Q we have
⋃

B∈Barb(Q) B = Q. Thus, (g, i) ∈ GM(Q) iff gQ ⊆ Mi iff
g(

⋃
B∈Barb(Q) B) ⊆ Mi iff (g, i) ∈

⋂
B∈Barb(Q) GM(B).] Let us look more closely at these inverted lists. A far

reaching observation is the fact that inverted lists corresponding to barbells in the same G-orbit are closely related by
the orbit formula

GM(gB) = GM(B)g−1
:= {(hg−1, i) | (h, i) ∈ GM(B)}. (2)

R. Bardeli et al. / Discrete Applied Mathematics 156 (2008) 2855–2866 2857

Thus for each G-orbit G B := {gB | g ∈ G} of barbells one need only compute and store one inverted list. If GM(B)

is stored and if the list GM(gB) is required in order to compute GM(Q) along Eq. (1), then one takes the stored list
GM(B) and multiplies it from the right with g−1 to obtain GM(gB), see Eq. (2).

As a consequence, starting with the collection M, it is sufficient to compute in a preprocessing step a maximal
set of mutually G-inequivalent barbells contained in the molecules of the database. For each of these barbells, one
has to compute and store the corresponding inverted list. But this causes a problem. All the lists contain infinitely
many elements as each barbell is stable under all rotations about the axis defined by the barbell. To circumvent
this problem, we work with triplets, i.e., with two barbells that share one atom. In other words, triplets are paths
of length two in an attributed graph. Instead of inverted lists w.r.t. barbells, we now work with inverted lists
GM(T) := {(g, i) ∈ G × [1 : N] | gT ⊆ Mi } corresponding to triplets T . The finiteness of GM(T) for a
non-collinear triplet T results from the fact that the stabilizer subgroup {g ∈ G | gT = T } is a cyclic group of order
1, 2, or it is isomorphic to the dihedral group of order 6. Typically, the set Trip(Q) of all non-collinear triplets in Q
covers Q. Similar to Eq. (1), we then obtain

GM(Q) =

⋂
T ∈Trip(Q)

GM(T). (3)

Also, the orbit formula GM(gT) = GM(T)g−1 is valid for triplets T .
In practice, to save space and time, one works implicitly with an approximate set of bonds. To this end, one puts

– regardless of chemical reality – a bond between the atom X ∈ A located at v ∈ R3 and the atom Y ∈ A located
at w ∈ R3 iff the Euclidean distance between v and w is smaller than a positive threshold εX,Y . Working with such
covalent bond radii simplifies both the database and the searching problem. E.g., if T is a subset of Trip(Q) such that
all vertices of Q are involved in at least one element of T , then

GM(Q) =

⋂
T ∈T

GM(T). (4)

Thus, in order to minimize the number of lists to be intersected, we are faced with the problem of finding a smallest
family of triplets (= paths of length two) that covers all vertices of the graph. In the present paper we focus on this
problem. For readers interested in efficient algorithmic solutions of related problems from multimedia information
retrieval using group theory, we refer to [2,3,7].

3. Minimal 2-path covers

Let Γ = (V, E) denote an undirected graph with n := |V | vertices. If {a, b} and {b, c} are different edges in Γ , the
corresponding 3-subset {a, b, c} of V will be called a 2-path of Γ . For every family C of 2-paths of Γ we introduce
the set C :=

⋃
γ∈C γ consisting of all vertices in Γ that are covered by C . If C = V , we call C a 2-path cover of

Γ . Γ is called a P2-graph if it has a 2-path cover. In the sequel, Γ always denotes a P2-graph. For such a Γ we are
interested in 2-path covers C of minimum cardinality. All such optimal covers have cardinality

pc(Γ) := min{|C |: C is a 2-path cover of Γ }.

Example 1. For n ≥ 3 let Chainn := ([1 : n], {{i, i + 1} | i ∈ [1 : n − 1]}) and Starn := ([1 : n], {{1, i} | i ∈ [2 : n]})

denote a chain and a star with n vertices, respectively. Both types of graphs are P2-graphs. Obviously, if n = 3m, then
{{3i − 2, 3i − 1, 3i} | i ∈ [1 : m]} is a 2-path cover of Chainn . It is optimal since the involved 2-paths are pairwise
vertex-disjoint. Thus pc(Chain3m) = m. For m ≥ 2, one easily checks that pc(Chain3m) = pc(Chain3m−1) =

pc(Chain3m−2). Thus for general n ≥ 3, we obtain pc(Chainn) = dn/3e. Now let us turn to Starn , n ≥ 3. Here, the
vertex 1, called the center of the star, is involved in every 2-path. Thus, in an optimal 2-path cover of Starn , the first
2-path covers three new vertices and every subsequent 2-path contributes 2 new vertices, except if n is even. In that
case, the last 2-path covers only one new vertex. Hence, for general n, pc(Starn) = bn/2c. It is easy to see that all
optimal 2-path covers of Starn are of the type described above. For an illustration see Fig. 1. �

The following result shows that the above examples are extreme cases w.r.t. possible pc-values.

2858 R. Bardeli et al. / Discrete Applied Mathematics 156 (2008) 2855–2866

Fig. 1. Optimal 2-path covers of Starn and Chainn for n ∈ {5, 6}.

Theorem 1. If Γ = (V, E) is a P2-graph with n vertices, then d
n
3 e ≤ pc(Γ) ≤ b

n
2 c. Furthermore, both bounds are

tight. �

Proof. As pc(Γ) is an integer, it suffices to prove that n/3 ≤ pc(Γ) ≤ n/2. Now the lower bound follows from the
observation that every 2-path in Γ can cover at most three vertices.

We start the proof of the upper bound with a technical remark. If Γ ′ is a connected subgraph of Γ with only two
vertices, then Γ ′ is not a P2-graph, but it is contained in a connected subgraph Γ ∗ of Γ with three vertices. Thus it
makes sense to define pc(Γ ′) := pc(Γ ∗) = 1. Note that the claimed upper bound also holds for Γ ′: pc(Γ ′) = 1 ≤ 2/2.
We continue with two reductions.

Without loss of generality, we can assume that Γ = (V, E) is connected. In fact, if Γ1 = (V1, E1), . . . ,Γq =

(Vq , Eq) are the connected components of Γ , q ≥ 2, then pc(Γ) =
∑q

i=1 pc(Γi). Thus if we can show that for each
i , pc(Γi) ≤ b|Vi |/2c, then our claim follows.

Without loss of generality, we can assume that the connected P2-graph Γ = (V, E) is a tree. In fact, if E ′ is a
subset of E such that Γ ′

= (V, E ′) is still a P2-graph, then pc(Γ) ≤ pc(Γ ′). Thus Γ can be replaced by any of its
spanning trees.

Hence, it suffices to prove the claimed upper bound for trees. So, let Γ = (V, E) be a tree with n ≥ 3 vertices. The
induction start n = 3 is trivial. (By the above remark, this also includes the case n = 2 for subtrees.) We prepare for
the induction step. For a vertex v ∈ V , let Lv (resp. Nv) denote the set of all leaves (resp. non-leaves) directly linked
with v by an edge. We put `v := |Lv| and nv := |Nv|. Note that all w ∈ Nv have a degree of at least two. Furthermore,
the set V ′ of all non-leaves in Γ is not empty. If V ′ contains only one element, then Γ is a star and we already know
that pc(Starn) = bn/2c.

Now we consider the case that Γ contains more than one non-leaf. As Γ restricted to V ′ is still a tree, T , there is a
vertex v ∈ V ′ with `v > 0 and nv = 1. (In fact, exactly all leaves in T share this property.) Let Nv = {w}. By deleting
the edge {v, w}, Γ is decomposed into two trees. Each of these two trees contains at least two vertices. Hence, by
induction, we are done. This settles the upper bound proof.

The tightness results follow from the pc-values for Starn and Chainn . �

How good are spanning subtrees Γ ′ of Γ at approximating pc(Γ)? If u − v − w is a path contributing to a 2-path
cover C , then the edges {u, v} and {v, w} are said to be involved in C . Let E(C) denote the set of all edges involved
in C and define

ε(Γ) := min{|E(C)| : C is an optimal 2-path cover of Γ }.

Lemma 1. Let C be an optimal 2-path cover of the connected graph Γ = (V, E) with a minimal number of involved
edges, i.e., |E(C)| = ε(Γ). Then Γ ∗

= (V, E(C)) is a cycle-free P2-subgraph of Γ satisfying pc(Γ) = pc(Γ ∗). �

Proof. If Γ is isomorphic to a cycle ([1 : p], {{i, i + 1} | i ∈ [1 : p − 1]} ∪ {{p, 1}}) of length p ≥ 3, our claim
is obviously true. By way of contradiction suppose that Γ ∗ contains at least one cycle of length p ≥ 3, i.e., there
exist vertices v1, . . . , vp+1 := v1 such that {vi , vi+1} ∈ E(C) for all i ∈ [1 : p]. Among all cycles in Γ ∗ we take

R. Bardeli et al. / Discrete Applied Mathematics 156 (2008) 2855–2866 2859

one of minimum length p. Consider the set C ′ of all 2-paths in C involving at least one edge of the form {vi , vi+1},
i ∈ [1 : p]. Then C ′ =

⋃
γ∈C ′ γ strictly contains {v1, . . . , vp}. Otherwise, C ′ is an optimal 2-path cover of a p-cycle

involving all p edges, which is not minimal according to the above remark. Thus let w ∈ C ′ \{v1, . . . , vp}. W.l.o.g. let
{w, v1, v2} be in C ′ and {w, v1} ∈ E(C). We claim that {vp, v1} is a redundant edge in E(C). In fact, if {vp, v1, v2}

is in C ′, then replace it by {vp−2, vp−1, vp}. Let u 6∈ {v1, . . . , vp}. If {u, vp} is in E(C) and γ ′
= {vp, v1, u} is in C ′,

then replace γ ′ by {vp−1, vp, u}. If {u, v1} is in E(C) and γ ′
= {vp, v1, u} is in C ′, then replace γ ′ by {u, v1, v2}.

Finally, if {vp−1, vp, v1} is in C ′, then replace it by {vp−2, vp−1, vp}. As p is minimal, these are all cases to be
considered. Thus the edge {vp, v1} is redundant, contradicting the minimality of |E(C)|, thereby proving that Γ ∗ is
cycle-free. �

Theorem 2. Let Γ be a connected graph with n ≥ 2 vertices. Then Γ contains a spanning tree Γt with pc(Γ) =

pc(Γt). �

Proof. According to the last lemma, Γ contains a cycle-free P2-subgraph Γ ∗ with pc(Γ) = pc(Γ ∗). As Γ is
connected, Γ ∗ is contained in a spanning tree Γt of Γ . Our claim follows from the general observation that for
three P2-graphs Γi = (V, Ei) with E1 ⊆ E2 ⊆ E3, we have pc(Γ1) ≥ pc(Γ2) ≥ pc(Γ3). Hence pc(Γ) = pc(Γ ∗) ≥

pc(Γt) ≥ pc(Γ). �

4. Fast construction of optimal 2-path covers for trees

In this section we are going to present a linear time algorithm that computes optimal 2-path covers for trees. We
need some preparations. Let Γ = (V, E) denote a tree with root r . By definition, the level λ(v) of a vertex v in Γ
is the length of the shortest path connecting r and v. In particular, λ(r) = 0. Note that all vertices of highest level h
are leaves. A vertex v of level h − 1 is called perfect iff v has the maximum number of children (=leaves) among all
vertices of level h − 1. As there are vertices of level h, `v ≥ 1 for every perfect vertex v.

Lemma 2. Let Γ = (V, E, r) denote a rooted tree with n ≥ 3 vertices. Then every perfect vertex v is directly
connected with at most one non-leaf, i.e., nv ≤ 1. Furthermore, if `v = 1, then nv = 1. �

Proof. If Γ is a star with center v, then nv = 0. So let Γ 6' Starn . Then λ(v) > 0, and λ(v) = 1 implies r 6∈ Lv .
Thus if w denotes the father of v, then w ∈ Nv , hence nv ≥ 1. The level of every x ∈ Nv differs by one from λ(v).
If λ(x) < λ(v), x must be the father of v, thus x = w. The case λ(x) > λ(v) is impossible, otherwise x would be
contained in the highest level, which consists purely of leaves, contradicting x ∈ Nv . Hence Nv = {w}. Finally, if
both `v = 1 and nv = 0, then Γ has only two vertices in contradiction to n ≥ 3. �

Theorem 3. Algorithm P2T, shown as a flowchart in Fig. 2, computes an optimal 2-path cover for every rooted tree
with at least three vertices. �

Fig. 4 illustrates a sample run of Algorithm P2T and the constructed optimal 2-path cover.

Proof. On input Γ = (V, E, r), consisting of a rooted tree with at least three vertices, the algorithm typically performs
several iterations through the flowchart. A new iteration starts upon the re-entry into the input box. At iteration zero,
the algorithm is initialized with Γ0 := Γ and the empty set of 2-paths C ′

0 := ∅. In general, at iteration i , the algorithm
starts with a rooted tree Γi = (Vi , Ei , r) and a family C ′

i of 2-paths specified in the previous iteration. After selecting
a perfect vertex vi in Γi , the algorithm specifies Vi+1, Ei+1 and C ′

i+1. If |Vi+1| ≥ 3, then iteration i + 1 takes place.
Note that |Vi+1| ≤ |Vi | − 2, thus the algorithm terminates. We prove the correctness of the algorithm with the help of
the following.

Loop invariant. For every i with |Vi | ≥ 3, C ′

i is edge-disjoint to every optimal 2-path cover Ci of Γi . Furthermore,
Ci ∪ C ′

i is an optimal 2-path cover of Γ .
We prove this loop invariant by induction on i and use Copt(Γ) as the shorthand for the set of all optimal 2-path

covers of Γ . At iteration zero, C ′

0 is empty. Thus our claim holds for i = 0. For the induction step i → i + 1, we start

2860 R. Bardeli et al. / Discrete Applied Mathematics 156 (2008) 2855–2866

Fig. 2. Algorithm P2T: Optimal P2-covers for trees.

with Γi and C ′

i . After selection of a perfect vertex vi =: v in Γi , we have to distinguish several cases. By Lemma 2
we know that always nv ≤ 1.

Case 1. `v =: m ≥ 3. If nv = 0, then Γi is isomorphic to Starm+1. Let Ci denote an optimal 2-path cover of Γi
containing the special 2-path γ := {u1, v, u2}. By Example 1, such a Ci exists. Now, the algorithm adds γ to C ′

i to
obtain C ′

i+1, and subtracts u1, u2 from Vi to get Vi+1. If Vi+1 has at least three elements, then Ci+1 := Ci \ {γ } is an
optimal 2-path cover of Γi+1 ' Starm−1. As Ci ∪ C ′

i = Ci+1 ∪ C ′

i+1, the right-hand side is an optimal 2-path cover
of Γ . Obviously, Ci+1 can be replaced by any other element in Copt(Γi+1). This settles the subcase nv = 0.

Now let Lv = {u1, . . . , um} and Nv = {w}. We claim that there is a Ci ∈ Copt(Γi) such that γ := {u1, v, u2} is
the only 2-path in Ci with a non-empty intersection with {u1, u2}. To check this, start with an arbitrary optimal 2-path
cover C∗

i of Γi . If C∗

i already contains γ , replace every 2-path in C∗

i of the forms {ui , v, u j } and {ui , v, w}, where
i ∈ [1 : 2] and j ∈ [3 : m], by {w, v, u j } and {u3, v, w}, respectively. This yields a new optimal 2-path cover Ci with
the stated properties. If γ is not contained in C∗

i , then u1 and u2 are covered by different 2-paths in C∗

i , say, u1 ∈ γ1
and u2 ∈ γ2. Several cases have to be considered. If γ1 = {u1, v, u j } and γ2 = {u2, v, uk}, with j, k ∈ [3 : m],
replace γ1 and γ2 by γ ′

1 = {u1, v, u2} and γ ′

2 = {u j , v, uk} to obtain Ci unless j = k. If j = k, set γ ′

1 := {u1, v, u2}

and γ ′

2 := {u j , v, w}. If γ1 = {u1, v, u j } and γ2 = {u2, v, w}, with j ∈ [3 : m], replace γ1 and γ2 by γ ′

1 = {u1, v, u2}

and γ ′

2 = {u j , v, w}. Finally, if γ1 = {u1, v, w} and γ2 = {u2, v, w}, replace γ1 and γ2 by γ ′

1 = {u1, v, u2} and
γ ′

2 = {v, w, x}, where x 6= v is a neighbor of w. Note that w ∈ Nv has a degree of at least two. Hence in all cases we
can find a Ci with the stated properties. Now we can proceed as in the subcase nv = 0.

Case 2. Lv = {u1, u2}. If nv = 0, then Γi is isomorphic to Chain3. But {{u1, v, u2}} is the only optimal 2-path cover
of Γi , thus Ci = {{u1, v, u2}}. By the induction hypothesis, C ′

i ∪ Ci is an optimal 2-path cover of Γ . The algorithm
puts C ′

i+1 = C ′

i ∪Ci and terminates with C = C ′

i+1, which is correct. This settles the case nv = 0. Now let Nv = {w}

and assume that Vi+1 = Vi \ {u1, u2, v} contains at least three elements. Hence there is a 2-path {w, x, y} ⊆ Vi+1
in Γ . We claim that there is a Ci ∈ Copt(Γi) containing γ := {u1, u2, v} such that γ is edge-disjoint to all other
2-paths in Ci . First of all we show that there is a C∗

i containing γ . In fact, if C∗

i is any optimal 2-path cover of Γi not
containing γ , then C∗

i must contain the 2-paths γ1 = {u1, v, w} and γ2 = {u2, v, w}. Now replace these 2-paths by
γ ′

1 = {u1, v, u2} and γ ′

2 = {w, x, y}. Thus, w.l.o.g., C∗

i contains γ . Every 2-path in C∗

i of the forms {ui , v, w} and
{v, w, z}, with i ∈ [1 : 2], can be replaced by {v, w, x}, and {w, z, x} or {w, z, y}, respectively. This shows that there

R. Bardeli et al. / Discrete Applied Mathematics 156 (2008) 2855–2866 2861

Fig. 3. 2-path γ produced by Algorithm P2T after leaving main loop.

is a Ci ∈ Copt(Γi) containing γ := {u1, u2, v} such that γ is edge-disjoint to all other 2-paths in Ci . Now we can
proceed as in Case 1.

In the remaining cases we can assume that every perfect vertex has exactly one child (=leaf). Furthermore, we can
assume Lv = {u} and Nv = {w}.

Case 3. `w = 0 and Nw = {v, x}. Suppose that Vi+1 = Vi \{u, v, w} has at least three elements. Let {x, y, z} ⊆ Vi+1
be a 2-path in Γ . In this case, every C∗

i ∈ Copt(Γi) contains the 2-path γ := {u, v, w}. We claim that there is an
optimal 2-path covering Ci of Γi in which every other of its 2-paths is edge-disjoint to γ . In fact, if {v, w, x} is in C∗

i ,
then replace it by {x, y, z}. If {w, x, q} is in C∗

i , then replace it by any 2-path in Γi+1 containing x and q. (Note that x
and q are neighbors; this follows from `w = 0 and nw = 2.) Hence such a Ci exists and we can proceed as in Case 1.
If `w = 0 and Nw = {v}, then Γi ' Chain3 and |Vi+1| = 0. This subcase will be discussed below.

Case 4. `w > 0. Suppose that Vi+1 = Vi \{u, v} has at least three elements. In this case, every C∗

i ∈ Copt(Γi) contains
the 2-path γ := {u, v, w}. We claim that there is an optimal 2-path covering Ci of Γi in which every other of its 2-
paths is edge-disjoint to {u, v} and contains another 2-path involving w. In fact, every 2-path of the form {v, w, q}

with q ∈ Lw ∪ Nw can be replaced by any 2-path γ ′
⊆ Vi+1 in Γ containing w and q. As `w > 0, there is a second

2-path involving w. Thus the claimed Ci exists. Again, we can proceed as in Case 1.

Case 5. `w = 0, but Nw = {v, x1, . . . , xs}, s ≥ 2. Note that the levels of all xi differ by one from λ(w). There is at
most one xi that is of smaller level than w. Hence w.l.o.g. x1 is a perfect vertex. But each perfect vertex has exactly one
child. Let y1 denote the child of x1. In this case, Vi+1 = Vi \{u, v} has at least three elements and every C∗

i ∈ Copt(Γi)

contains the 2-paths γ := {u, v, w} and γ ′
= {y1, x1, w}. We claim that there is an optimal 2-path cover Ci of Γi

in which every other of its 2-paths is edge-disjoint to {u, v} and contains another 2-path involving w. In fact, every
2-path of the form {v, w, x j } can be replaced by any 2-path γ ∗

⊆ Vi+1 in Γ containing w and x j . Thus the claimed
Ci exists. Again, we can proceed as in Case 1. This completes the proof of the loop invariant.

Now suppose |Vi | ≥ 3 but |Vi+1| ≤ 2. Then, by the induction hypothesis, we have a family C ′

i of 2-paths such that
C ′

i ∪ Ci ∈ Copt(Γ) for any optimal 2-path cover Ci of Γi . Fig. 3 shows all subcases where this situation can occur. It
also shows an optimal 2-path cover of Γi computed by Algorithm P2T, when leaving the loop.

Note that the remaining (sub)cases are impossible: Case 4, Subcase `w ≥ 2 implies |Vi+1| ≥ 3; Case 4, Subcase
`w = 1 and nw ≥ 2 yields |Vi | ≥ 6 and finally, nw ≥ 3 in Case 5 implies |Vi | ≥ 7. Altogether this proves the
correctness of our algorithm. �

2862 R. Bardeli et al. / Discrete Applied Mathematics 156 (2008) 2855–2866

Fig. 4. A sample run of Algorithm P2T and the constructed cover. In each iteration, the perfect nodes and the constructed 2-path are highlighted.

Theorem 4. With a suitable input format and suitable data structures, Algorithm P2T runs in linear time. �

Sketch of Proof. Let Γ = (V, E, r) denote the rooted tree in question. Order the non-leaves of Γ lexicographically,
first w.r.t. their level, then within the level from left to right. Suppose v1, . . . , vm are the non-leaves in this ordering.
Let vm+1, . . . , vn denote the remaining vertices of Γ . For i ∈ [1 : m] associate to vi the sequence

[vi] := (i; λi ; `i ; L i ; ni ; ji),

where λi denotes the level of vi , `i is the number of leaves directly linked with vi , L i is a repetition-free sequence of
all elements of Lvi , ni := nvi , and v ji denotes the father of vi (or is undefined, if vi is the root). Furthermore define

Λ1
j := {i ∈ [1 : m] | λi = j ∧ `i ≤ 1} and Λ2

j := {i ∈ [1 : m] | λi = j ∧ `i ≥ 2}.

For the input corresponding to Γ = (V, E, r) Algorithm P2T expects [v1], . . . , [vm] as well as all Λ1
j and Λ2

j . In

particular, we assume Λ1
j and Λ2

j to be presented as lists ordered such that indices of nodes with a higher number of
leaves come before those with a smaller number of leaves. Note that the order in which Algorithm P2T performs the
cases `v ≥ 3 and `v = 2 does not matter. We define a partial priority on the set of all vertex IDs by

Λ2
i+1 > Λ1

i+1 > Λ2
i > Λ1

i

R. Bardeli et al. / Discrete Applied Mathematics 156 (2008) 2855–2866 2863

for all i . I.e., nodes of level i + 1 are always of higher priority than nodes of level i and, on a given level, nodes with
more leaves always have a higher priority than nodes with less leaves. The algorithm always executes a [vi] of highest
priority. From the ordering of Λ1

i and Λ2
i it is clear that perfect nodes are always of highest priority.

Case 1. If `i ≥ 3 and u1, u2 are the first two elements of L i , then Algorithm P2T adds the 2-path {vi , u1, u2} to C ′,
sets [vi] := (i; λi ; `i − 2; L i \ (u1, u2); ni ; ji), and, if the new `i equals 1, deletes i from Λ2

λi
and inserts i into Λ1

λi
.

Case 2. If `i = 2, ji := k, and L i = (u1, u2), then P2T adds the 2-path {vi , u1, u2} to C ′, deletes i from Λ2
λi

, and
updates [vk] in the fourth component: nk := nk − 1. This completes the updating phase unless `k = 0 and the new nk
equals 1. In this case, vk is now a leaf, which accounts for additional update operations. At first, if vp is the father of
vk , then n p := n p − 1, `p := `p + 1 and k is appended to L p. Furthermore, k is implicitly deleted from Λ1

λk
∪ Λ2

λk
by

deleting the list [vk].

The remaining cases are similar and left to the reader. Altogether it shows that every update operation takes only a
constant number of elementary steps, thus the overall complexity is linear in the number of vertices. �

5. Disjoint 2-path covers and tilings

In this section, we examine the complexity of the decision problem, whether a P2-graph Γ with n vertices has a

vertex-disjoint 2-path cover, i.e., n/3
?
= pc(Γ). In the sequel we will call this problem DISJOINT 2-PATH COVER. It

is easily seen to be NP-complete by the following theorem by Kirkpatrick and Hell [4].

Theorem 5. For a graph G let PART[G] be the decision problem asking whether a given graph H admits a G-
partition, i.e., if there are subgraphs G1, G2, . . . , Gd of H such that each Gi is isomorphic to G and the vertex sets
of the Gi form a partition of the vertex set of H. Then PART[G] is NP-complete iff G has a connected component of
at least three vertices. �

Choosing G = Chain3, we obtain

Corollary 2. DISJOINT 2-PATH COVER is NP-complete for general P2-graphs. �

Thus on the one hand, we have a linear time algorithm that constructs optimal 2-path covers for trees. On the other
hand, we know that DISJOINT 2-PATH COVER is NP-complete. This poses the question whether there are simple
types of graphs for which the DISJOINT 2-PATH COVER problem remains NP-complete. In this respect we will now
examine classes of graphs with bounded vertex order and ask for vertex-disjoint 2-path covers of graphs from a given
class only.

Theorem 6. Let Gi denote the class of connected graphs with maximal degree of i . Then the following holds.

(1) For the class G2, DISJOINT 2-PATH COVER is in P.
(2) For the class Gi , i ≥ 3, DISJOINT 2-PATH COVER is NP-complete.

Proof of (1). Note that the class G2 only consists of circles and chains. By the constructions in Section 3, our claim
follows. �

We prepare for the proof of (2). To this end, we will first sketch a proof that DISJOINT 2-PATH COVER is NP-
complete for the class G4. This is done by reduction from the tromino tiling problem. The latter can be shown to be
NP-complete by a construction due to Moore and Robson [5]. This construction carries over to a certain tiling problem
of triangular grids,1 which eventually leads to the proof that DISJOINT 2-PATH COVER is NP-complete for the class
G3. We will first sketch the proof for the class G4. Then we will introduce a tiling problem for triangular grids and its
reduction to DISJOINT 2-PATH COVER for the class G3. Finally we will show that the tiling problem is NP-complete
using a construction similar to that by Moore and Robson.

1 In the following, grids are allowed to have holes.

2864 R. Bardeli et al. / Discrete Applied Mathematics 156 (2008) 2855–2866

Let us have a look at the class G4. We consider the problem of tiling grids of squares with trominos. A grid of
squares is a connected set of congruent squares in the plane, parallel to the axes, such that two squares meet at one
corner or have a common side or do not meet at all. A tromino is a grid of squares composed of exactly three squares.
Allowing trominos to be rotated by multiples of 90 degrees, there are exactly two types of trominos. One with all
squares in a line, which we call the straight tromino, and one forming a right angle, called the right tromino. The
TROMINO TILING problem poses the question whether a given grid of squares can be partitioned by trominos. This
problem reduces to DISJOINT 2-PATH COVER for the class G4 in the following way. Construct a graph from a grid of
n = 3m squares by introducing one vertex for each square. Connect two vertices whenever the corresponding squares
are adjacent. Note that paths of length two are in correspondence with trominos. In this way, there is a vertex-disjoint
2-path cover with cardinality n/3 iff the grid is tileable by trominos.

In order to show NP-completeness for the TROMINO TILING problem, Moore and Robson use a reduction from
CUBIC PLANAR MONOTONE 1-IN-3 SATISFIABILITY. This is a restriction of the well-known SAT problem to
formulas where each clause contains three variables. Such a formula is not only required to be satisfiable but also
exactly one variable in each clause has to be true (1-in-3). Negation of variables is not allowed (monotone) and each
variable has to appear exactly three times in a formula (cubic). Finally, the representation of a formula by a graph has
to be planar. This representation is obtained by introducing two kinds of vertices: one for each clause and one for each
variable. Each variable is connected to each clause in which it appears by an edge. Moore and Robson construct grids
from these graphs that are tileable by right trominos iff the formula is satisfiable. The construction works by designing
grids for variable vertices, clause vertices, and edges. These grids are subgrids of 6-by-6 grids that can be combined in
order to build grids representing formulas of the above type. The construction is used to show that tiling by the right
tromino alone is NP-complete, but is easily seen to work unchanged if the straight tromino is allowed in addition.

We will now consider a tiling problem for the class of triangular grids. By definition, a triangular grid is a set
of congruent equilateral triangles in the plane such that each triangle has one side parallel to the horizontal axis, two
triangles either do not intersect or they share a side or meet at a corner, and each pair of triangles can be connected by a
path inside the grid crossing only sides where two triangles meet. The number of triangles in a grid is called its order.
We are interested in tiling triangular grids by tiles that are triangular grids of order three. TILING TRIANGULAR

GRIDS is the decision problem whether a given triangular grid admits a partition by copies of these tiles. For an
illustration, see Figs. 5–7. Of course such tiling problems cannot have a solution if the order of the grid is not divisible
by three, so we will restrict the problem to grids with order divisible by three. This tiling problem reduces to DISJOINT

2-PATH COVER of G3 in the following way. For a given triangular grid, construct a graph with one vertex for each
triangle in the grid. Connect two vertices by an edge iff the corresponding triangles share a common side. Obviously,
the graph is in G3. Now, there is a tiling of the given triangular grid of order n iff the graph admits a 2-path cover with
vertex-disjoint paths, i.e., iff there is a 2-path cover of cardinality n/3.

Proof of (2). We will now show that TILING TRIANGULAR GRIDS is NP-complete. As in the construction by
Moore and Robson, we provide triangular grids representing variables, clause templates, and connections between
variables and clause templates. In this way, each Cubic Planar Monotone 1-in-3 SAT formula can be transformed into
a triangular grid that is tileable in the above sense iff the formula is satisfiable. Each variable and clause template has
three docking points where connections are allowed. Variable templates are constructed in such a way, that either all
or none of its docking points are covered by tiles from within the template, thus representing truth values. Similarly,
the construction of clause templates forces exactly one of its docking points to be covered by tiles from within the
template.

Fig. 5(a) shows a triangular grid Tx representing a variable x . There are two classes of tilings for this grid with
inner tiles, one incorporating two tiles that leaves the corners uncovered and one with three tiles that covers the whole
grid. If the corners are not covered by inner tiles, the variable represents the value true, otherwise it represents the
value false. Having three corners for the representation of the value corresponds to the restriction that each variable
has to occur exactly three times in a formula.

Fig. 5(b) shows a grid representing a clause template. It consists of an inner ring and three docking points.
Whenever this structure is tiled in a way that all triangles of the inner ring are covered, exactly one of the docking
points is covered. This corresponds to the one variable in a clause that is true.

Fig. 6 shows how variables can be connected to clause templates. These connections are constructed in such a way
that corners of variables are connected to docking points of clause templates. Each connection enforces that a tiling of

R. Bardeli et al. / Discrete Applied Mathematics 156 (2008) 2855–2866 2865

Fig. 5. Triangular grids representing variables and clause templates.

Fig. 6. Connecting variables and clauses.

Fig. 7. Arbitrary length horizontal and vertical connections. Combining both, connections can be bent around corners.

the connection either covers a corner of a variable or a docking point of a clause template. In this way, the propagation
of truth values from variables to clause templates is possible. Moreover, Fig. 7 shows how arbitrary length horizontal
and vertical connections can be constructed and how connections can be bent around corners.

Thus each Cubic Planar Monotone 1-in-3 SAT formula can be transformed into a triangular grid that is tileable iff
the formula is satisfiable. Transforming grids into graphs as described above shows that the DISJOINT 2-PATH COVER

problem is NP-complete even for the restricted subclass of G3 that corresponds to triangular grids. This completes the
proof of Theorem 6. �

2866 R. Bardeli et al. / Discrete Applied Mathematics 156 (2008) 2855–2866

6. Conclusions and future work

For the class of P2-graphs we have derived tight lower and upper bounds for the minimum cardinality of 2-path
covers. We have presented a linear time algorithm that computes such optimal covers for trees. On the negative side,
we have shown that the computation of optimal covers is NP-complete even for planar trivalent graphs. Are there
classes of graphs, different from trees and circles, for which DISJOINT 2-PATH COVER is in P?

Covering graphs with paths of length two is a special case of a whole family of related problems. One can ask for
optimal coverings using paths of a given length k. For k = 1 the EDGE COVER problem is obtained, which is known
to be in P by the work of Norman and Rabin [6]. Besides the paper by Kirkpatrick and Hell [4], we are not aware of
any specific work for k > 2.

A brute force way of applying our results for trees to general graphs would be to construct perfect coverings for
all spanning trees of a given graph using Algorithm P2T and then choosing a covering of minimum cardinality. In
light of Cayley’s Formula stating that a complete graph has nn−2 spanning trees and Kirchhoff’s Theorem giving the
number of spanning trees as 1

n times the product of the non-zero eigenvalues of its admittance matrix, this will not
result in a desirable algorithm. Nevertheless, there might be good heuristics for choosing a small number of spanning
trees resulting in an almost optimal covering.

References

[1] H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N. Shindyalov, P.E. Bourne, The protein data bank, Nucleic Acids
Research 28 (2000) 235–242.

[2] M. Clausen, F. Kurth, A unified approach to content-based and fault tolerant music recognition, IEEE Transactions on Multimedia 6 (5) (2004)
717–731.

[3] M. Clausen, F. Kurth, Content-based information retrieval by group theoretical methods, in: J. Byrnes (Ed.), Computational Noncommutative
Algebra and Applications, NATO Science Series, II. Mathematics, Physics and Chemistry 136 (2004) 29–55.

[4] D.G. Kirkpatrick, P. Hell, On the complexity of general graph factor problems, SIAM Journal on Computing 12 (1983) 601–609.
[5] C. Moore, J.M. Robson, Hard tiling problems with simple tiles, Discrete & Computational Geometry 26 (4) (2001) 573–590.
[6] R.Z. Norman, M.O. Rabin, An algorithm for a minimum cover of a graph, Proceedings of the American Mathematical Society 10 (1959)

315–319.
[7] A. Ribbrock, M. Clausen, Content-based Search in Large Protein Databases (in preparation).
[8] Portal website of the Protein Data Bank (PDB). http://www.rcsb.org/pdb/.

http://www.rcsb.org/pdb/

	A covering problem that is easy for trees but NP -complete for trivalent graphs
	Introduction
	A motivating application
	Minimal 2-path covers
	Fast construction of optimal 2-path covers for trees
	Disjoint 2-path covers and tilings
	Conclusions and future work
	References

