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Abstract

For a logistic equation with a piecewise constant argument which models the dynamics of a population of a
single species undergoing a density-dependent harvesting, Gopalsamy and Liu (J. Math. Anal. Appl. 224 (1998)
59-80), have offered a condition of the growth rate of species and conjectured that this is a necessary and sufficient
condition of not only the asymptotic stability but also the global asymptotic stability for the positive equilibrium of
the equation. But until now, there were no mathematical answers except computer simulations.

In this paper, we establish a mathematically rigorous proof of a partial affirmative answer of this conjecture.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Consider the following differential equation with a piecewise constant argument:
dN
dt(t) =rN@){1—aN(@)—bN(t])}, >0,
N(0) = No>0, (1.1)

wherer, a, b > 0 and[¢] denote the maximal integer less than or equal to
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This equation models the dynamics of a population undergoing a density-dependent harvesting and
N(t) denotes the biomass (or population density) of a single species at.tirhe differential equation
(1.1) is reduced to a difference one (see Eq. (2.3)) which is then studied.

For the case = 0 in EqQ. (1.1), several authors have investigated the stability and oscillatory charac-
teristics of Eq. (1.1) (sel.,2,5,7,8,11-13&nd the references cited therein). Gopals§hyroved that
fora =0in Eq. (1.1), the positive equilibriutv* = 1/b of Eq. (1.1), is globally asymptotically stable,
if and only if, r <2 (see als¢9]).

Recently, using elementary methods of differential calculus, Gopalsamy arjd]lgave a sufficient
condition for all positive solutions of Eg. (1.1) to converge to the positive equilibrium, and generalized a
result known for a simpler special model with no harvesting.

For the solutionV (¢) and the positive equilibriunW* = 1/(a + b) of Eq. (1.1), put

x(n)=bN(n), x*=bN* and a=a/b, forb>0.

Gopalsamy and Li{#] have considered a Lyapunov functi@itin) = (x (n) — x*)2, calculated the change
V(n+ 1) — V(n) along the solution (n), and showed that far> 0, N* is globally asymptotically stable,
if

for O< o< 1.

{r<—|—oo for o>1,

1 1
r<r*(0) = - In(1+ 20) + In R
o 1—uo

Moreover, using computer aided method, they showed thatfox € 1, N* is asymptotically stable, if

1 1
Tt (1.2)
1—«o

r<i(a) =

They also conjectured that for0x < 1, Eq. (1.2) is sufficient foN* to be globally asymptotically stable.
Liu and Gopalsamif] investigated and justified this conjecture by computer plots of solutions for various
values ofr anda.

Note that
1 1 1 1
Py <2+n itz toa oy 4 22
1—o 2 1—«o
A O(2 064
<f(oc)=2(l+oc)<l+3+5+--->, for 0<o<1. (1.3)

Muroya [10] established necessary and sufficient conditions for the persistence and contractivity of
solutions, respectively (s¢&0, Theorem 3.1] The contractivity condition is a sufficient condition of
the global asymptotic stability for the positive equilibrium.

In this paper, we establish the following two theorems:

Theorem 1.1. For 0 < a < b, the positive equilibriuniv* of Eq (1.1)is asymptotically stablef and only
if, Eq. (1.2)holds forO<a =a/b < 1.

Theorem 1.2. For 0 < a <a1b, the positive equilibriuniv* of Eqg (1.1)is globally asymptotically stabje
if and only if Eq (1.2)holds where0 < o = a/b< a1 anda; = 0.634817. - - is a unique positive solution
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of the equation

(1.4)

Theorem 1.2 is a partial affirmative answer to the Gopalsamy and Liu’s conjectidie in

For eachx; <« <1, we give a condition in Lemma 2.6 which is satisfied numerically. Using this
condition by computer simulations, we have tested several casesAsfa result, fora; <o <1, we
believe as in Liu and Gopalsarfs], that the Gopalsamy and Liu’s conjecture: 7 (=), is also a necessary
and sufficient condition of the global asymptotic stability for the positive equilibriifrof Eq. (1.1).

But for a1 < « < 1, a mathematically rigorous proof of this still remains as an open question.

The organization of this paper is as follows. In Section 2, using a basic relation (see Egs. (2.3) and (2.4)
in Lemma 2.1) and related several lemmas (see Lemmas 2.2—-2.10), we establish necessary and sufficien
conditions for the positive equilibrium of Eqg. (1.1) to be asymptotically stable for:G< 1 and to be
globally asymptotically stable forQ a<ay < 1.

2. Lemmas and proofs of theorems

Let us consider a density-dependent harvesting model denoted by Eg. (1.1). Then, by Gopalsamy and
Liu [4], we see that

1
N(t):N(n)eXp{r/ (1—aN(s)—bN(n))ds}, n<t<n+1 n=012, ...,
N(t) >0 and

d 1
o [N(t) exp{r(1 —bNn))(t — n)}] =ar expr(L—bN®n))(t —n)}, t € [n,n+1). (2.2)

We have the first basic lemma (946, Lemma 3.1).

Lemma 2.1. Assume that

{ 1+aN(n)6Xp{r(11:£;\\[/((Z)))} ~1 0 b=0, orb#0and Nn) % 1/b, 22

1+aN(n)r>0 if b#0and N(n)=1/b.

Then

N (n) expir (1 — bN (n))) o
1+ aNm){(expir(L— bN(n)} — 1)/(1— bN(n))} -0
N +1) = b £ 0and N(n) # 1/b,

N (n) : _
m if b #£ 0 and N(n) —(12/1;)
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and
1—bN®) eXp{r(i - fﬁf:;)} -1
— (N(n) — N*), N(n) # 1/b,
" expir(l—bNn))} —1
N 1) - N*= 24
(n+1) 1+2N(n) TbN G (2.4)
—bN)r . B
]A—a—N(n)r(N(n) — N%), N(n) =1/b.

Proof. If r =0, thenwese&(n + 1) = N(n).
Now, assume > 0.
From Egs. (2.1) and (2.2), we have Eq. (2.3). Then,

_ Nm)+H@+b)N*—bNm)}IN m){(explr A—bN n)}-1/(A-bN®n))} ¢ 5 __
N(n+1) = TraN(){(expir(1—bN (1))} —1)/(1—bN (1))} if b=0, or
b#0 andN (n)#1/b,

N(n+1) = S it b£0
and N (n) = 1/b,

from which we have Eqg. (2.4).0

Hereafter in this section, we consider the casedO< b. Note thatifr =0, thenwe se& (n+1) =N (n).
For simplicity, we assume> 0 and put

O<a=a/b<1l, x(n)=bN(n)>0, x*=1/(1+2)>0

and forr > 0,

N
f(r;r)={,f1 D= ;fg’ (2.5)

Note thatf (z; r1) < f(¢; r2) for any O< r1 <rp ands < 1.
Since forO<a <1, f(t;r)>0fore <1,

l1+af(1—x(n);r)>0,
then Eq. (2.3) is equivalent to

x(n) expir(1 — x(n))} (2.6)
1+ af(1—x(n);r) |

and Eq. (2.4) is equivalent to

x(n+1) =

x(n+D —x*"=FQA—-xn);r)(xn) —x%), (2.7)
where
o 1=f@r
F(t;r)= —1+acf(t;r)' (2.8)

Now, we offer the following lemmas.
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Lemma 2.2. For —oco <t < + 00, it holds that
X (r—k— 1)rktk

f@r) =r+k§1—(k+1)! . [ =r,
s S (r—k = 2)rktk L, =r
faen=2 —u > JOen="—7%— 2.9)
P (r — k — 3)rkt+2sk P (r — 3)r? '
fen=2 —g g [Oen="5"—
R (r—k=drHE (= 4r?
=L e =g
Proof. Since forr £ 0,
Fltir) = ? @ - 1),
we have forr # 0,
N T R (o)
s 1 (2 )
_ 2 kg pkek=1 Lk
== (e )
r= —=\ K k!
X [ kAl rkik > (r—k— 1)rktk
_r+l§((k+1)! _W)_H; T k1

Since f(0; r) = r, we obtain the first equation of Eq. (2.9) for amyo <t < + co. Moreover, for
ar = (r —k — Dr¥/(k + 1)!, k>1 we have

L ST Gl ek |

k—oo ag k—oo (r —k —1)(k+2)

which implies that lim_, »1/¥[ax] = +oc and an infinite series + > 32 axt* is convergent for any
—00 <t < + o0. Thus, the functiory (¢) is infinitely differentiable on(—oo, +00) and

L s =k =2k

fen=2 k+2k
k=0

PN S G

FEn=2 e
k=0

I N e e s

! (”r)_]; (k + d)k!

and we obtain Eq. (2.9).0
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The following lemmais a part 10, Lemma 2.2])which gives useful properties of the functigxy; r).

Lemma 2.3(See Muroyd10, Lemma 2.2). For 0 <« < 1, there exist a strictly monotone increasing
function?(«) of « on the interval(—1, 1), and#(«) < 1 such that

f@;F@)=2/1—o) and f'{I(@;F(@)=0

and

ft;7(@) <2/(1—a) fort<1andt #1i(a),
f/t;7 () >0 for —co<t<f(x) and f'(t;7(2)) <O forf(e) <t <1
ForO<a <1, put

) 1 1
Foy= — % =2

o — o (2.10)
t*=1—x*=a/(1+a) and **=2t*=2u/(1+ ).
Then,

’

O<7(x)<+oo and O<r* <™ <1.

(2.11)
Now, we have the second basic lemma.
Lemma 2.4. For 0 < « < 1, it holds that
7 @) = f™*: F@) =2/(1— o),
f@r@)>2/(1—a) for t* <t <™, (2.12)
f(t;r(e)<2/(1—a) otherwise
and
1 1
(1+@2(4n1+“—2)
Jowl 8 o — o
SrE* (o) T >0,
1 1 1
1+ a)3 (- In =% —2> (In e —2) (2.13)
FE ) = o 1—ua l1-o
’ (1 — a)o? ’
. A+0)? (14+a, 1+« 2
=N — | _ 0.
Far(@) 20((1—0:)( o nl—oc l—oc><
Further, for anyr <7(x) and0 <o < 1,
14 af(t;r)>0 foranyr<1. (2.14)

Proof. We have

— o 1—«o

) ) 2
g — 1+ and €@ = (1+ “)
1
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and hence, for &« < 1,

3 g 1 1/1 2
F @) = A - = = ( e 1) -

11—« — o

R P2t . 2
f(t**;’:(a)):(l_zmef 1_1 oc[(l—l—oc) _1]: 2

2t* 20 1—« 1—o

On the other hand, by Eqg. (2.5), we hayér; r) = (1 —1)(¢' — 1), and

tf' )+ ftsr) =0 —nre’ — (@ — D) ={1L-tr— e’ +1,
tf" )+ 2f () = (L — )r2e’ — 2rd’ = {(1— t)r — 2}re’".

Thus, by Eg. (2.10) and direct computations, we have far0< 1,

11
(1+oc)2(—|n +°‘—2>
o 1 0

(2.15)

—a
(1— o)
1 1 1
A+ (=i =% —2) (In 2% _ >
o l1—u 1—o

1 — a)o?

fl(*; r(0) =

’

f@ R ) =
Moreover, from
t**f/(t**, r) + f(t**, r) — (1 _ t**)rert** _ (ert** . 1)’

we have

200, . 2 l1—-a (14« 2 1+« 2
= . — _ -1
1+ocf(t ’r)+l—a l—i—ar(l—rx) l1—o '
from which we obtain the second equation of Eq. (2.13). Hence, we get Egs. (2.12) and (2.13).
Sincef(t;r) > 0forr <1, EQ. (2.14) holds for any<r(x) and O<o<1. O

Note that 2< 7(x) < () for any O< o < 1 and lim,_, o7 (o) = lim,_, 4or () = 2.
For simplicity, for O< o < 1, put
f@) = ft: 7 (@),

G = Ft)(t — ") +1* and F()=——1@ (2.16)

1+af(t)
Then, Eq. (2.12) implies
fa*)=f@™)=2/(1-w),
{f(l)>2/(1—ac) for t* <t < 1**, (2.17)
f(@)<2/(1—0a) otherwise

Thus,

{F(z*):F(r**):—l and F(t)<—1 fort*<t<rt*,

Gt =r* Gt*™) =0 and G(r) <r* forr* <r<r** (2.18)

andr* = o/(1 + «) is a unigue solution of = G(¢) forr < 1.
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Now, by Egs. (2.6)—(2.8) and (2.16), we see thattfoe 1 — x(n) < 1, Eq. (2.7) is equivalent to
tht1=G(t,), n=0,12.... (2.19)
By definitions, we have that

Int1 — t*=F(ty)(t, —t*) and
{zn+z = Fligs 1) (tnst — %) = F(G()) F ) (1 — 1), (2.20)

Then, from Eq. (2.20), we easily get the following lemma on the “contractivity,of r*| = |x (n) — x™*|.
Lemma 2.5. (a) Assume that for, < 1,

|F(ty)| <1 for g, #r*. (2.21)
Then

ltn1 — t7] <ty — 171,
(b) Suppose that fo, < 1,

|F(G(ty))F(t,)| <1 fort, #t*.
Then

ltn2 = t*] <ty — t*].

Note that for O<x <1 andr* <t <t™*, f(¢t) > f(t*) =2/(1 — ).
For f(¢) > 1/(1 — «), put
J (@)
L-a)f() -1
We have the following lemma.

S(t) = f(G(1)) — (2.22)

Lemma 2.6. S(r) <O,fort* <r <™, ifand only if |F(G())F(¢)| <1, for t* <t < t**.
In this casethe positive equilibriuniv* of Eqg (1.1)is globally asymptotically stable

Proof. By Eq. (2.17), for* <t <t**, f(t) >2/(1—a) > 1andG () <t*. Sincef (¢t) > 1 forr < r*, we
have thatfor <« <1 andr* <t <™, f(t*) = f(G(*) > f(G(1)) > 1.

Then, by Egs. (2.16) and (2.17), it holds thatfokx r < **, F(G(t)) <0andF(t) <— 1, and hence,
F(G())F(tr)>0. Thus, we can easily see that for<r < **, |F(G(t))F(r)] < 1is equivalent to

FG@)+ f@)> A —o) f(G@)f(D) (2.23)

which is equivalent t&(r) < 0, because of (¢) > 2/(1 — «) for t* <t < ¢**.
In this case, by Lemma 2.5(b), Egs. (2.7), (2.8), (2.10) and (26)is globally asymptotically
stable. O

We have the following lemma.
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Lemma2.7. ForO<a<1,

- 2
FGE™) = fO)=r(w) < 14 = f(t") (2.24)

and

1 _
S"(1%) =2 {f”(r*) - Z—Z(f/(t*))z} <o0.

{S(I*) =S8t =0 and St**)= f(0) — f(t*) <0,
1+

Proof. By Egs. (2.9), (2.16) and (2.18),(0) = r(«) andG(¢**) = 0. Moreover, by Eq. (1.3),

. 2 4 2 2
(l—oc)f(oc):2(l—oc2)(l+%+%+~--):2(l—foc2—foc4—--~><2,

from which we havé(a) <2/(1—a) = f(¢t*) and hence Eq. (2.24) holds. Since
[ =%, Ft*)=-1, G@t*) =", G'(t") =-1,
2049 f'@) 2= )2 f")
I+af@y? 14
we have that forf (1) > 1/(1 — «),

G//(l,*) — 2F/(f*) —

’

f'(@®
{A—o)f(r) — 1)
S"(t) = f(GO)G'1))% + f(G1)G" (1) +

§'(1) = (GG (1) +

FIOUL =) f(t) — 1} — 2(L— ) (£ (1))?
Q- f@)-1)3

and hence,
* !k 11 g% {//* 1_0‘/*2}
S¢H=8¢"=0 and S"(*) =23 "(¢t") —2—— (")} .
1+«

Since

2(1 1 1

( +o¢)<2(1+a)< +o¢|n +o
2— o o 1—«o

we have that for Gz « < 1,

1+a)3 /2— 1 1 1
S/’(t*):_z((l+°;)2( “in 1+°‘—2><—|n 1+°‘—2)<o. 0
— o)A o — o o — o

forO<a<1,

Proof of Theorem 1.1. Since by Lemma 2.7§(t*) = §’(+*) = 0 andS”(1*) < 0 and the continuity of
S”(r) att = t*, there is a positive constafisuch that* + § <1 and

S(t)y<0 foranyr*—o6<tr<t*™ and "<t<t*+96

which is equivalent toF (G (r)) F (¢)| < 1 for anyr* — 6 <t < ¢* andr* <t <t* + . Hence by Lemma
2.5 and as similar to the proof of Lemma 2.6, we have the conclusion of this theorem.
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By Theorem 1.1, we establish a mathematical proof of the numerical results in Gopalsamy gd Liu
and Liu and Gopalsam] for the asymptotic stability of the positive equilibriuNt of Eq. (1.1).
Now, consider sufficient conditions 6fz) <0 fort* <t < #**.

Lemma 2.8. (i) Fora, b >0anda # b, it holds

a-+b 2ab 2
2 TV e T T b (2.25)
(i) Fort* <t < r**,
f(G@®) + f(t)<2f(*) impliesS(r) <O. (2.26)

Proof. (i) Eq. (2.25) is easily proved.

(ii) Suppose that for* <t <t™*, f(G@))+ f(t) <2f(t*). Then, fora= f(G(t)), b= f(t), we have
(a+b)/2<2/(1—0a). By EQ. (2.25),a + b)/2<2/(1 — «) implies 22b/(a + b) <2/(1 — a), that is,
a + b > (1 — «)ab which is equivalent to Eq. (2.23). Thus, we obtain Eq. (2.26).

Lemma 2.9. If

G'(t)<0 fort*<t<t*™ and
FOLSE)+ /@@ —1*) for 0= G@E*) <t <1,

thenf(G@)) + f(t) <2f(t"), for t* <t <t**, and the positive equilibriumv* of Eg (1.1)is globally
asymptotically stable

(2.27)

Proof. G'(t) <0 fort* <t <t** implies 0= G(r**) < G(t) < G(t*) = t*. By Eq. (2.27), we have that
for t* <t <™,

FOLFE) + f/@) @ —1"),
GO fE) + f[ENG@) — ).

SinceF(t) < —1,fort* <t <t™ andG () = F(¢t)(t — t*) + t*, we have
FO+ fFGO)L2f™) + f/¢) A+ F)(t — %) <2f(17),
and by Lemmas 2.6 and 2.8, we see tNdtis globally asymptotically stable.O

For a sufficient condition of Eq. (2.27), further we offer the following lemma.

Lemma 2.10. Assume

(<0 and f"(t)<0 for 0= G(*™)<r<t™, (2.28)
then

G'(t) <0 fort* <t <t*. (2.29)
Moreover the second part of Eq2.27)holds if and only if

G N FE™) + fENGE™) —17). (2.30)
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Proof. By assumptionf”’(¢) <0, for 0<r <t™*, f”(¢) is a strictly decreasing function df, **], and
by f”(t*)<0, we have thay” (r) <0, fort* <r <r**.
Moreover, by Lemma 2.2 and Eq. (2.13), there exists a unigsech that
O<t*<n<t™ and f'(r1)=0. (2.31)
Hence, we easily get
fO=f@™) and 0K — f/(1)< — f/@¢™) forn<e<e™.
Therefore, by Eq. (2.17), fog <r <t**,

A4 f0 A4S« (1 — oc)2

O<F'(t) = 5 < 5
e ocf(t)) L+ af @)
and F)<F@*) =—

= F'(™) = £,

On the other hand, faf* <t <11, f/(t) > 0, and hence,

L+ f'(1)
(L+oaf(1))?

Therefore, by Egs. (2.13) and (2.16), we have thatfor r < 1**,

F'(t) = — <0 and F(t)<F({t"=F(t™) =-1

G'(t)=F ()t —t*)+ F()SF' (™)™ = t*) + F(™) = G' (™)

B 1—« - _ (1—oc)(l+oc) 1+«
= <1+ )( () — o Inl_cx<0.

Thus, we obtain Eqg. (2.29).
Now, assume the second part of Eq. (2.27). We see that the second part of Eq. (2.27) and the continuity
of f(¢t) att = G(+**) = 0 imply Eq. (2.30).
Inversely, suppose that Eq. (2.30) holds.
Suppose first that” (G (1**)) = (r («) — 3)7 (x) /3> 0, that is; (x) > 3. Then byf” (*) <0, there exists
a unique solution = 1, of the equationf”(r) = 0, andG (**) < rp, <t*. Since forr, <r <t**, (1) <0,
we have that for, <r <t**,

f(t)=f(t*)+f( )(t—t)+f@( 1*)?

2!
f(*)

T t—1t", h<é<t™

<[ +
Since f”(t) > 0, for G(t**) <t <1, and

F@ISFA) + f ) —1") and  f(GE™)) <[ + f/E)(GE™) — 1),
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by the lower convexity off (r) for G (1**) <t <1, it follows that for G (r**) <t <1,

f(t2) — f(G(*™)) o o
f)< H_Ga™ (t = GE™) + f(G(E™))
_ f()(t = G(t™) + f(G{t™) (T2 — 1)
B 2 — G(t*%)
- {f)+ [t — )}t — G&™) +{f (™) + frENG ™) —t")}(t2 — 1)
b tp — G(t*%)

=f@*) + f/@@ —1%).

Thus, in this case, the second part of Eq. (2.27) holds."fG (+**)) <0, that is,7(2) <3, then put
2 = G(t*) in the above discussion and similarly we obtain the second part of Eq. (2.217).

From Lemmas 2.5 and 2.6 and 2.8—-2.10, we can prove Theorem 1.2 which is a partial answer to the
Gopalsamy and Liu’s conjecturef] that for 0< o < 1, Eq. (1.2) is sufficient for the positive equilibrium
N* of Eq. (1.1) to be globally asymptotically stable.

Proof of Theorem 1.2. Since by (1.4)%1 = 0.634817.-- < % and for O< a<aq, i%(oc) <22+ w)/(2—
x) < 4. Thus, by Egs. (1.2) and (2.9), we hafé(r) <0, forr >0. Since for O< a <1,

22+ a) 2(1+ o)
<4< ,
—a o

21+ o) <7 (0) <

we have that by Eqg. (2.13),

L+ @) (F(@) — 21+ @) (F(x) — 212
= <

(1— o) 0

1@

By Egs. (2.12) and (2.13),(t*) = 2/(1 — o) and f/(t*)t* = (7o) —2(1L+ x)}/(1 — «). Therefore,
[ = [ = {22+ 0) = F(@)}/(L = 2) =7 (@) = £(0).
Thus, all the conditions in Lemma 2.10 are satisfied. Hence by Lemma 2.9, we get the conclasion.

Note that Eq. (2.30) is equivalent fox) <2(2 + o)/ (2 — ), from which we have that @ a<a1 < %
andr(2) < 4, and hencef” (t*) <0 andf"(r) <0, forr >0.
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