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We study quasilinear elliptic equations of Leray�Lions type in W1, p (0), maxi-
mum principles, nonexistence and existence of solutions, the control of lower
(upper) bound for essential supremum (essential infimum) of solutions, sign-chang-
ing solutions, local and global oscillation of solutions, geometry of domain,
generating singularities of solutions, and lower bounds on constants appearing in
Schauder, Agmon, Douglis, and Nirenberg estimates. � 2001 Academic Press

1. INTRODUCTION

In this article we consider the nonlinear equation

&div a(x, u, {u)= f (x, u)+ g(x, u) |{u| p in D$(0),

{ f (x, u) # L1 (0), g(x, u) |{u| p # L1 (0), (1)

u # W1, p (0),

where 0 is an open, possibly unbounded set in RN, with sufficiently regular
boundary �0, N�1, 1< p<�, and a(x, ', !) a Carathe� odory function
satisfying the conditions of Leray�Lions type (see [13]),

_:>0, a(x, ', !) } !�: |!| p, a.e. in 0, ' # R, ! # RN, (2)

{_a1�0, _a2>0, _h # L p$ (0), \' # R, \! # RN,
|a(x, ', !)|�h(x)+a1 |'| p&1+a2 |!| p&1 a.e. in 0,

(3)

{\' # R, \!, !* # RN, !{!*,
(a(x, ', !)&a(x, ', !*)) } (!&!*)>0, a.e. in 0

(4)
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Here f (x, ') and g(x, ') are also Carathe� odory functions and

| g(x, ')|� ĝ('), a.e. in 0, ' # R, (5)

with ĝ to be specified later.
First, in Section 2 we prove two types of maximum principles for

solutions of (1) in W 1, p (0) & C(0� ) and then apply these results to obtain
nonexistence of solutions (including nonexistence of positive solutions
and spherically symmetric solutions) and existence of solutions in
W 1, p

0 (0) & L� (0).
In Section 3 we deal with the control of lower (upper) bound for ess sup

(ess inf) of solutions and apply these results to the investigation of sign-
changing solutions. Precisely, for arbitrary given four real numbers
m0<m1�M1<M0 we find some sufficient conditions on f (x, ') and
g(x, ') such that for any solution u of (1) satisfying ess inf�0 u�m0 and
ess sup�0 u�M0 we have: m0�ess inf0 u<m1 and M1<ess sup0 u�M0 .
In particular, for m1=M1=0 we obtain that such solutions of (1) change
sign in 0.

In Section 4 we obtain lower bounds of oscillation of solutions, and
derive lower bounds on constants appearing in Schauder a priori estimate
and in Agmon, Douglis and Nirenberg a priori estimate. We find some
natural conditions on the right hand side of (1) that insure existence of
singularity of solutions in a given point. In Section 5 we present several
extensions and variations of the main control result. We also provide
several examples indicating that the best oscillation estimate is obtained
using a family of deformation retracts of 0.

In proving the main results, we will use a combination of two simple
methods: the method of integration on the level set [u>t], often used in
the symmetrization and relative rearrangement technique (see Talenti [24]
and Rakotoson and Temam [22]) and second, the method of localization
on the arbitrary given ball Br (x) in 0, often used in the qualitative and
harmonic analysis (see Lions [14] and Kenig [12]). Both techniques are
exploited simultaneously by a suitable choice of test functions . from
W1, p

0 (0) & L� (0), and applying various inequalities.
Finally, we refer to a few interesting results concerning our subject here.

First, it was proved in Granas and Guennoun [10] that in the case of
N=1 there exists at last one solution that has the controlled norm in the
space L� (0). Next, in Gilbarg and Trudinger [9] and Barles and Murat
[3], we find various maximum principles for problems having the general
structure as in (1). Regarding the results of Barles and Murat [3], note
that we do not impose any sign condition on g(x, '). Finally, in Ni and
Serrin [18] one can find some nonexistence results of classical radial
solutions.
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2. MAXIMUM PRINCIPLES

In this section we are interested in proving two types of maximum prin-
ciples and in deriving some nonexistence results for (1). Firstly, we present
an easy and useful weak maximum principle of the first type, and its dual.

Throughout this paper, whenever we have a condition involving
behaviour of u on the boundary of 0, we automatically assume the
analogous condition of u at infinity for 0 unbounded. In other words, we
include infinity as belonging to the boundary of unbounded domains. For
example, if ess inf�0 u�m0 (as in Theorem 1) then we also assume
limR � � ess inf[ |x|�R] & 0 u�m0 , similarly as in [7, Corollaire 4, p. 289].

Theorem 1. Assuming (2), (3) and (5), let the functions f (x, ') and ĝ(')
satisfy

{ f (x, ')�0 a.e. in 0, ' # (&�, m0),
ĝ # L1 (&�, m0) & L� (&�, m0),

(6)

where m0 is a given real number (m0�0 in the case when 0 is unbounded ).
Then for each supersolution u of (1) such that ess inf�0 u�m0 we have
ess inf0 u�m0 .

Theorem 2 (Dual Result). Assuming (2), (3), and (5), let the functions
f (x, ') and ĝ(') satisfy

{ f (x, ')�0 a.e. in 0, ' # (M0 ,�),
ĝ # L1 (M0 , �) & L� (M0 , �),

(7)

where M0 is a given real number (M0�0 in the case when 0 is unbounded ).
Then for each subsolution u of (1) such that ess sup�0 u�M0 we have
ess sup0 u�M0 .

Proof of Theorem 1. Let t, h # R, h>0, and define functions

&1, for {<t&h,

S &
t, h({)={1

h
({&t), for t&h�{<t, (8)

0, for {�t,

G&(s)={
1
: |

s

&�
ĝ(') d', for s�m0 ,

(9)

G& (m0), for s>m0 ,

.=e&G&(u)S &
t, h(u), u # W 1, p(0). (10)
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If u is our supersolution, then for all t�m0 , since ess inf�0 u�m0 , we have
that . # W 1, p

0 (0) & L� (0), .�0. Applying the test function . to

&div a(x, u, {u)� f (x, u)+ g(x, u) |{u| p (11)

we obtain

1
h |

[t&h�u<t]
|{u| p dx�

eG&(t)

: _&|
[u<t&h]

f (x, u) e&G&(u) dx

+|
[t&h�u<t]

e&G&(u) | f (x, u)| dx& . (12)

Using (6) and passing to the limit as h � 0 we derive

d
dt \|[u<t]

|{u| p dx+�0, for a.e. t<m0 . (13)

Since the function t [ �[u<t] |{u| p dx is nondecreasing, we conclude that

d
dt \|[u<t]

|{u| p dx+=0, a.e. t<m0 , (14)

that is,

|
[u<t]

|{u| p dx=const.�0, a.e. t<m0 . (15)

The family of sets At=[u<t] is decreasing as t � &�, and A&�=
[u=&�] is negligible due to u # L p (0), so we have that

const.= lim
t � &� |

[u<t]
|{u| p dx=|

A&�

|{u| p dx=0. (16)

Therefore �0 |{(u&t)&| p dx=�[u<t] |{u| p dx=0 for a.e. t<m0 .
Since 0 is open, it can be represented as at most countable union

�i # I 0i of its components of connectedness 0i . We conclude that
(u&t)&=consti (t)�0 a.e. in 0i for all i # I, and a.e. t<m0 .

If for some i # I and t<m0 we have consti (t)>0, then we obtain
u=t&consti (t)<t in 0i , and this yields a contradiction:

m0>t>ess inf
�0i

u�ess inf
�0

u�m0 .
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Hence, we have consti (t)=0 for all i # I and a.e. t<m0 . This is equivalent
to u�t a.e. in 0 for a.e. t<m0 . Taking essential supremum over a.e. t<m0

in ess inf0 u�t we obtain the desired inequality ess inf0 u�m0 . K

The proof of Theorem 2 is obtained analogously by defining .=
e&G+(u)S +

t, h(u)�0, where

0, for {�t,

S +
t, h({)={1

h
({&t), for t<{�t+h, (17)

1, for {>t+h,

G+ (s)={
1
: |

�

s
ĝ(') d', for s�M0 ,

(18)

G+ (M0), for s<M0 .

From the preceding two results we immediately derive the following
consequences:

Corollary 1 (Nonexistence of Nontrivial Solutions). Assuming (2),
(3), and (5), let the functions f (x, ') and ĝ(') satisfy

&sgn(') f (x, ')�0, a.e. in 0, ' # R and ĝ # L1 (R) & L� (R).

(19)

Then u=0 is the unique solution of (1) in W 1, p
0 (0).

Corollary 2 (Nonpositive Solutions). Assuming (2), (3), and (5), let
the functions f (x, ') and ĝ(') satisfy

f (x, ')�0 a.e. x in 0, ' # R+ and ĝ # L1 (R+) & L� (R+). (20)

Then for each solution u # W 1, p
0 (0) of (1) we have u�0.

Corollary 3 (Nonnegative Solutions). Assuming (2), (3), and (5), let
the functions f (x, ') and ĝ(') satisfy

f (x, ')�0 a.e. in 0, ' # (&�, 0) and ĝ # L1 (&�, 0) & L� (&�, 0).

(21)

Then for each solution u # W 1, p
0 (0) of (1) we have u�0.
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Corollary 4 (Existence Result in W 1, p
0 (0) & L� (0)). Assuming

(2)�(7) with m0�0 and M0�0, 0 bounded, let

| f (x, ')|� f� (x) a.e. x # 0, \' # (m0 , M0),

f� # L1 (0), ĝ # L1 (R) & L� (R). (22)

Then there exists a solution u # W 1, p
0 (0) of (1) such that m0�u(x)�M0 a.e.

in 0, and each solution of (1) has its values contained in [m0 , M0] a.e.

Proof. It is easy to see that m0 and M0 are subsolution and supersolu-
tion of (1) respectively. To prove this, it suffices to show that the coercivity
condition (2) of the Carathe� odory vector function a(x, ', !) implies that

a(x, ', 0)=0 a.e. x # 0, \' # R. (23)

Indeed, let us fix x # 0 and ' # R, and assume, contrary to the claim, that
a(x, ', 0){0. Then there exists =>0 such that |!|�= implies a(x, ', !){0.
On the other hand, for |!|== we have a(x, ', !) } !�:= p>0, and the
Krasnoselski principle (see, e.g., [16, p. 250]) implies that there exists !0 ,
|!0 |<= such that a(x, ', !0)=0, a contradiciton.

The claim follows from existence result in [5]. K

Note that the conclusion of Corollary 1 does not hold in general in the
case when ĝ � L1 (R). In fact, if we take for example a(x, ', !)=|!| p&2 !,
f (x, ')=0, g(x, ')=ĝ(')=1, and 0=BR (0), 0<R<1, then (1) reduces
to

&div( |{v| p&2 {v)=|{v| p in BR (0). (24)

However, if 1< p�N then this equation has an unbounded solution
v # W 1, p

0 (BR (0)), and it can be defined explicitely by

v(x)={|
|x|

R

N& p
r(N&1)�( p&1)&r

dr

(N&1) \log log
1

|x|
&log log

1
R+

if 1< p<N

if p=N.
(25)

For the proof of this interesting fact see [6].
Now we can state maximum principle of the second type and its dual.

Note that we drop the assumption ĝ # L1 (R).
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Theorem 3. Assuming (2), (3) and ĝ # L� (R) in (5) (ĝ # L� (&�, 0)),
let the function f (x, ') satisfy

{there exist =>0 and an open, bounded set A/0 such that A=/0 and
f (x, ')�0 a.e. in A= , ' # R (' # (&�, 0)),

(26)

where A= denotes the =-neighbourhood of A. Then for each (nonpositive)
supersolution u of (1) satisfying ess infA=

u>&� we have ess infA u�
ess infA="A� u.

Theorem 4 (Dual Result). Assuming (2), (3), and ĝ # L� (R) in (5)
(ĝ # L� (R+)), let the function f (x, ') satisfy

{there exist =>0 and an open, bounded set A/0 such that A=/0 and
f (x, ')�0 a.e. in A= , ' # R (' # R+).

(27)

Then for each (nonnegative) subsolution u of (1) satisfying ess supA=
u<�

we have ess supA u�ess supA="A� u.

Proof of Theorem 3. First of all, let 8 be a function 8 # D(0),
0�8�1 satisfying

{8(x)=1, x # A; 8(x)=0, x # 0"A� = ,
8(x)>0, x # A= .

(28)

Applying the test function .=&(em(u&t)&
&1) 8 p # W 1, p

0 (0) & L� (0) to
(11) we derive that for m>0 large enough we have

H(t)�c } F(t), \t # R, (29)

where c=1�(m:&& ĝ&L�)>0, and

H(t)=|
[u<t]

|{u| p 8 p dx and

{F(t)=|
[u<t]

|a(x, u, {u)| 8 p&1p |{8| em(u&t)& dx

&|
[u<t]

f (x, u) (em(u&t)&
&1) 8 p dx. (30)

Since the second integral appearing in the definition of F(t) is nonnegative,
while the first one is zero for all t<ess infA="A u (note that [u<t] &
(A="A� )=<), we conclude that

F(t)�0, \t # (&�, ess inf
A="A�

u). (31)
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Now H(t)=0 for all t # (&�, ess infA="A� u), that is:

|{(u&t)&| p 8 p=0, a.e. in 0, \t # (&�, ess inf
A="A�

u). (32)

Since 8(x)>0 for x # A= from the preceding equality we derive that
(u&t)&=consti (t) a.e. on each component of connectedness A i

= of A= ,
where i # I and the index set I is at most countable. Assume that
consti (t)>0 for some i # I and some t<ess infA="A� u. Then u=t&consti (t)
<t a.e. in A i

= , and we obtain a contradiction:

ess inf
A="A�

u�ess inf
Ai

="A�
u<t.

Therefore consti (t)=0 for all i # I and all t<ess infA="A� u. This is equivalent
to

u�t a.e. in A= , \t # (&�, ess inf
A="A�

u). (33)

Finally, taking ess inf in (33) over A= for fixed t, and then supremum over
t, we obtain the claim. K

Theorem 4 is proved by using .=(em(u&t)+
&1) 8 p. Now from the

preceding two results we can derive the following consequences:

Corollary 5 (Strong Maximum Principle). Assume (2), (3), and (5)
hold with ĝ # L� (R).

(a) If f (x, ')�0, ( f (x, ')�0) a.e. in 0, ' # R and u # W1, p (0)
& C(0� ) is a supersolution (subsolution) of (1), then it does not possess a
local minimum (maximum) in 0;

(b) If f (x, ')=0 a.e. in 0, ' # R and u # W1, p (0) & C(0� ) is a solution
of (1), then it possesses neither local minimum nor local maximum in 0.

Corollary 6 (Nonexistence of a Solution That Is Positive, Decreasing,
and Spherically Symmetric near the Origin). Assuming (2), (3), and (5)
with ĝ # L� (R+), let the function f (x, ') be such that

{_R>0 such that BR (0)/0 and
f (x, ')�0, a.e. in BR (0), ' # R+.

(34)

Then there is no solution u # W 1, p
0 (0) & L� (0) of (1) that is positive,

decreasing, and spherically symmetric in BR (0).
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Corollary 11. Assuming (2), (3), and ĝ # L� (R) in (5), let A be a
regular, bounded, open subset of 0 such that A//0.

If f (x, ')�0, (or f (x, ')�0) for a.e. x # A, ' # R, then for each supersolu-
tion (subsolution) u of (1) in W 1, p

0 (0) & C(0) we have

min
A�

u�min
�A

u (max
A�

u�max
�A

u). (35)

3. CONTROL OF LOWER (UPPER) BOUND FOR
ESS SUP (ESS INF) OF SOLUTIONS

In Theorem 1 and Theorem 2 we were able to obtain a global control
over the upper (lower) bound of essential supremum (essential infimum) of
solutions. Now we would like to find some sufficient conditions on f (x, ')
and g(x, ') that permit local control over the lower (uper) bound of essen-
tial supremum (essential infimum) of solutions. We then describe a class of
quasilinear problems whose solutions are sign�changing in 0. Next, in the
following section we derive a priori estimates of oscillation of solutions
from below. Using this we find some sufficient conditions ensuring that all
solutions be singular in a given point.

We start with the main result of this section and its dual.

Theorem 5 (Control of Essential Supremum of Solutions). Assume
that conditions (2) and (3) are satisfied. Let x1 # 0, R1>0 be such that
B2R1

(x1)�0. Let us choose m0 , M1 # R, m0<M1 , so that the following
conditions are fulfilled,

_ f1 # L1 (BR1
(x1)), f (x, ')� f1 (x)

a.e. x # BR1
(x1), ' # I1=(m0 ,M1), (36)

f (x, ')�0 a.e. x # B2R1
(x1)"BR1

(x1), ' # I1 ,

g(x, ')#0 a.e. x # B2R1
(x1), ' # I1 , (37)

|
BR1

(x1)
f1 (x) dx> inf

s>0

1
s

[$� H+D( |I1 |+s) p], (38)

where

H=|
B2R1

(x1)
[h(x) p$+a p$

1 m� p] dx, m� =max[ |m0 | , |M1 |],

D=\ p
$+

p&1 (2N&1) |BR1
(x1)|

R p
1

, $=
p$

3 p$&1 $� , $� =
:

a p$
2

. (39)
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Then each supersolution of (1) has the property

if ess inf
B2R1

(x1)

u�m0 then ess sup
B2R1

(x1)

u>M1 (40)

Proof. To simplify, we denote R1 by R, and BR1
(x1) by BR . The proof

rests on the use of localization function 8 of the ball BR . It is easy to see
that for any c0>1 there exists a function 8 # C �

0 (0) with the following
properties (a more general result is stated in Lemma 5 in Section 5 below),

0�8�1,

8(x)=1 for x # BR and 8(x)=0 for x # 0"B2R ,
(41)

8(x)>0 on B2R and |{8|�
c0

R
on 0.

Assume contrary to the claim in the theorem that u # W1, p (0) is a
supersolution of (1) satisfying u�m0 a.e. on B2R and u�M1 a.e. on B2R .
Let us choose any t # R and define a function

.=&(u&t)& 8 p. (42)

Since . # W 1, p
0 (0) & L� (0), .�0, we can multiply the inequality corre-

sponding to (1) by . and integrate by parts. Using u�M1 a.e. on B2R , this
yields

|
[u<t] & B2R

a(x, u, {u) } {u 8 p dx

�|
[u<t] & B2R

[|a(x, u, {u)| (t&u) p8 p&1 |{8|

& f (x, u)(t&u) 8 p] dx. (43)

Applying Young's inequality we see that the first term in square brackets
is dominated by

$
p$

|a(x, u, {u)| p$ 8 p+\ p
$+

p&1

(t&u) p |{8| p. (44)

Now using the elementary inequality

|a(x, u, {u)| p$�3 p$&1[h(x) p$+a p$
1 |u| p+a p$

2 |{u| p]
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we obtain that

L |
[u<t] & B2R

|{u| p 8 p dx

�$� |
B2R

[h(x) p$+a p$
1 m� p] dx

+\ p
$+

p&1

|
[u<t] & B2R

(t&u) p |{8| p dx

&|
[u<t] & B2R

f (x, u)(t&u) 8 p dx, (45)

where L=:&$� a p$
2 =0. Since u�M1 a.e. on B2R , then from (36) and (37)

we conclude that for any t>M1

0�$� H+\ p
$+

p&1

(t&m0) p \c0

R+
p

|B2R"BR |&(t&M1) F1 , (46)

where F1=�BR
f1 (x) dx.

Let s>0 be arbitrary and substitute t=M1+s. Note that |B2R "BR |=
(2N&1) |BR |. As c0 can be chosen arbitrarily close to 1, we can let c0 � 1.
Now we obtain a contradiction by estimating F1 and taking the infimum
over s>0,

F1� inf
s>0

1
s _$� H+\p

$+
p&1 (2N&1) |BR |

R p (s+|I1 | ) p& . K

Theorem 6 (Control of Essential Infimum of Solutions). Assume that
conditions (2) and (3) are satisfied. Let x2 # 0, R2>0 be such that
B2R2

(x2)�0. Let us choose m1 , M0 # R, m1<M0 so that the following con-
ditions are fulfilled,

_ f2 # L1 (BR2
(x2)), f (x, ')� f2 (x)

a.e. x # BR2
(x2), ' # I2=(m1 ,M0), (47)

f (x, ')�0 a.e. x # B2R2
(x2)"BR1

(x1), ' # I2 ,

g(x, ')#0 a.e. x # B2R2
(x2), ' # I2 , (48)

|
BR2

(x2)
f2 (x) dx<& inf

s>0

1
s

[$� H+D( |I1 |+s) p], (49)
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where D, $, and $� are as in Theorem 5, and

H=|
B2R2

(x2)
[h(x) p$+a p$

1 m� p] dx, m� =max[ |m1 |, |M0 |].

Then each subsolution of (1) has the property

if ess sup
B2R2

(x2)

u�M0 then ess inf
B2R2

(x2)

u<m1 . (50)

Corollary 8 (Simultaneous Control of ess sup and ess inf of Solutions
of (1) in W1, p (0)). Assume that four real numbers

m0<m1�M1<M0 , (51)

are given such that sign conditions (6) and (7) hold. Let the conditions of the
preceding two theorems be satisfied on the balls B2R1

(x1) and B2R2
(x2), that

we assume to be disjoint. Then for each solution u # W1, p (0) of (1) such that
ess inf�0 u�m0 and ess sup�0 u�M0 we have

m0�ess inf
0

u<m1 and M1<ess sup
0

u�M0 . (52)

Remark 1. Our sufficient conditions (6) and (7) for (52) to hold are
almost necessary in the following sense. Assume that m1�u�M1 a.e. on
the boundary of 0, and assume that (52) holds. Then neither f (x, ')�0
a.e. x # 0, ' # (M1 , M0), nor f (x, ')�0 a.e. x # 0, ' # (m0 , m1). This can
easily be seen by contradiction, applying Theorem 1 or Theorem 2 to
problem (1), where we modify f (x, ') to f� (x, ') by f� (x, ')= f (x, M0) for
a.e x # 0, '�M0 or f� (x, ')= f (x, m0) for a.e x # 0, '�m0 , respectively,
and analogously for g(x, ').

Corollary 9 (Sign-Changing Solutions). Let the conditions of the
preceding corollary be fulfilled with m1=M1=0. Then for each solution
u # W1, p (0) of (1) such that ess inf�0 u�m0 and ess sup�0 u�M0 we have
|0+|{0 and |0&|{0 where 0\=[x # 0 : u(x)>0 (u(x)<0)].

It is easy to see that in the last two theorems the expression 3 p$&1 can
be changed to 2 p$&1 if either h(x)#0 on B2R1

(x1) or a1=1. If both
h(x)#0 on B2R1

(x1) and a1=0, then we can use a better estimate for
|a(x, u, {u)| in (44) involving 1 instead of 3 p$&1. In this case the infimum
in (38) is attained for

s=
|I1 |

p&1
, (53)

and we obtain the following result.
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Corollary 10. Assume that the conditions of Theorem 5 are satisfied
with h(x)#0 on B2R1

(x1), a1=0, and with (38) replaced by

|
BR1

(x1)
f1 (x) dx> p \ p

$� +
p&1 (2N&1) |BR1

(x1)|

R p
1

|I1 | p&1, (54)

and $= p$$� in (39). Then each supersolution of (1) has property (40).

Example 1. Corollary 10 can be exploited to the study of problem of
reachability in control theory of elliptic equations. Let us consider the con-
trol system governed by

&2u= f (x, u)+q(x), u # H 1
0(0),

and q(x) # U. Here

U=[q # L p (0) : _c # R+, q(x)=c } /BR(x1) (x)]

is the set of admissible controls, where the ball B2R (x1)�0 is given in
advance, and /BR

is the characteristic function of BR (x1). We study the
problem of reachability of the prescribed set I=[M1 , �) on the ball
B2R (x1), M1�0, i.e., finding the admissible control q(x) # U such that for
the corresponding solution u(x) (if it exists) we have ess supB2R

u # I. For
the sake of simplicity we assume that all solutions of our control problem
are nonnegative (for this it suffices to assume that f (x, ')�0 for a.e. x # 0,
'�0, see Corollary 3). We also assume that f (x, ')�0 for a.e.
x # B2R (x1)"BR (x1), ' # (0, M1), ess inf' # (0, M1) f (x, ') # L1 (BR (x0). Using
Corollary 10 it is easy to see that for any control q(x)=c } /BR(x1) (x) # U

such that

c�
1

|BR (x1)| _DM1&|
BR (x1)

ess inf
' # (0, M1)

f (x, ') dx&
we have that the corresponding solution (if it exists) reaches the set I, i.e.
ess sup0 u�M1 . Here D=4(2N&1)( |BR (x1)|�R2) .

Proof. Indeed, take any =>0 and apply Corollary 10 to m0=0 and
M1&= with

f1 (x)=q(x)+ ess inf
' # (0, M1&=)

f (x, ').

Then we have ess sup0 u>M1&=, and the result follows by letting
= � 0. K
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If we have a linear control problem with f (x, ')= f (x) # L p (0), p>N,
where we assume 0 to be bounded, of class C1, 1, and f (x)�0 on
B2R (x1)"BR (x1), then maxB2R

u depends continuously and monotonically
on q # U, i.e., on c. Let M0=max0 u(x) corresponding to c=0. Then for
every M1�M0 there exists a unique c # R such that for q=qc we have
maxB2R(x1) u(x)=M1 . Continuous and monotone dependence follows easily
using maximum principle, Theorem 9.15, and Corollary 7.11 in [9].

4. OSCILLATION OF SOLUTIONS, SINGULARITIES

In this section we apply the main result of the preceding section. An
important role is played by the notion of oscillation of a function u: 0 � R
on 0:

osc
0

u=ess sup
0

u&ess inf
0

u. (55)

Lemma 1. Assume that conditions (2) and (3) are satisfied with a1=0.
Let x1 # 0, R>0 and m0 # R be such that B2R (x1)�0 and

h(x)#0 and g(x, ')#0 for a.e. x # B2R (x1), ' # (m0 ,�), (56)

f (x, ')�0 for a.e. x # B2R (x1), ' # (m0 ,�). (57)

If u # W1, p (0) is a supersolution of (1) such that u�m0 a.e. in B2R (x1), then

osc
B2R (x1)

u�bR p$ ess inf
BR (x1)_(m0 , �)

f (x, ') p$�p, (58)

where

b=
$�

p p$ (2N&1) p$�p , $� =
:

a p$
2

. (59)

Proof. Let us define

K= ess inf
BR(x1)_(m0 , �)

f (x, ').

If K=0 the claim is trivial. Let us assume therefore that K>0 and define
f1 (x)#K on BR (x1). We choose M1 , M1>m0 , such that for I1=(m0 , M1)
the following inequality holds:

K> p \ p

$� +
p&1 2N&1

R p |I1 | p&1.
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Then by Corollary 10 we obtain that for any such M1 our supersolution u
has property (40). The above inequality is equivalent to

M1<bR p$K p$�p+m0 .

It is clear that for every =>0 there exists M1 satisfying the above inequality
and M1>bR p$K p$�p+m0&=. Using property (40) of u we then obtain

ess sup
B2R (x1)

u>M1>bR p$K p$�p+m0&=,

and if we let = � 0, we arrive to

ess sup
B2R (x1)

u�bR p$K p$�p+m0 . (60)

This means that oscB2R (x1) u�ess supB2R (x1) u&m0�bR p$K p$�p. K

Lemma 2 (Dual Result). Assume that conditions (2) and (3) are satis-
fied with a1=0. Let x2 # 0, R>0, and M0 # R be such that B2R (x2)�0
and

h(x)#0 and g(x, ')#0 for a.e. x # B2R (x2), ' # (&�, M0),

(61)

f (x, ')�0 for a.e. x # B2R (x1), ' # (&�, M0). (62)

If u # W1, p (0) is a subsolution of (1) such that u�M0 a.e. in B2R (x2), then
retaining the same b and $� as in the preceding lemma we have

osc
B2R (x2)

u�b R p$ ess inf
BR (x2)_(&�, M0)

| f (x, ')| p$�p. (63)

Most of the remaining theorems and corollaries in this section also have
their duals, but we do not formulate them here. Now we want to extend
our oscillation estimate to problems whose right-hand side may depend on
the gradient as well.

Theorem 7 (Local Oscillation Estimate). Let (2), (3) hold with a1=0
and h(x)#0 on B2R (x1)�0. Consider the quasilinear problem

&div a(x, v, {v)=F (x, v, {v) in D$(0),
(64)

F (x, v, {v) # L1 (0), v # W 1, p (0),
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where F (x, ', !) is a Carathe� odory function (measurable with respect to x
and continuous with respect to remaining variables). Assume that m0 # R is
such that F (x, ', !)�0 for a.e. x # B2R (x1), '�m0 and ! # RN. If v is a
supersolution in W1, p (0) such that v�m0 on B2R (x1), then we have

osc
B2R (x1)

v�b R p$ ess inf
BR (x1)_(m0 , �)_RN

F (x, ', !) p$�p, (65)

where b is a constant defined by (59).

Proof. Let us define f (x, ')=F (x, ', {v), where v is a supersolution.
Then u=v is a supersolution of (1) with g(x, ')#0, and Lemma 1
applies. K

As a consequence we obtain variational a priori bound for oscillation on
the whole of 0.

Corollary 11 (Global Oscillation Estimate). Let (2), (3) hold with
a1=0 and h(x)#0 on 0. Assume that there exists m0 # R such that
F (x, ', !)�0 on 0_(m0 , �)_RN. Then we have global oscillation estimate
for supersolutions of (64) satisfying v�m0 on 0:

osc
0

v�b sup

B2R (x1)�0

x1 # 0
R>0

R p$ ess inf

! # RN

x # BR (x1)
' # (m0 , �)

F (x, ', !) p$�p. (66)

In particular, if the variable x in F is separated, that is, F (x, ', !)=
K(x) f (', !), with K(x)�0 on 0, f (', !)�0 for '�m0 , ! # RN, then

osc
0

v�b [ sup

B2R (x1)�0

x1 # 0
R>0

R p$ ess inf
x # BR (x1)

K(x) p$�p] ess inf

! # RN

' # (m0 , �)

f (', !) p$�p. (67)

An immediate consequence of Theorem 7 is the following result, where
the notion of inner radius of 0 is introduced. It shows that a priori
estimate of oscillation of a solution depends heavily on the geometry of 0.
More general results will be stated in Section 5.

Corollary 12 (A Priori Estimate Involving Inner Radius of Domain).
Let (2), (3) hold with h(x)#0 on 0 and a1=0, and let F (x, ', !) be a
Carathe� odory function such that F (x, ', !)�0 on 0_(m0 , �)_RN. Then
for every supersolution v of (64) we have

osc
0

v�b \r0 (0)
2 +

p$

ess inf
0_(m0 , �)_RN

F (x, ', !) p$�p. (68)
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Here r0 (0) is inner radius of 0, i.e., the radius of largest ball that can be
inscribed into 0:

r0 (0)=sup[r>0 : _x1 # 0, Br (x1)�0]. (69)

If the sup in (69) is achieved for r0=r0 (0) and x1 (which is the case for
any bounded 0), then it suffices to assume that F (x, ', !)�0 on
Br0

(x1)_(m0 , �)_RN, and to have Br0 �2 (x1) instead of 0 under ess inf in
(68). Also note that if there exists K>0 such that F (x, ', !)�K for x on
an open subset 0$ of 0 such that r0 (0$)=�, '�m0 , ! # RN, then (65)
implies that osc0$ v=�.

Example 2. In the case when the left-hand side of (64) is &2v we have
p=2, :=a2=1, and b=1�4(2N&1) , which yields the following a priori
estimate for supersolutions such that v�m0 on 0:

osc0 v�
r0 (0)2

16(2N&1)
ess inf

0_(m0 , �)_RN
F (x, ', !). (70)

It is interesting that our a priori estimates of oscillations of solutions
imply lower bounds on constants appearing in Schauder estimates and
Agmon, Douglis, and Nirenberg estimates (see, e.g., [9, 16]). We illustrate
this on the boundary value problem

&2u= f (x) in 0,
(71)

u=, on �0.

As is well known, if 0 is a bounded domain of class C2, %, % # (0, 1), and
f # C0, % (0), , # C2, % (�0), then for the corresponding solution we have
Schauder's a priori estimate:

&u&C2, %(0)�c(& f &C 0, %(0)+&,&C 2, %(�0)), (72)

where c does not depend on f and ,.

Corollary 13. Under the above conditions on 0 we have the following
lower bound on the constant c appearing in Schauder's estimate:

c�
r0 (0)2

16(2N&1)
. (73)
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Proof. We take f #1 and ,#0. Since f (x) is positive, then u�0, which
implies osc0 u=&u&L� , hence &u&2, %�osc0 u. It suffices to substitute f #1
into (72) and combine with Corollary 12:

c=c & f &C 0, %(0)�&u&C 2, %(0)�&u&L�(0)=osc
0

u�
r0 (0)2

16(2N&1)
. K

Now we assume that 0 is a domain of class C2, ,#0, and 1<q<�.
Then there exists cq>0 such that for all f # Lq (0) we have the following
Agmon, Douglis, and Nirenberg estimate for solutions of (71),

&u&W 2, q�cq & f &Lq , (74)

where cq does not depend on f.

Corollary 14. Assume that 0 is a bounded domain of class C2 and
q>N�2 and ,#0. Then the constant cq appearing in Agmon, Douglis, and
Nirenberg estimate has the lower bound

cq�
r0 (0)2

16(2N&1) Dq |0|
, (75)

where Dq is the imbedding constant of W 2, q(0)�C(0� ).

Proof. Since &u&L��Dq &u&W 2, q , osc0 u=&u&L� , the result follows
again by substituting f #1 and using Corollary 12. K

Example 3. Let us consider the problem

&2p u=*eu in D$(0),

eu # L1
loc(0), u # W 1, p

loc (0),

where we assume that *>0, and 0 is an unbounded domain such that
r0 (0)=�. Then this problem has no essentially bounded solutions. This
follows immediately from Corollary 12, which can be easily extended to
spaces of locally integrable functions. For p=2, 0=RN, N>2, this
problem has been studied by Mignot and Puel in [15]. They discovered
that for any x0 # RN the function u(x)=&2 ln |x&x0 |&ln *+ln 2(N&2)
is a solution. Note that this function is unbounded, which is in accordance
with our result. Also note that for 0=RN"BR (x0) this solution is also
unbounded and has no singularity in 0.
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Now we describe a class of quasilinear equations of the form (64) such
that any supersolution u possesses a singularity in a given point x0 # 0� ,
that is, oscx0

u=�, where oscillation in the point x0 is defined by

osc
x0

u= lim
r � 0

osc
Br (x0) & 0

u.

We also introduce the following notion. We say that a point x0 # �0 has
the weak cone property if there exists d # (0, 1) and a sequence of balls
Brk

(xk)/0 such that xk � x0 , rk � 0 as k � �, and rk>d |xk&x0 | for all
k. It is easy to see that if a boundary point x0 has the cone property, then
it has the weak cone property. The converse is not true. Cusps do not have
weak cone property.

Corollary 15 (Generating Singularities of Solutions). Let (2) and (3)
hold with a1=0 and h(x)#0 on BR (x0) & 0. Assume that F (x, ', !) has a
singularity of order # at x0 # 0� with #> p, that is, there exists a constant
C>0 and s�0 such that

F (x, ', !)�
C

|x&x0 | # } |log |x&x0 | | s

a.e. x # BR (x0) & 0, \' # (m0 ,�), \! # RN. (76)

If x0 # �0, we also assume that x0 has the weak cone property. Then any
supersolution u of (64), such that u�m0 on BR (x0) & 0, is singular in x0 . If
#= p and s=0, then oscx0

u>0,

osc
x0

u�{
bC p$�p, for x0 # 0,

bC p$�p

(d &1+1) p , for x0 # �0.

Proof. (a) Let #> p and assume that x0 � �0. Note that for any s # R
the function r [ C�r# |log r| s is decreasing on the interval (0, r0), r0=e&s�#.
Applying Theorem 7, see (65), and taking r< 1

2min(R, r0 , d(x0 , �0)), we
obtain

osc
B2r (x0)

u�b C p$�p r p$(1&#�p) |log r|&sp$�p � +� as r � 0. (77)

(b) Let the point x0 # �0 have the weak cone property, and #> p.
We can assume without loss of generality that rk<(d &1+1)&1 r0 for all k,
where r0=e&s�#. Then the infimum of the right-hand side of (76) restricted
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to the ball Brk
(xk) is achieved for yk=x0+(|xk&x0 |+rk) ((xk&x0 )�

|xk&x0 | ) # �Brk
, and we have

osc
B2rk (xk)

u�br p$
k C p$�p[( |xk&x0 |+rk)| # } |log( |xk&x0 |+rk)| s] p$�p

�
bC p$�p

(d &1+1)# } r p$(1&#�p)
k } |log(d &1+1) rk |&sp$�p � �

as k � �,

where we used the inequality |xk&x0 |<d &1rk . This implies that
oscx0

u=�. K

Remark 2. (a) Note that since integrability of F(x, u, {u) implies
integrability of the right-hand side of (86), which is equivalent to #<N,
then we necessarily have p<N and # # ( p, N) in the above corollary. This
is in accordance with the imbedding theorem of Sobolev spaces for p>N,
since in this case each supersolution u # W 1, p (0) of (64) is in L� (0), and
therefore it cannot have a singularity.

(b) Analogous result can be stated for subsolutions such that u�M0

a.e. in BR (x0), with C<0 and reverse inequality in (76), and
' # (&�, M0). Owing to (77) it is natural to conjecture that provided (76)
then each solution of (64) has singularity of order (#& p)

p$
p =

#& p
p&1 .

(c) We can still relax the growth condition on F (x, ', !) near x0 in
Corollary 15. If x0 # 0� , it suffices to assume that there exists d # (0, 1), a
sequence of balls B2rk

(xk)/0 such that xk � x0 , rk � 0, rk>d |xk&x0 | (if
xk #x0 for all k, this condition is superflouous), F (x, ', !)�0 for a.e.
x # _ kB2rk

(xk), '�m0 , ! # RN, and

lim
k � �

r p
k ess sup

Brk (xk)_(m0 , �)_RN
F (x, ', !)=�.

Even more general sufficient condition on F (x, ', !), which ensures that a
given point x0 # 0� is singular for any weak solution in Corollary 15, can
be seen in Example 4.

5. EXTENSIONS AND EXAMPLES RELATED TO THEOREM 5,
GEOMETRY OF DOMAIN

A. Here we extend the control result that was stated in Theorem
5 for balls in 0 to bounded, open subsets A. It will enable us to obtain
better estimates then with balls for some classes of functions F (x, ', !), since
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we shall have opportunity to choose subsets A that are deformation
retracts of 0.

We shall need the following two elementary results.

Lemma 3. Let (X, d ) be a metric space, A and B disjoint subsets such
that d(A, B)>0. Then the mapping

f (x)=
d(x, A)

d(x, A)+d(x, B)
(78)

is Lipschitz continuous and its smallest Lipschitz constant is equal to
1�d(A, B).

Lemma 4. Let f : RN � R be a Lipschitz function with the Lipschitz con-
stant L. If \ # C �

0 (0) is a regularizing function (i.e., \�0, supp \=B= (0),
�RN \(x) dx=1), then the convolution \ V f is also lipschitzian with the same
Lipschitz constant L.

This will permit us to construct a suitable localization function.

Lemma 5 (Smooth Localization of Measurable Subsets). Let 0 be an
open subset of RN. Assume that A is a measurable subset of 0 and r>0 such
that Ar �0, where Ar is r-neighbourhood of A. Then for any c0>1 there
exists a function 8 # C� (0) such that

0�8�1, (79)

8=0 on 0"Ar , 8=1 on A, (80)

|{8|�
c0

r
. (81)

Proof. It suffices to prove that for any =>0 small enough there exists
8 having properties (79), (80) and |{8|� 1

r&2= . First we define a con-
tinuous localization function f : 0 � R by

f (x)=
d(x, 0"Ar&=)

d(x, A=)+d(x, 0"Ar&=)
, (82)

where we choose =<r�2. From Lemma 3 we see that it is lipschitzian and
its Lipschitz constant is

L=
1

d(A= , 0"Ar&=)
=

1
r&2=

.
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Let us define

8=\= V f,

where \= is a regularizing function having support equal to B= (0). By
Lemma 4 for every x # 0 we have

|{8(x) |�sup
y # 0

|{8( y) |�L=
1

r&2=
,

and 8 has desired properties. K

Now we can formulate the result generalizing our Theorem 5.

Theorem 8 (Control of Essential Supremum of Solutions). Assume
that conditions (2) and (3) are satisfied. Let A be a measurable subset of 0
and r>0 such that Ar �0 and Ar"A is bounded. Let us choose m0 , M1 # R,
m0<M1 , so that the following conditions are fulfilled:

_ f1 # L1 (A), f (x, ')� f1 (x) a.e. x # A, ' # I1=(m0 ,M1), (83)

f (x, ')�0 for a.e. x # Ar"A, ' # I1 , g(x, ')#0 a.e. x # Ar , ' # I1 ,

(84)

|
A

f1 (x) dx> inf
s>0

1
s

[$� H+D( |I1 |+s) p], (85)

where

H=|
Ar

[h(x) p$+a p$
1 m� p] dx, m� =max[ |m0 |, |M1 |],

(86)

D=\p
$+

p&1 |Ar "A|
r p , $=

p$
3 p$&1 $� , $� =

:
a p$

2

.

Then each supersolution of (1) has the property:

if ess inf
Ar

u�m0 then ess sup
Ar

u>M1 . (87)

Proof. The proof is the same as in Theorem 5. One only has to change
BR to A, B2R to Ar , while the passage c0 � 1 is justified by Lemma 5. K

Using the same proofs as before, one can carry over all consequences of
Theorem 5 to this more general setting. Since we need A to be bounded in
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the proof of the analogue of Lemma 1, from now on we will assume that
A is bounded and open. We formulate only the following oscillation result,
which includes its dual as well.

Theorem 9. Let (2), (3) hold with a1=0 and h(x)#0 on Ar , where A
is bounded, open, and Ar �0. Assume that F (x, ', !) is a Carathe� odory
function and m0 , M0 are in R� , m0<M0 , such that F (x, ', !) does not change
sign on Ar_(m0 , M0)_RN. If v is a solution of (64) in the space W 1, p (0),
such that m0�v�M0 on Ar , then we have a local oscillation estimate,

osc
Ar v

�
:

(a2 p) p$ Qp (A, r) p$�p ess inf
A_(m0 , M0)_RN

|F (x, ', !)| p$�p, (88)

where

Qp (A, r)=
r p |A|
|Ar"A|

. (89)

An immediate consequence is

Corollary 16 (Variational A Priori Bound). If h(x)#0 on 0, m0 ,
M0 # R� , m0<M0 , then we have a global oscillation estimate of solutions of
(72) satisfying m0�u�M0 on 0,

osc
0

u�
:

(a2 p) p$ sup
(A, r) # AF

[Qp (A, r) ess inf
A_(m0 , M0)_RN

|F (x, ', !)|] p$�p, (90)

where AF is the family of all pairs (A, r), A�0 is bounded and open, r>0
such that Ar �0 and F (x, ', !) does not change sign on Ar_(m0 , M0)_RN.

Example 4 (Generating Singularities). Let x0 # 0� and assume that
there exists a sequence of bounded, open sets Ak # AF , and rk>0,
k=1, 2, ..., such that diam([x0] _ Ak

rk
) � 0 as k � �, where diam is the

diameter of a set. If there exist m0 , M0 # R� such that

lim
k � �

Qp (Ak, rk) ess inf
Ak_(m0 , M0)_RN

|F (x, ', !)|=�,

then by Theorem 9 any solution u of (64), such that m0�u�M0 a.e. on
�k Ak

rk
, has a point of singularity in x0 , i.e., oscx0

u=�. This generalizes
Corollary 15, see also Remark 2(c). In particular, if both m0 and M0 are
finite, then (64) has no solutions u such that u(x) # [m0 , M0] a.e. in
�k Ak

rk
.
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Remark 3. (a) We can also allow m0 and M0 to depend on (A, r) in
the above results. Also, if u is a solution for which we know an a priori
bound of the form |{u|�c a.e. in 0 with Euclidean norm, then it is easy
to see that oscillation estimates of solutions in Theorems 7 and 9 and in all
their consequences still hold with essential infimum of F (x, ', !) taken over
the smaller set BR (x1)_(m0 , M0)_Bc (0) and A_(m0 , M0)_Bc (0),
respectively.

(b) Theorem 9 can be extended to strip-like domains A=A$_
(0, �), such that A$/RN&1 is bounded, open, Ar �0, and with Qp (A, r)
in (88) replaced by Qp (A$, r)=r p |A$|�|A$r"A$| . To prove this, it suffices to
fix t>0 and apply Theorem 9 to bounded, open set At=A$_(0, t), and
then let t � �. It is easy to see that Qp (At, r) � Qp (A$, r) as t � �.

B. It is of obvious interest to study the quantity

qp (0)= sup
(A, r) # A1

Qp (A, r)= sup
(A, r) # A1

r p |A|
|Ar"A|

(91)

which represents a p-numeric characteristic of the set 0. We illustrate this
in the case p=2, corresponding to the Laplace operator. For the sake of
simplicity we assume that F (x, ', !)�K>0 for a.e. x # 0, '�m0 , ! # RN,
and let u be any supersolution of (1) such that u�m0 on 0. Note that in
this case AF=AK=A1 , and

osc
0

u� 1
4 q2 (0) } K.

Example 5. Let us consider estimates of oscillations of solutions on a
two-dimensional annulus 0/R2 with radii R1<R2 . Since its inner radius
is 1

2 (R2&R1), then using (70), i.e., approximation of 0 by balls, we obtain

osc
0

u� 1
192 (R2&R1)2 K. (92)

However, a better estimate can be obtained if we use subannuli A of 0
such that Ar=0. Using elementary differential calculus it is easy to see
that the quotient r2 |A| � |Ar"A| attains its maximum over this family of
subannuli for r= 1

4 (R2&R1). Then from (90) we obtain an estimate of
oscillation which is three times better than in (92):

osc
0

u� 1
64 (R2&R1)2 K. (93)
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This example indicates that the reason for improved oscillation estimate
lies in the fact that we used the family of deformation retracts of a 0, which
is best adjusted to the topology of 0. The examples that follow confirm our
conjecture that this will hold in the case of any bounded 0, provided
F (x, ', !)�K>0 for a.e. x # 0, and all ', !. It is natural to ask whether the
optimal value of q2 (0) is obtained if we take the supremum only over the
family of subsets A of 0 that are deformation retracts of 0 and
homeomorphic to 0?

Finding the optimal value q2 (0) for arbitrary set 0 seems to be difficult.
We do not know its value even in the case of rectangle. However, it is easy
to obtain some lower bounds.

Example 6. If 0ab is a rectangle with sides a�b, then the family of
subrectangles having the sides a&2r and b&2r, r�b�2 yields the following
estimate for supersolutions of (64) such that u�m0 on 0ab ,

osc0ab
u� 1

4Q� (r0 (a, b)) K, (94)

where

Q� (r)=
r2 (a&2r)(b&2r)

ab&(a&2r)(b&2r)
,

and r0 (a, b) is the unique solution of Q� $(r)=0 in (0, b�2), i.e., of the qubic
equation 16r3&16(a+b) r2+4(a+b)2 r&ab(a+b)=0. If we try with the
family of subrectangles that are homothetic to 0ab with respect to its
centre, then we obtain a more explicit, but less precise estimate:

osc
0ab

u�
7&3 - 5

16 (- 5+1)
b2K (95)

which is still slightly better than the one that we obtain from Corollary 12,
using inner radius b�2. Note that r0 (a, b) � b�4 as a � �, which yields an
estimate corresponding to (94) on a strip-like domain 0=R+_(0, b) or
R_(0, b).

More generally, if 0=R+_0$ or R_0$ is a strip-like domain, where
0$�RN&1 is bounded and open, then it is easy to see that q2 (0)�q2 (0$),
and therefore

osc
0

u� 1
4 q2 (0$) K. (96)
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Example 7. For a two-dimensional disk 0=BR we obtain similarly as
above that

osc
BR

u�
7&3 - 5

4(- 5+1)
R2K. (97)

The analogous estimate holds if instead of a disk we have a torus 0 in R3

defined by two radii R1 , R, R1>R,

osc
0

u�
7&3 - 5

4(- 5+1)
R2K. (98)

If 0=BR is a three-dimensional ball then we have

osc
BR

u�
1
4

sup
r # (0, R)

r2 (R&r)3

R3&(R&r)3 K�0.00892857 } R2K. (99)

The optimal value of r is obtaind from a real solution t=r�R of
2t3&8t2+12t&3=0. If BR is an N-dimensional ball, then analogously

osc
BR

u�
1
4

sup
r # (0, R)

r2 (R&r)N

RN&(R&r)N K=
1
4

sup
t # (0, 1)

t2 (1&t)N

1&(1&t)N R2K. (100)

All oscillation estimates are better than those involving inner radius in
Corollary 12.

Let us describe some simple properties of Qq (A, r) and qp (0). If 01 �02

then qp (01)�qp (02). If Ar & Br=< then Qq (A _ B, r)�Qp (A, r)+
Qp (B, r). Therefore, if 01 & 02=< then qp (01 _ 02)�qp (01)+qp (02).
For any two open sets 01 and 02 we have qp (01 _ 02)�max[qp (01),
qp (02)]. If there is an isometry between 01 and 02 , then qp (01)=qp (02).

Corollary 17. (i) Let 0 be a bounded, open set in RN. Then we have

q2 (0)�4 min[c, csDs |01 |], (101)

where c the Schauder constant corresponding to an arbitrary bounded, open
set 01 of class C2, % containing 0, see (72), s>N�2, cs is the Agmon,
Douglis, and Nirenberg constant corresponding to 01 , see (74), and Ds is the
constant of imbedding W 2, s(01) /C(0� 1).

(ii) If Capp (A) is p-capacity of a bounded and open set A in 0, then
for any r # (0, d(A, �0)) we have

Qp (A, r) } Capp (A)�|A|.
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(iii) Let 1�s<N. Then for any 1< p<�,

Qp (A, r)�Cs, N } r p&s |A| s�N, qp (0)�Cs, N } r0 (0) p&s |0| s�N,

where r0 (0) is inner radius of 0. In particular, qp (0)<� for any bounded
0, and even for unbounded domains such that |0|<�.

(iv) For domains 0 whose inner radius is infinite we have qp (0)=�.

Proof. (i) Using Schauder's a priori estimate with f #1, ,=0, com-
bined with Theorem 9 in the same way as in the proof of Corollary 13, we
obtain q2 (0)=4c. Arguing as in the proof of Corollary 14 we obtain
q2 (0)�4csDs |01 |.

(ii) Lemma 5 implies that for any bounded, open A such that
A//0 we have

Capp (A)� inf
r # (0, d(A, �0))

|Ar"A|
r p ,

and the claim follows. The definition of capacity can be seen for example
in [8].

(iii) Using the inequality Caps (A)�C |A| 1&s�N, C=Cs, N>0, for
1�s<N, see Theorem 4.57(vi) in [8], we conclude that for any such s,

Qs (A, r)�Cs, N |A| s�N,

where Cs, N>0 does not depend on A, r and 0. In particular,
qs (0)�C |A| s�N. The claim follows from Qp (A, r)=r p&sQs (A, r).

(iv) Take r=1 and a sequence of balls Ak=Bk (xk)/0, k # N. Then
Qp (Ak, r) � � as k � �. K

Remark 4. Note that property (iii) implies the following interesting
estimate: |Ar"A|�Cs, N } r p&s |A| s�N, where 1� p<�, 1�s<N and
Cs, N>0 does not depend on 0. We conjecture that for all undbounded
domains 0 with finite inner radius necessarily qp (0)<�.

C. Using Theorem 9 we can prove the following result.

Corollary 18. (Nonexistence of Solutions). Let 0=RN, or RN"D,
where D is a compact subset of RN, h(x)#0 in 0 and a1=0. Let there exist
#, #< p, C>0, k # N0 , m0 # R and R0>0 such that

F (x, ', !)�
C

|x| # } |log |x| |k , |x|�R0 , '�m0 , ! # RN. (102)

Then (64) has no solutions in W1, p (0) such that u�m0 on 0.
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Proof. (a) Let us prove that ess sup[u(x): |x|�r] � � as r � �. We
use Theorem 9 with M0=�, A=B3r (0)"B2r (0), where we choose r>R0

large enough, so that also D�Br (0). Then

r p |A|
|Ar "A|

ess inf
Ar_(m0 , �)_RN

F (x, ', !)

�
(3N&2N) C

4# (4N&3N+2N&1)
}

r p&#

|log(4r)|k � � as r � �.

Therefore oscAr
u � � as r � �.

(b) Assume that u is a solution. Since p>N (note that since a solu-
tion u of (72) is such that F (x, u, {u) # L1 (0), we have that (102) implies
that N<#), then u(x) � 0 as |x| � � (see [13, p. 189]). This contradicts
(a). K

Example 8. Let us consider the nonlinear problem

&2p u=K(x) ecu in D$(0),
(103)

K(x) ecu # L1 (0), u # W 1, p(0),

where 0 is as in the preceding corollary, c>0 and 2p u=div( |{u| p&2 {u).
It is related to problem of constructing a metric with prescribed curvature
function K(x); see [17, 19, 23]. It follows from the above corollary that if

K(x)�
C

|x| # } |log |x| |k , x # RN, |x|�R0 , (104)

where N<#< p, and C>0, k # N0 , R0>0, then problem (103) has no
solutions in W1, p (0) such that u�m0 on 0 for any m0 # R. This
means there are no solutions that are uniformly bounded from below. In
particular, the problem has no positive solutions in W1, p (0). This
complements the corresponding nonexistence results by Oleinik [19] and
Sattinger [23], as well as Ni [17].

D. It is possible to obtain another variant of Theorem 5, where we
relax the condition g(x, ')#0 on B2R . Of course, we can also deal with
arbitrary bounded, open subsets A instead of balls, as in Theorem 8.

Theorem 10 (Control of Essential Supremum of Solutions). Assume
that conditions (2) and (3) are satisfied. Let x1 # 0, R1>0 be such that
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B2R1
(x1)�0. Let us choose m0 , M1 # R, m0<M1 , so that the following

conditions are fulfilled:

_ f1 # L1 (BR1
(x1)), f (x, ')� f1 (x)

a.e. x # BR1
(x1), ' # I1=(m0 ,M1), (105)

f (x, ')�0 a.e. on B2R1
(x1)"BR1

(x1), ' # I1 , (106)

_g0>0, | g(x, ')|� g0<
:&$� a p$

2

|I1 |
a.e. x # B2R1

(x1), ' # I1 , (107)

|
BR1

(x1)
f1 (x) dx> inf

0<s<(:&$� a2
p$)�g0&|I1|

1
s

[$� H+D( |I1 |+s) p], (108)

where

H=|
B2R1 (x1)

[h(x) p$+a p$
1 m� p] dx, m� =max[ |m0 |, |M1 |],

D=\ p
$+

p&1 (2N&1) |BR1
(x1)|

R p
1

, $=
p$

3 p$&1 $� , $� <
:

a p$
2

. (109)

Then each supersolution of (1) has property (40).

Proof. Repeating the proof of Theorem 5 in this situation, we obtain
(45) with L=:& g0 (t&m0)&$� a p$

2 . We choose t such that L�0 and
t>M1 , that is,

M1<t�
:&$� a p$

2

g0

+m0 .

This interval for t is nonempty if and only if M1<(1�g0 )(:&$� a p$
2 )+m0 ,

which is satisfied by (108). If we set s=t&M1 , then 0<s�(:&$� a p$
2 )�

g0 +m0&M1 . K

It is easy to derive the following analogue of Corollary 10.

Corollary 19. Assume that the conditions of the preceding theorem are
satisfied with h(x)#0 a.e. on B2R1

(x1), a1=0, with the condition (107) on
g(x, ') replaced by

| g(x, ')|�
:&$� a p$

2

p$ |I1 |
, (110)

with (108) replaced by (54), and $= p$$� in (109). Then each supersolution of
(1) has property (40).
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Proof. The infimum in (109) taken over all s>0 is achieved for
s0=|I1 |�( p&1). The interval under infimum in (109) contains s0 if and
only if g0 does not exceed the value on the right-hand side of (111), so that
we can take g0 equal to the right-hand side. K

This permits to carry over all results of Section 4 to allow nonzero
g(x, ') in B2R . For example, we have the following analogue of Theorem 7:

Theorem 11. Let (2), (3) hold with a1=0 and h(x)#0 on B2R (x1)�0.
Consider the quasilinear problem

&div a(x, v, {v)=F (x, v, {v)+ g(x, v) |{v| p in D$(0), (111)

F (x, v, {v)+ g(x, v) |{v| p # L1 (0), v # W 1, p (0),

where F (x, ', !) and g(x, ') are Carathe� odory functions. Assume that
m0 # R, K>0 are such that

F (x, ', !)�K for a.e. x # B2R (x1), '�m0 and ! # RN, (112)

| g(x, ')|�
:&$� a p$

2

p$bR p$K p$�p for a.e.. x # B2R (x1), '�m0 , (113)

where

0<$� <:�a p$
2 , b=

$�
p p$ (2N&1)

.

If v is a supersolution in W 1, p (0) such that v�m0 on B2R (x1), then we have
a local oscillation estimate,

osc
B2R (x1)

v�b R p$K p$�p. (114)

Remark 5. (Generating Singularities of Solutions). From this result
we can easily derive the following analogue of Corollary 15 about generat-
ing singularities. Retaining all conditions of Theorem 11 except (113) and
(114), which we replace by

F (x, ', !)�
C

|x&x1 | # } |log |x&x1 | | s

and

| g(x, ')|�
:&$� a p$

2

p$bC p$�p |x&x1 | p$�p(#& p) } |log |x&x1 | | sp$�p,
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respectively, with #> p and s�0, then any supersolution v of (111), such
that v�m0 on B2R (x1), is singular in x1 . The proof of this fact follows
easily by applying Theorem 11 to K=K(r)=C�r# |log r| s , and using
r # (0, R) instead of R. It is possible to consider the case when x0 # �0 is
a weakly conic point, as in Corollary 15.

E. Estimates of local oscillations enable us to obtain a lower
bound of total variation Var u of solutions of ordinary differential equations
(here N=1 and 0 is an interval). To this end we introduce two families of
sets:

Ad
F=any disjoint subfamily of AF , such that for every (A, r) # Ad

F the
set A is an interval, disjoint being understood in the sense that if (A, r) and
(B, \) # Ad

F and (A, r){(B, \), then Ar & B\=<.

AD
F =the family of all disjoint subfamilies Ad

F of AF .

Corollary 20 (Lower Bound for Total Variation of a Solution). Let
N=1 and assume that (2) and (3) hold with h(x)#0 on 0 and a1=0. Then
for any solution u # W 1, p(0) of (64) such that m0�u�M0 on 0,
m0 , M0 # R� , we have

Var
0

u�
:

2 p$�p (a2 p) p$ sup
Ad

F # AD
F

:
(A, r) # Ad

F

r[|A| ess inf
A_(m0 , M0)_R

|F (x, ', !)|] p$�p.

(115)

Proof. The claim follows immediately from Theorem 9, see (88), and
the following obvious inequality:

Var
0

u� :
(A, r) # Ad

F

osc
Ar

u,

and from the fact that if A is an interval, then r p |A|�|Ar "A|
= 1

2r p&1 |A|. K

If for some (A, r) we know that m0 (A, r)�u�M0 (A, r) on Ar , then we
can use the interval (m0 (A, r), M0 (A, r)) instead of (m0 , M0) in the above
estimate. In the case when we have the problem

&u"=F (x, u, u$) in D$(a, b),
(116)

F (x, u, u$) # L1 (a, b),
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a, b # R� , then the total variation of any solution u such that m0�u�M0 in
0=(a, b), m0 , M0 # R� , has the following lower bound:

Var
0

u� 1
8 sup

Ad
F

# AD
F

:
(A, r) # Ad

F

r |A| ess inf
Ar_(m0 , M0)_R

|F (x, ', !)|. (117)

Of course, it is possible to formulate variants of the above estimates corre-
sponding to more general problem (111) with N=1.

F. (1) All results in this article that are of local nature, i.e. for-
mulated on balls or on bounded, open sets A in RN, hold if we have
L1

loc(0) instead of L1 (0) in (1) and (64). We can also treat solutions u in
W1, p

loc (0) instead of W 1, p (0).

(2) Our main results can be formulated for more general equations
than (1). First, it is clear from the proofs that we can allow functions f and
g to depend also on ! in Theorems 1�5, i.e., we can have f (x, u, {u) and
g(x, u, {u) instead of f (x, u) and g(x, u) in (1). Moreover, it is possible to
treat equations of the form

&div a(x, u, {u)+a0 (x, u, {u)=H(x, u, {u)+T,
(118)

H(x, u, {u) # L1
loc(0), u # W 1, p

loc (0),

with T # W &1, p$ (0), and the same conditions on a(x, ', !) and a0 (x, ', !)
as in [5], except that we allow :0�0, and not only :0>0 in
a0 (x, ', !) } '�:0 |'| p. If we deal with supersolutions u such that u�m0 on
Ar , we assume the condition of the form

H(x, ', !)� f
�
(x, ', !)+ g

�
(x, ', !) |!| p, (119)

for a.e. x # Ar , '�m0 , ! # RN, and T�0 on Ar . If we deal with subsolu-
tions u such that u�M0 on Ar , we assume

H(x, ', !)� f� (x, ', !)+ g� (x, ', !) |!| p, (120)

for a.e. x # Ar , '�M0 , ! # RN, and T�0 on Ar .

(3) It is easy to formulate Theorem 5 for degenerate quasilinear ellip-
tic equations too. First, we replace conditions (2) and (3) by

a(x, ', !) } !�:(x, ', !) |!| p, (121)

|a(x, ', !)|�h(x)+a1 |'| p&1+:(x, ', !) |!| p&1, (122)
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where h # L p$ (0), a1�0, and :(x, ', !) is a Carathe� odory function for
which there exists a0>0 such that 0�:(x, ', !)�a0 for a.e. x # 0, ' # R,
! # RN. Theorems 5 and 8 (and all their consequences) still hold if
we replace the last equality in (39) and (86) by $� =1�a p$�p

0 . To see this,
it suffices to note that the constant L in (45) now becomes
L(x)=:(x, ', !)&$� } :(x, ', !) p$, which should be under the integral sign,
and we need the condition L(x)�0.

(4) Our main results can also be generalized to elliptic systems of
quasilinear equations and variational inequalities, which will be a subject
of a forthcoming paper.
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