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Abstract

For a logistic equation with a piecewise constant argument which models the dynamics of a population of a
single species undergoing a density-dependent harvesting, Gopalsamy and Liu (J. Math. Anal. Appl. 224 (1998)
59–80), have offered a condition of the growth rate of species and conjectured that this is a necessary and sufficient
condition of not only the asymptotic stability but also the global asymptotic stability for the positive equilibrium of
the equation. But until now, there were no mathematical answers except computer simulations.
In this paper, we establish a mathematically rigorous proof of a partial affirmative answer of this conjecture.
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1. Introduction

Consider the following differential equation with a piecewise constant argument:
dN(t)

dt
= rN(t){1− aN(t) − bN([t])}, t >0,

N(0) = N0>0, (1.1)

wherer, a, b >0 and[t] denote the maximal integer less than or equal tot .

∗ Corresponding author. Tel.: +81352863351; fax: +81332326795.
E-mail address:ymuroya@waseda.jp(Y. Muroya).
1Y. Muroya’s work was partially supported by Waseda University Grant for Special Research Projects 2003A-573, and

Grant-in-Aid for Scientific Research (No. 16540207) by the Japan Society for Promotion of Science.

0377-0427/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2004.11.017

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82785211?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/cam
mailto:ymuroya@waseda.jp


Y. Muroya, Y. Kato / Journal of Computational and Applied Mathematics 181 (2005) 70 – 82 71

This equation models the dynamics of a population undergoing a density-dependent harvesting and
N(t) denotes the biomass (or population density) of a single species at timet . The differential equation
(1.1) is reduced to a difference one (see Eq. (2.3)) which is then studied.
For the casea = 0 in Eq. (1.1), several authors have investigated the stability and oscillatory charac-

teristics of Eq. (1.1) (see[1,2,5,7,8,11–13]and the references cited therein). Gopalsamy[3] proved that
for a = 0 in Eq. (1.1), the positive equilibriumN∗ = 1/b of Eq. (1.1), is globally asymptotically stable,
if and only if, r �2 (see also[9]).
Recently, using elementary methods of differential calculus, Gopalsamy and Liu[4] gave a sufficient

condition for all positive solutions of Eq. (1.1) to converge to the positive equilibrium, and generalized a
result known for a simpler special model with no harvesting.
For the solutionN(t) and the positive equilibriumN∗ = 1/(a + b) of Eq. (1.1), put

x(n) = bN(n), x∗ = bN∗ and � = a/b, for b >0.

Gopalsamy and Liu[4] have considered a Lyapunov functionV (n)= (x(n)−x∗)2, calculated the change
V (n+1)−V (n) along the solutionx(n), and showed that for� >0,N∗ is globally asymptotically stable,
if {

r < + ∞ for ��1,

r �r∗(�) ≡ 1

�
ln(1+ 2�) + ln

1+ �

1− �
for 0< � <1.

Moreover, using computer aided method, they showed that for 0< � <1,N∗ is asymptotically stable, if

r � ˆ̄r(�) ≡ 1+ �

�
ln

1+ �

1− �
. (1.2)

They also conjectured that for 0< � <1, Eq. (1.2) is sufficient forN∗ to be globally asymptotically stable.
Liu andGopalsamy[6] investigated and justified this conjecture by computer plots of solutions for various
values ofr and�.
Note that

r∗(�)�2+ ln
1+ �

1− �
�
1

2

{
2(1+ �) + 1+ �

�
ln

1+ �

1− �

}

< ˆ̄r(�) = 2(1+ �)

(
1+ �2

3
+ �4

5
+ · · ·

)
, for 0< � <1. (1.3)

Muroya [10] established necessary and sufficient conditions for the persistence and contractivity of
solutions, respectively (see[10, Theorem 3.1]). The contractivity condition is a sufficient condition of
the global asymptotic stability for the positive equilibrium.
In this paper, we establish the following two theorems:

Theorem 1.1. For 0< a < b, the positive equilibriumN∗ of Eq. (1.1)is asymptotically stable, if and only
if, Eq. (1.2)holds for0< � = a/b <1.

Theorem 1.2. For 0< a� �̄1b, the positive equilibriumN∗ of Eq. (1.1)is globally asymptotically stable,
if and only if Eq. (1.2)holds, where0< � = a/b� �̄1 and�̄1 = 0.634817· · · is a unique positive solution
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of the equation

ˆ̄r(�) = 2(2+ �)

2− �
. (1.4)

Theorem 1.2 is a partial affirmative answer to the Gopalsamy and Liu’s conjecture in[4].
For each�̄1< � <1, we give a condition in Lemma 2.6 which is satisfied numerically. Using this

condition by computer simulations, we have tested several cases of�. As a result, for�̄1< � <1, we
believe as in Liu andGopalsamy[6], that theGopalsamy and Liu’s conjecture:r � ˆ̄r(�), is also a necessary
and sufficient condition of the global asymptotic stability for the positive equilibriumN∗ of Eq. (1.1).
But for �̄1< � <1, a mathematically rigorous proof of this still remains as an open question.
The organization of this paper is as follows. In Section 2, using a basic relation (see Eqs. (2.3) and (2.4)

in Lemma 2.1) and related several lemmas (see Lemmas 2.2–2.10), we establish necessary and sufficient
conditions for the positive equilibrium of Eq. (1.1) to be asymptotically stable for 0< � <1 and to be
globally asymptotically stable for 0< �� �̄1<1.

2. Lemmas and proofs of theorems

Let us consider a density-dependent harvesting model denoted by Eq. (1.1). Then, by Gopalsamy and
Liu [4], we see that

N(t) = N(n)exp

{
r

∫ t

n

(1− aN(s) − bN(n))ds

}
, n� t < n + 1, n = 0,1,2, . . . ,

N(t) >0 and

d

dt

[
1

N(t)
exp{r(1− bN(n))(t − n)}

]
= ar exp{r(1− bN(n))(t − n)}, t ∈ [n, n + 1). (2.1)

We have the first basic lemma (see[10, Lemma 3.1]).

Lemma 2.1. Assume that{
1+ aN(n)

exp{r(1− bN(n))} − 1

1− bN(n)
>0 if b = 0, or b �= 0 and N(n) �= 1/b,

1+ aN(n)r >0 if b �= 0 and N(n) = 1/b.
(2.2)

Then,

N(n + 1) =




N(n)exp{r(1− bN(n))}
1+ aN(n){(exp{r(1− bN(n))} − 1)/(1− bN(n))} if b = 0, or

b �= 0 and N(n) �= 1/b,
N(n)

1+ aN(n)r
if b �= 0 and N(n) = 1/b

(2.3)
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and

N(n + 1) − N∗ =




1− bN(n)
exp{r(1− bN(n))} − 1

1− bN(n)

1+ aN(n)
exp{r(1− bN(n))} − 1

1− bN(n)

(N(n) − N∗), N(n) �= 1/b,

1− bN(n)r

1+ aN(n)r
(N(n) − N∗), N(n) = 1/b.

(2.4)

Proof. If r = 0, then we seeN(n + 1) = N(n).
Now, assumer >0.
From Eqs. (2.1) and (2.2), we have Eq. (2.3). Then,


N(n+1) = N(n)+{(a + b)N∗−bN(n)}N(n){(exp{r(1−bN(n))}−1)/(1−bN(n))}

1+aN(n){(exp{r(1−bN(n))}−1)/(1−bN(n))} if b=0, or
b �=0 andN(n)�=1/b,

N(n +1) = N(n)+{(a+b)N∗−bN(n)}N(n)r
1+aN(n)r

if b �= 0
andN(n) = 1/b,

from which we have Eq. (2.4).�

Hereafter in this section, we consider the case 0< a < b. Note that ifr=0, thenwe seeN(n+1)=N(n).
For simplicity, we assumer >0 and put

0< � = a/b <1, x(n) = bN(n) >0, x∗ = 1/(1+ �) >0

and forr >0,

f (t; r) =
{

(1− t)e
rt−1
t

, t �= 0,
r, t = 0.

(2.5)

Note thatf (t; r1)�f (t; r2) for any 0< r1�r2 andt <1.
Since for 0< � <1, f (t; r) >0 for t <1,

1+ �f (1− x(n); r) >0,

then Eq. (2.3) is equivalent to

x(n + 1) = x(n)exp{r(1− x(n))}
1+ �f (1− x(n); r)

(2.6)

and Eq. (2.4) is equivalent to

x(n + 1) − x∗ = F(1− x(n); r)(x(n) − x∗), (2.7)

where

F(t; r) = 1− f (t; r)

1+ �f (t; r)
. (2.8)

Now, we offer the following lemmas.
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Lemma 2.2. For −∞ < t < + ∞, it holds that


f (t; r) = r +
∞∑

k=1

(r − k − 1)rktk

(k + 1)! , f (0; r) = r,

f ′(t; r) =
∞∑

k=0

(r − k − 2)rk+1tk

(k + 2)k! , f ′(0; r) = (r − 2)r

2
,

f ′′(t; r) =
∞∑

k=0

(r − k − 3)rk+2tk

(k + 3)k! , f ′′(0; r) = (r − 3)r2

3
,

f ′′′(t; r) =
∞∑

k=0

(r − k − 4)rk+3tk

(k + 4)k! , f ′′′(0; r) = (r − 4)r3

4
.

(2.9)

Proof. Since fort �= 0,

f (t; r) = 1− t

t
(ert − 1),

we have fort �= 0,

f (t; r) = 1− t

t

( ∞∑
k=0

(rt)k

k! − 1

)

= 1− t

t

∞∑
k=1

rktk

k! =
∞∑

k=1

(
rktk−1

k! − rktk

k!
)

= r +
∞∑

k=1

(
rk+1tk

(k + 1)! − rktk

k!
)

= r +
∞∑

k=1

(r − k − 1)rktk

(k + 1)! .

Sincef (0; r) = r, we obtain the first equation of Eq. (2.9) for any−∞ < t < + ∞. Moreover, for
ak = (r − k − 1)rk/(k + 1)!, k�1 we have

lim
k→∞

ak+1

ak

= lim
k→∞

(r − k − 2)r

(r − k − 1)(k + 2)
= 0,

which implies that limk→∞1/ k
√|ak| = +∞ and an infinite seriesr + ∑∞

k=1akt
k is convergent for any

−∞ < t < + ∞. Thus, the functionf (t) is infinitely differentiable on(−∞, +∞) and

f ′(t; r) =
∞∑

k=0

(r − k − 2)rk+1tk

(k + 2)k! ,

f ′′(t; r) =
∞∑

k=0

(r − k − 3)rk+2tk

(k + 3)k! ,

f ′′′(t; r) =
∞∑

k=0

(r − k − 4)rk+3tk

(k + 4)k!
and we obtain Eq. (2.9).�
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The following lemma is a part of[10, Lemma2.2], which gives useful properties of the functionf (t; r).

Lemma 2.3 (See Muroya[10, Lemma 2.2]). For 0< � <1, there exist a strictly monotone increasing
functionr̂(�) of � on the interval(−1,1), and t̂ (�) <1 such that

f (t̂(�); r̂(�)) = 2/(1− �) and f ′(t̂(�); r̂(�)) = 0

and {
f (t; r̂(�)) <2/(1− �) for t <1 and t �= t̂ (�),
f ′(t; r̂(�)) >0 for − ∞ < t < t̂(�) and f ′(t; r̂(�)) <0 for t̂ (�) < t <1.

For 0< � <1, put

ˆ̄r(�) = 1+ �

�
ln

1+ �

1− �
,

t∗ = 1− x∗ = �/(1+ �) and t∗∗ = 2t∗ = 2�/(1+ �).
(2.10)

Then,

0< ˆ̄r(�) < + ∞ and 0< t∗ < t∗∗ <1. (2.11)

Now, we have the second basic lemma.

Lemma 2.4. For 0< � <1, it holds that{
f (t∗; ˆ̄r(�)) = f (t∗∗; ˆ̄r(�)) = 2/(1− �),
f (t; ˆ̄r(�)) >2/(1− �) f or t∗ < t < t∗∗,
f (t; ˆ̄r(�)) <2/(1− �) otherwise,

(2.12)

and 


f ′(t∗; ˆ̄r(�)) =
(1+ �)2

(
1

�
ln

1+ �

1− �
− 2

)
(1− �)�

>0,

f ′′(t∗; ˆ̄r(�)) =
(1+ �)3

(
1

�
ln

1+ �

1− �
− 2

)(
ln

1+ �

1− �
− 2

)
(1− �)�2

,

f ′(t∗∗; ˆ̄r(�)) = (1+ �)2

2�(1− �)

(
1+ �

�
ln

1+ �

1− �
− 2

1− �

)
<0.

(2.13)

Further, for anyr < ˆ̄r(�) and0< � <1,

1+ �f (t; r) >0 for any t <1. (2.14)

Proof. We have

e
ˆ̄r(�)t∗ = 1+ �

1− �
and ē̂r(�)t

∗∗ =
(
1+ �

1− �

)2
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and hence, for 0< � <1,

f (t∗; ˆ̄r(�)) = (1− t∗)e
ˆ̄r(�)t∗ − 1

t∗
= 1

�

(
1+ �

1− �
− 1

)
= 2

1− �
,

f (t∗∗; ˆ̄r(�)) = (1− 2t∗)e
ˆ̄r(�)2t∗ − 1

2t∗
= 1− �

2�

{(
1+ �

1− �

)2

− 1

}
= 2

1− �
.

On the other hand, by Eq. (2.5), we havetf (t; r) = (1− t)(ert − 1), and

tf ′(t; r) + f (t; r) = (1− t)rert − (ert − 1) = {(1− t)r − 1}ert + 1,
tf ′′(t; r) + 2f ′(t; r) = (1− t)r2ert − 2rert = {(1− t)r − 2}rert .

(2.15)

Thus, by Eq. (2.10) and direct computations, we have for 0< � <1,

f ′(t∗; ˆ̄r(�)) =
(1+ �)2

(
1

�
ln

1+ �

1− �
− 2

)
(1− �)�

>0,

f ′′(t∗; ˆ̄r(�)) =
(1+ �)3

(
1

�
ln

1+ �

1− �
− 2

)(
ln

1+ �

1− �
− 2

)
(1− �)�2

.

Moreover, from

t∗∗f ′(t∗∗; r) + f (t∗∗; r) = (1− t∗∗)rert∗∗ − (ert∗∗ − 1),

we have

2�

1+ �
f ′(t∗∗; r) + 2

1− �
= 1− �

1+ �
r

(
1+ �

1− �

)2

−
{(

1+ �

1− �

)2

− 1

}
,

from which we obtain the second equation of Eq. (2.13). Hence, we get Eqs. (2.12) and (2.13).
Sincef (t; r) >0 for t <1, Eq. (2.14) holds for anyr � ˆ̄r(�) and 0< � <1. �

Note that 2< r̂(�) < ˆ̄r(�) for any 0< � <1 and lim�→+0r̂(�) = lim�→+0 ˆ̄r(�) = 2.
For simplicity, for 0< � <1, put

f (t) = f (t; ˆ̄r(�)),
G(t) = F(t)(t − t∗) + t∗ and F(t) = 1− f (t)

1+ �f (t)
.

(2.16)

Then, Eq. (2.12) implies{
f (t∗) = f (t∗∗) = 2/(1− �),
f (t) >2/(1− �) for t∗ < t < t∗∗,
f (t) <2/(1− �) otherwise.

(2.17)

Thus,{
F(t∗) = F(t∗∗) = −1 and F(t) < − 1 for t∗ < t < t∗∗,
G(t∗) = t∗, G(t∗∗) = 0 and G(t) < t∗ for t∗ < t < t∗∗ (2.18)

andt∗ = �/(1+ �) is a unique solution oft = G(t) for t <1.
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Now, by Eqs. (2.6)–(2.8) and (2.16), we see that fortn = 1− x(n) <1, Eq. (2.7) is equivalent to

tn+1 = G(tn), n = 0,1,2, . . . . (2.19)

By definitions, we have that{
tn+1 − t∗ = F(tn)(tn − t∗) and
tn+2 − t∗ = F(tn+1)(tn+1 − t∗) = F(G(tn))F (tn)(tn − t∗). (2.20)

Then, from Eq. (2.20), we easily get the following lemma on the “contractivity” of|tn − t∗|=|x(n)−x∗|.
Lemma 2.5. (a)Assume that fortn <1,

|F(tn)| <1 for tn �= t∗. (2.21)

Then,

|tn+1 − t∗| < |tn − t∗|.
(b) Suppose that fortn <1,

|F(G(tn))F (tn)| <1 for tn �= t∗.

Then,

|tn+2 − t∗| < |tn − t∗|.
Note that for 0< � <1 andt∗ < t < t∗∗, f (t) > f (t∗) = 2/(1− �).
Forf (t) >1/(1− �), put

S(t) = f (G(t)) − f (t)

(1− �)f (t) − 1
. (2.22)

We have the following lemma.

Lemma 2.6. S(t) <0, for t∗ < t < t∗∗, if and only if, |F(G(t))F (t)| <1, for t∗ < t < t∗∗.
In this case, the positive equilibriumN∗ of Eq. (1.1) is globally asymptotically stable.

Proof. By Eq. (2.17), fort∗ < t < t∗∗, f (t) >2/(1− �) >1 andG(t) < t∗. Sincef (t) >1 for t < t∗, we
have that for 0< � <1 andt∗ < t < t∗∗, f (t∗) = f (G(t∗)) > f (G(t)) >1.
Then, by Eqs. (2.16) and (2.17), it holds that fort∗ < t < t∗∗, F (G(t)) <0 andF(t) <−1, and hence,

F(G(t))F (t)�0. Thus, we can easily see that fort∗ < t < t∗∗, |F(G(t))F (t)| <1 is equivalent to

f (G(t)) + f (t) > (1− �)f (G(t))f (t) (2.23)

which is equivalent toS(t) <0, because off (t) >2/(1− �) for t∗ < t < t∗∗.
In this case, by Lemma 2.5(b), Eqs. (2.7), (2.8), (2.10) and (2.16),N∗ is globally asymptotically

stable. �

We have the following lemma.
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Lemma 2.7. For 0< � <1,

f (G(t∗∗)) = f (0) = ˆ̄r(�) <
2

1− �
= f (t∗) (2.24)

and {
S(t∗) = S′(t∗) = 0 and S(t∗∗) = f (0) − f (t∗) <0,

S′′(t∗) = 2

{
f ′′(t∗) − 2

1− �

1+ �
(f ′(t∗))2

}
<0.

Proof. By Eqs. (2.9), (2.16) and (2.18),f (0) = ˆ̄r(�) andG(t∗∗) = 0. Moreover, by Eq. (1.3),

(1− �) ˆ̄r(�) = 2(1− �2)

(
1+ �2

3
+ �4

5
+ · · ·

)
= 2

(
1− 2

1 · 3�2 − 2

3 · 5�4 − · · ·
)

<2,

from which we havê̄r(�) <2/(1− �) = f (t∗) and hence Eq. (2.24) holds. Since

f (t∗) = 2
1−� , F (t∗) = −1, G(t∗) = t∗, G′(t∗) = −1,

G′′(t∗) = 2F ′(t∗) = −2(1+ �)f ′(t∗)
{1+ �f (t∗)}2 = −2(1− �)2f ′(t∗)

1+ �
,

we have that forf (t) >1/(1− �),

S′(t) = f ′(G(t))G′(t) + f ′(t)
{(1− �)f (t) − 1}2 ,

S′′(t) = f ′′(G(t))(G′(t))2 + f ′(G(t))G′′(t) + f ′′(t){(1− �)f (t) − 1} − 2(1− �)(f ′(t))2

{(1− �)f (t) − 1}3
and hence,

S(t∗) = S′(t∗) = 0 and S′′(t∗) = 2

{
f ′′(t∗) − 2

1− �

1+ �
(f ′(t∗))2

}
.

Since

2(1+ �)

2− �
<2(1+ �) <

1+ �

�
ln

1+ �

1− �
for 0< � <1,

we have that for 0< � <1,

S′′(t∗) = −2
(1+ �)3

(1− �)�2

(
2− �

�
ln

1+ �

1− �
− 2

)(
1

�
ln

1+ �

1− �
− 2

)
<0. �

Proof of Theorem 1.1. Since by Lemma 2.7,S(t∗) = S′(t∗) = 0 andS′′(t∗) <0 and the continuity of
S′′(t) at t = t∗, there is a positive constant� such thatt∗ + � <1 and

S(t) <0 for any t∗ − � < t < t∗ and t∗ < t < t∗ + �

which is equivalent to|F(G(t))F (t)| <1 for anyt∗ − � < t < t∗ andt∗ < t < t∗ + �. Hence by Lemma
2.5 and as similar to the proof of Lemma 2.6, we have the conclusion of this theorem.�
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By Theorem 1.1, we establish a mathematical proof of the numerical results in Gopalsamy and Liu[4]
and Liu and Gopalsamy[6] for the asymptotic stability of the positive equilibriumN∗ of Eq. (1.1).
Now, consider sufficient conditions ofS(t) <0 for t∗ < t < t∗∗.

Lemma 2.8. (i) For a, b >0 anda �= b, it holds

a + b

2
>

√
ab >

2ab

a + b
= 2

1/a + 1/b
. (2.25)

(ii) For t∗ < t < t∗∗,

f (G(t)) + f (t) <2f (t∗) impliesS(t) <0. (2.26)

Proof. (i) Eq. (2.25) is easily proved.
(ii) Suppose that fort∗ < t < t∗∗, f (G(t))+f (t) <2f (t∗). Then, fora =f (G(t)), b=f (t), we have

(a + b)/2<2/(1− �). By Eq. (2.25),(a + b)/2<2/(1− �) implies 2ab/(a + b) <2/(1− �), that is,
a + b > (1− �)ab which is equivalent to Eq. (2.23). Thus, we obtain Eq. (2.26).�

Lemma 2.9. If{
G′(t) <0 for t∗ < t < t∗∗ and

f (t)�f (t∗) + f ′(t∗)(t − t∗) for 0= G(t∗∗) < t < t∗∗, (2.27)

thenf (G(t)) + f (t) <2f (t∗), for t∗ < t < t∗∗, and the positive equilibriumN∗ of Eq. (1.1) is globally
asymptotically stable.

Proof. G′(t) <0 for t∗ < t < t∗∗ implies 0= G(t∗∗) < G(t) < G(t∗) = t∗. By Eq. (2.27), we have that
for t∗ < t < t∗∗,

f (t)�f (t∗) + f ′(t∗)(t − t∗),
f (G(t))�f (t∗) + f ′(t∗)(G(t) − t∗).

SinceF(t) < − 1, for t∗ < t < t∗∗ andG(t) = F(t)(t − t∗) + t∗, we have

f (t) + f (G(t))�2f (t∗) + f ′(t∗)(1+ F(t))(t − t∗) <2f (t∗),

and by Lemmas 2.6 and 2.8, we see thatN∗ is globally asymptotically stable.�

For a sufficient condition of Eq. (2.27), further we offer the following lemma.

Lemma 2.10. Assume

f ′′(t∗)�0 and f ′′′(t)�0 for 0= G(t∗∗)� t � t∗∗, (2.28)

then

G′(t) <0 for t∗ < t < t∗∗. (2.29)

Moreover, the second part of Eq. (2.27)holds, if and only if,

f (G(t∗∗))�f (t∗) + f ′(t∗)(G(t∗∗) − t∗). (2.30)
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Proof. By assumptionf ′′′(t)�0, for 0� t � t∗∗, f ′′(t) is a strictly decreasing function on[0, t∗∗], and
by f ′′(t∗)�0, we have thatf ′′(t)�0, for t∗� t � t∗∗.
Moreover, by Lemma 2.2 and Eq. (2.13), there exists a uniquet̄1 such that

0< t∗ < t̄1< t∗∗ and f ′(t̄1) = 0. (2.31)

Hence, we easily get

f (t)�f (t∗∗) and 0� − f ′(t)� − f ′(t∗∗) for t̄1� t � t∗∗.

Therefore, by Eq. (2.17), for̄t1� t � t∗∗,

0�F ′(t) = − (1+ �)f ′(t)

(1+ �f (t))2
� − (1+ �)f ′(t∗∗)

(1+ �f (t∗∗))2
= F ′(t∗∗) = −(1− �)2

1+ �
f ′(t∗∗),

and F(t)�F(t∗∗) = −1.

On the other hand, fort∗ < t < t̄1, f ′(t) >0, and hence,

F ′(t) = − (1+ �)f ′(t)
(1+ �f (t))2

<0 and F(t) < F(t∗) = F(t∗∗) = −1.

Therefore, by Eqs. (2.13) and (2.16), we have that fort∗ < t < t∗∗,

G′(t) = F ′(t)(t − t∗) + F(t)�F ′(t∗∗)(t∗∗ − t∗) + F(t∗∗) = G′(t∗∗)

= �

(
1− �

1+ �

)2

(−f ′(t∗∗)) − 1= −(1− �)(1+ �)

2�
ln

1+ �

1− �
<0.

Thus, we obtain Eq. (2.29).
Now, assume the second part of Eq. (2.27).We see that the second part of Eq. (2.27) and the continuity

of f (t) at t = G(t∗∗) = 0 imply Eq. (2.30).
Inversely, suppose that Eq. (2.30) holds.
Suppose first thatf ′′(G(t∗∗))= ( ˆ̄r(�)−3) ˆ̄r(�)/3>0, that is,̂̄r(�) >3. Then byf ′′(t∗)�0, there exists

a unique solutiont = t̄2 of the equationf ′′(t) = 0, andG(t∗∗) < t̄2� t∗. Since fort̄2� t � t∗∗, f ′′(t)�0,
we have that for̄t2� t � t∗∗,

f (t) = f (t∗) + f ′(t∗)
1! (t − t∗) + f ′′(�)

2! (t − t∗)2

�f (t∗) + f ′(t∗)
1! (t − t∗), t̄2< � < t∗∗.

Sincef ′′(t) >0, for G(t∗∗)� t < t̄2, and

f (t̄2)�f (t∗) + f ′(t∗)(t̄2 − t∗) and f (G(t∗∗))�f (t∗) + f ′(t∗)(G(t∗∗) − t∗),
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by the lower convexity off (t) for G(t∗∗)� t � t̄2, it follows that forG(t∗∗)� t � t̄2,

f (t)�
f (t̄2) − f (G(t∗∗))

t̄2 − G(t∗∗)
(t − G(t∗∗)) + f (G(t∗∗))

= f (t̄2)(t − G(t∗∗)) + f (G(t∗∗))(t̄2 − t)

t̄2 − G(t∗∗)

�
{f (t∗) + f ′(t∗)(t̄2 − t∗)}(t − G(t∗∗)) + {f (t∗) + f ′(t∗)(G(t∗∗) − t∗)}(t̄2 − t)

t̄2 − G(t∗∗)
= f (t∗) + f ′(t∗)(t − t∗).

Thus, in this case, the second part of Eq. (2.27) holds. Iff ′′(G(t∗∗))�0, that is, ˆ̄r(�)�3, then put
t̄2 = G(t∗∗) in the above discussion and similarly we obtain the second part of Eq. (2.27).�

From Lemmas 2.5 and 2.6 and 2.8–2.10, we can prove Theorem 1.2 which is a partial answer to the
Gopalsamy and Liu’s conjecture in[4] that for 0< � <1, Eq. (1.2) is sufficient for the positive equilibrium
N∗ of Eq. (1.1) to be globally asymptotically stable.

Proof of Theorem 1.2. Since by (1.4),̄�1 = 0.634817· · · < 2
3, and for 0< �� �̄1, ˆ̄r(�)�2(2+ �)/(2−

�) <4. Thus, by Eqs. (1.2) and (2.9), we havef ′′′(t)�0, for t �0. Since for 0< �� �̄1,

2(1+ �) < ˆ̄r(�)� 2(2+ �)

2− �
<4<

2(1+ �)

�
,

we have that by Eq. (2.13),

f ′′(t∗) = (1+ �)( ˆ̄r(�) − 2(1+ �))( ˆ̄r(�) − 2(1+�)
� )

(1− �)�
<0.

By Eqs. (2.12) and (2.13),f (t∗) = 2/(1− �) andf ′(t∗)t∗ = {ˆ̄r(�) − 2(1+ �)}/(1− �). Therefore,

f (t∗) − f ′(t∗)t∗ = {2(2+ �) − ˆ̄r(�)}/(1− �)� ˆ̄r(�) = f (0).

Thus, all the conditions in Lemma 2.10 are satisfied. Hence by Lemma 2.9, we get the conclusion.�

Note that Eq. (2.30) is equivalent toˆ̄r(�)�2(2+ �)/(2− �), from which we have that 0< �� �̄1< 2
3

and ˆ̄r(�) <4, and hence,f ′′(t∗) <0 andf ′′′(t)�0, for t �0.
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