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Abstract

In this work, we investigate black hole (BH) physics in the context of quantum corrections. These 
quantum corrections were introduced recently by replacing classical geodesics with quantal (Bohmian) 
trajectories and hence form a quantum Raychaudhuri equation (QRE). From the QRE, we derive a modified 
Schwarzschild metric, and use that metric to investigate BH singularity and thermodynamics. We find that 
these quantum corrections change the picture of Hawking radiation greatly when the size of BH approaches 
the Planck scale. They prevent the BH from total evaporation, predicting the existence of a quantum BH 
remnant, which may introduce a possible resolution for the catastrophic behavior of Hawking radiation as 
the BH mass approaches zero. Those corrections also turn the spacelike singularity of the black hole to be 
timelike, and hence this may ameliorate the information loss problem.
© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Recently, a new semi-classical approach for quantum gravity has been suggested in [1], in 
which it was shown that replacing classical trajectories, or geodesics, by quantal (Bohmian) 
trajectories leads to corrections to the Raychaudhuri equation. Hence, these new quantum cor-
rections will affect all reasonable spacetimes which are incomplete or singular in a certain sense 
depending on the validity of the classical Raychaudhuri equation according to Hawking–Penrose 
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theorem [2]. The quantum Raychaudhuri equation (QRE) has been found to prevent focusing of 
geodesics, and hence prevents the formation of singularities [1]. This has been investigated in 
cosmology with Friedmann–Robertson–Walker (FRW) Universe and it was found that the big 
bang singularity may be resolved using quantal geodesics [3]. It was also found that the Fried-
mann equation receives a quantum correction term that could be interpreted as a cosmological 
constant that gives a correct estimate of its observed value [3,4].

The QRE has been derived in [1] by considering a quantum mechanical description of a fluid 
or condensate. This condensate is described by a wavefunction ψ = ReiS , which is assumed 
to be normalizable and single valued, R(xa) and S(xa) are real functions associated with the 
four velocity field ua = (h̄/m)∂aS. The expansion scalar is given by θ = T r(ua;b) = habua;b , 
where the transverse metric hab = gab +uaub . The quantum Raychaudhuri equation for timelike 
geodesics, with vanishing shear and twist for simplicity, takes the form after some derivations 
[1,3]

dθ

dλ
= −1

3
θ2 − Rabu

aub + h̄2

m2
hab

(�R
R

)
;a;b

+ ε1h̄
2

m2
habR;a;b . (1)

Ra,b and R are the Ricci tensor and Ricci scalar respectively. The constant ε1 = 1/6 for confor-
mally invariant scalar fluid, but left arbitrary here.

Since the black hole is an ideal laboratory to investigate quantum gravity, in this paper, we 
derive the quantum Raychaudhuri equation for null geodesics, and use it to derive a modified 
Schwarzschild metric. We then derive the quantum corrected thermodynamics of the black hole. 
We also investigate the impact of quantum corrections on the physical singularity of the black 
hole.

2. Quantum Raychaudhuri equation for null geodesics

In the case of null geodesics, the classical Raychaudhuri equation with vanishing shear and 
twist takes the form [5, p. 50]

dθ

dλ
= −1

2
θ2 − Rabk

akb, (2)

where ka is a null tangent vector field and the expansion parameter θ is given by

θ = ka
;a. (3)

The transverse metric hab is given by [5, p. 46]

hab = gab + kaNb + Nakb, (4)

where Na is an auxiliary null vector field such that kaNa = −1 and NaNa = 0. To derive the 
quantum Raychaudhuri equation for null geodesics, we start with a Klein–Gordon-type equation 
with m = 0(

� − ε1R − ε2
i

2
fcdσ cd

)
� = 0, (5)

where R is the curvature scalar, and ε1 = 1/6 for conformally invariant scalar field. The 
4-momentum and “coordinate velocity” are defined as [6–8]

pa = h̄∂aS, (6)

�v = d �x
dt

= −c2
�∇S

∂0S
, (7)
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where we used the fact that the null vector ka is defined up to a constant [9, p. 86], and since 
ka is any null tangent vector, it is appropriate that one chooses this to be the momentum vector 
pa = h̄ka . Substituting the wave function ψ(�x, t) =ReiS in Eq. (5) yields the two equations

∂a
(
R2∂aS

)
= ε2

2
fcdσ cdR2, (8)

p2 = h̄2ε1R − h̄2 �R
R , (9)

where Eq. (9) yields the modified geodesic equation with the relativistic quantum potential term 
VQ = h̄2 �R

R

pb
;ap

a = h̄ε
1R

;b − h̄2
(�R

R

);b
. (10)

Then the quantum corrected Raychaudhuri equation for null geodesics takes the form

dθ

dλ
= −1

2
θ2 − Rabk

akb + ε1h̄
2habR;a;b + h̄2hab

(�R
R

)
;a;b

. (11)

This equation is useful for studying black holes, since the event horizon of the black hole is a 
null surface generated by null geodesics [5].

3. Quantum-modified Schwarzschild metric

To derive the Schwarzschild metric, we start from the general metric for a static spherically 
symmetric spacetime

ds2 = −α(r)dt2 + β(r)dr2 + r2d�, (12)

where α(r) and β(r) are functions of r alone and go to one at infinity. Since the metric is inde-
pendent of t , then there exists a Killing vector Ka = (1, 0, 0, 0). Hence, along a geodesic with 
affine parameter λ we have

Ka

dxa

dλ
= constant. (13)

For the metric (12) this leads to

α
dt

dλ
= constant. (14)

On a radial outgoing null geodesic u = t − ∫
β(r)dr is constant, and

ka = −∂au (15)

is a null tangent vector field with +r as an affine parameter [5, p. 52]. Thus, Eq. (14) becomes 
αdt/dr = constant, and since on null radial geodesics, ds = 0 and d� = 0, we get from the 
metric that

α(r)β(r) = constant. (16)

By normalization, this constant equals 1. Now, we can use the Raychaudhuri equation to deter-
mine α(r) and β(r). The expansion parameter becomes
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θ = ka
;a = rβ(r)α′(r) + rα(r)β ′(r) + 4α(r)β(r)

2rα(r)β(r)
, (17)

which simplifies to θ = 2/r when α(r)β(r) = 1, and hence dθ/dλ + θ2/2 = 0. Also 
Rabk

akb = 0, even though the Ricci tensor itself need not be zero. Thus, the quantum Ray-
chaudhuri equation simplifies considerably, and the terms that do not vanish are

ε1h̄
2habR;a;b + h̄2hab

(�R
R

)
;a;b

= 0. (18)

The transverse metric hab can be calculated from Eq. (4), where an auxiliary null vector field 
that satisfies the conditions kaNa = −1 and NaNa = 0 is

Nt = −α

1 + √
αβ

, Nr = −√
αβ

1 + √
αβ

, Nθ = Nφ = 0. (19)

For simplicity, we first consider the wave function ψ = ReiS with R = constant, and choose 
S such that ka = ∂aS. Then, �R/R = 0 and the quantum Raychaudhuri equation leads to the 
differential equation

r3α′′′(r) + 4r2α′′(r) − 2rα′(r) − 4α(r) + 4 = 0, (20)

which has the solution

α(r) = 1 + c1

r
+ c2

r2
+ c3r

2. (21)

Asymptotic flatness requires c3 = 0, and similarity with the standard metric when h̄ → 0 leads 
to c1 = −2M , and c2 = ηh̄ for some constant η. The constant η must be dimensionless because 
h̄ has dimensions of (length)2 in geometric units. Thus, the modified Schwarzschild metric be-
comes

ds2 = −
(

1 − 2M

r
+ h̄η

r2

)
dt2 + 1(

1 − 2M
r

+ h̄η

r2

)dr2 + r2d�2. (22)

From this metric, the Ricci scalar R = 0 which means the intrinsic geometry is flat, but the Ricci 
tensor Rab is not zero, and the nonzero components are given by

R00 = ηh̄
(
ηh̄ − 2Mr + r2

)
r6

, R11 = −ηh̄

r2
(
ηh̄ − 2Mr + r2

) (23)

R22 = ηh̄

r2
, R33 = ηh̄ sin2 θ

r2
. (24)

If we assume that the Einstein equations remain the same with the quantum corrections incorpo-
rated in the stress-energy tensor, then

Rab − 1

2
gabR = 8πTab (25)

leads to a stress-energy tensor with the non-zero components

T00 = ηh̄(r2 − 2Mr + ηh̄)

8πr6
, T11 = −ηh̄

8πr2(r2 − 2Mr + ηh̄)
, (26)

T22 = ηh̄

8πr2
, T33 = ηh̄ sin2(θ)

8πr2
.
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The divergence of this tensor is zero T ab
;b = 0 which means the modified stress-energy tensor 

is also conserved. We note here the non-zero values of Rab and Tab which may be explained 
as a new source of energy due to the quantum correction that could correspond to dark energy 
and dark matter. The implications of these non-zero components need further investigations, and 
we hope to report on them soon. In the following section, we discuss how the new quantum 
corrections may ameliorate the physical singularity of the black hole.

4. Black hole singularity

For the modified metric (22), the Kretschmann scalar, which is given by contracting the Rie-
mann tensor, is

K = RabcdRabcd = 8
(
6M2r2 − 12ηh̄Mr + 7η2h̄2

)
r8

. (27)

The Kretschmann scalar goes to infinity at r = 0, which indicates an infinite curvature at r = 0. 
However, as argued in [1], the deviation equation does not equal zero at all times, and thus 
the quantal trajectories never go there and feel the singularity. To show this explicitly for 
Schwarzschild black hole, consider a reference frame of an observer falling from rest towards 
the black hole. Suitable coordinates for that frame are the Painlevé–Gullstrand coordinates intro-
duced independently by Painlevé [10] and Gullstrand [11] in 1921. In these coordinates, the time 
coordinate is the proper time of a free-falling observer starting from infinity with zero velocity, 
and a slice of spacetime at fixed time corresponds to flat space. To derive1 the metric in these 
coordinates, we start by defining a new time coordinate

dT = dt + h(r)dr, (28)

with some function h(r). Substituting in the metric we get

ds2 = −α(r)dT 2 + 2h(r)α(r)dT dr +
(

1

α(r)
− α(r)h2(r)

)
dr2 + r2d� (29)

where α(r) = 1 − 2M/r + ηh̄/r2. Choosing the coefficient of dr2 to equal 1 fixes h(r) =√
1−α(r)
α(r)

, and leads to the metric

ds2 = −α(r)dT 2 + 2

√
2M

r
− ηh̄

r2
dT dr + dr2 + r2d�, (30)

which does not have a coordinate singularity at the horizon.
This metric can be written as

ds2 =
[
dr +

(
1 +

√
2M

r
− ηh̄

r2

)
dT

][
dr −

(
1 −

√
2M

r
− ηh̄

r2

)
dT

]
+ r2d�. (31)

For light on radial geodesic (ds = 0, d� = 0), Eq. (31) has two solutions

dr

dT
= −

√
2M

r
− ηh̄

r2
± 1. (32)

The positive sign represents light moving in the outward direction, while the negative sign rep-
resents light moving in the inward direction.

1 This derivation follows Ref. [12, p. 417]. A more rigorous derivation and generalizations of these coordinates can be 
found in [13].
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Fig. 1. Standard result for the velocity of light observed in a free-falling frame. Solid curve for light moving inward, and 
dashed curve for light moving outward. In this plot M = 1.

Fig. 2. The velocity of light observed in a free-falling frame according to Eq. (32). Solid curve for light moving inward, 
and dashed curve for light moving outward. In this plot η = 1, h̄ = 0.1, and M = 1.

Fig. 1 is a plot of the standard result for the velocities of light dr
dT

= −
√

2M
r

±1. The velocities 
of both the inward and outward light rays go to negative infinity as r → 0, which means that 
anything that enters the event horizon reaches the singularity at the center.

Fig. 2 is a plot of the modified velocity of light in Eq. (32). The velocity reaches a minimum 
value at r = ηh̄/M but then increases for smaller values of r . At r = ηh̄/2M , the velocity of an 
inward light ray reaches −1, and the velocity of an outward light ray reaches 1. Below this value, 
dr/dT is imaginary, which means that nothing can reach the center, and the observed curvature 
scalars remain finite.

This behavior of free-falling particles is similar to that for the Reissner–Nordström black hole 
since the Reissner–Nordström metric is similar to the metric (22) with Q2 → ηh̄. Between the 
outer horizon r+ and the inner Cauchy horizon r−, the coordinate r becomes timelike and a 
falling particle must continue inwards. However, below r = r−, the coordinate r is spacelike 
and a falling particle can move in the direction of increasing r until r = r− where r becomes 
timelike again but in the reverse direction, i.e. the particle must move towards increasing r . 
So the particle gets into a wormhole at the Cauchy horizon and gets out of a white hole in 
a different universe. (See the Penrose diagram in [14, p. 921] or [15, p. 258].) However, in 
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physically realistic situations, a signal approaching r− gets infinitely blue-shifted, which disturbs 
the inner geometry of the black hole making the Cauchy horizon unstable [16,17]. In [17,18], it 
was shown that, when perturbed, the inner horizon of a charged black hole becomes a singularity 
with infinite spacetime curvature (the mass-inflation singularity). Thus, there is good reason to 
believe that the Cauchy horizon is a true physical singularity. For the modified Schwarzschild 
metric we found a Cauchy horizon of Planckian size, so perhaps it is reasonable to speculate 
that this Cauchy horizon is actually the radius of the black hole singularity, i.e. a non-point like 
singularity.

For the standard Schwarzschild metric, the singularity is spacelike, but for the quantum-
corrected metric, the singularity is timelike. This could have implications for the information 
loss problem. In Reissner–Nordström and Kerr black holes, the singularity is timelike and the 
Penrose diagram is an infinite set of copies, so information could come out of the singularity and 
reach the future null infinity of another universe. (Perhaps, due to quantum corrections, signals 
can come out to our universe and hence there is not information loss.) For a spacelike singularity, 
this seems difficult/impossible, but there seems to be some hope for timelike singularities, so it is 
interesting that due to quantum corrections, the spacelike singularity of Schwarzschild black hole 
becomes timelike. In the next section, we investigate the implications of the quantum corrections 
on black hole thermodynamics.

5. Modified black hole thermodynamics

The modified black hole temperature from the metric (22) can be calculated from the surface 
gravity by

TH = κ

2π
= lim

r→r+

1

4π

dgtt

dr
, (33)

where r+ is the outer horizon radius, which is found from the metric by setting 1 − 2M
r

+ h̄η

r2 = 0
to get

r± = M ±
√

M2 − ηh̄. (34)

Thus, the modified temperature is given by

T =
√

M2 − ηh̄

2π
(√

M2 − ηh̄ + M
)2

, (35)

which goes to zero at M = √
ηh̄ signaling the existence of a remnant. Fig. 3 shows a plot of the 

modified and standard temperature. In other words, the Hawking BH temperature is vanishing 
(no Hawking radiation). Therefore, our quantum corrections lead to forming an extremal BH 
[19] which yields a “frozen” horizon. In the Bonanno–Reuter model, TH = 0 means the BH 
evaporation stops and the mass M is critical (a soliton-like remnant is formed [20]).

The entropy can be calculated from the first law of black hole mechanics dM = T dS

S =
∫

dM

T
= 2π

(
M

√
M2 − ηh̄ + M2

)
, (36)

which is undefined when M goes below the value M = √
ηh̄ as can be seen from Fig. 4. The heat 

capacity can be calculated from the relation
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Fig. 3. Standard and modified temperature plotted against mass when η = 1 and h̄ = 1.

Fig. 4. Standard and modified entropy plotted against mass assuming η = 1 and h̄ = 1.

Fig. 5. Standard and modified heat capacity plotted against mass assuming η = 1 and h̄ = 1.

C = T
∂S

∂T
= −

2π
√

M2 − ηh̄
(√

M2 − ηh̄ + M
)2

2
√

M2 − ηh̄ − M
, (37)

which again goes to zero at M = √
ηh̄, which means that the black hole does not exchange heat 

with the surrounding space. Fig. 5 is a plot of the standard and modified heat capacity and it 
diverges at the value of maximum temperature.
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Fig. 6. |ψ |2 as t increases from t = 2 (left) to t = 5 (right) assuming σ = 1.

These results mean that the quantum corrections prevent BHs from evaporating completely, 
just like quantum mechanics prevents the hydrogen atom from collapsing [21]. Since a black 
hole remnant possesses a frozen horizon, we think that our result may ameliorate the information 
loss paradox.

6. Time-dependent modified metric

In Sec. 3, we derived the metric for a wave function ψ =ReiS with constant R. In this section, 
we consider a less trivial example for the wave function. Consider a wave packet moving at the 
speed of light on an outgoing radial null geodesic. Such a wave function can be represented by

ψ = Ae−(r−t)2/σ eiS, (38)

where σ is the spread of the wave packet, A = (2/σ 2π)1/4 is a normalization factor, and S is cho-
sen such that ka = ∂aS. Fig. 6 shows |ψ |2 at two different times, and we see it moves outwards 
as t increases. Since the wave function is time-dependent, we expect the metric to also be time-
dependent. So we start with the standard Schwarzschild metric after adding a time-dependent 
function f (r, t) and then use the quantum Raychaudhuri equation to find that function. We begin 
with the metric ansatz

ds2 = −α(t, r)dt2 + 1

α(t, r)
dr2 + r2d�2, (39)

with

α(t, r) = 1 − 2M

r
+ h̄f (t, r). (40)

For the wave function (38) we get

�R
R = 4(r − t)

rσ 2
. (41)

Using ka and Na from Eqs. (15) and (19) but with time-dependent α(t, r) we get that

hab

(�R
R

)
;a;b

= 8t (rh̄f (t, r) − 2M + r)

r4σ 2
. (42)

Now, the quantum Raychaudhuri equation to first order in h̄ leads to the differential equation
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(2Mr − r2)
∂2f (t, r)

∂t∂r
+ 12M

∂f (t, r)

∂t
− 4r

∂f (t, r)

∂t
= 0, (43)

which has the solution

f (r, t) = η

(
2M2t2

r6
− 2M2

r6
− 2Mt2

r5
+ 2M

r5
+ t2

2r4
− 1

2r4

)
, (44)

for some constant η, and the metric is modified by

α(t, r) = 1 − 2M

r
+ ηh̄

(
t2

2r4
− 1

2r4
− 2Mt2

r5
+ 2M

r5
+ 2M2t2

r6
− 2M2

r6

)
. (45)

If we apply this metric to a particle in orbit around a black hole, we see that the quantum cor-
rection term grows as time passes and goes to infinity as t → ∞, which of course is unphysical. 
This is because the metric was derived for a wave function describing a particle on an outgoing 
radial geodesic, and on that geodesic O(t) ∼ O(r). Hence, the metric goes to zero as r → ∞. 
So this metric describes only a particle on a radial geodesic, but cannot be generalized to other 
geodesics. Thus, since the quantum Raychaudhuri equation depends on the wave function of the 
particle under study, the resulting modified metric will also depend on that wave function and 
will be different for different particles and geodesics.

7. Constraints on η

In Sec. 3, we determined the metric (22) up to a constant η. The value of that constant can 
be constrained from astrophysical observations and laboratory experiments such as deflection of 
light, and gravitational redshift.

7.1. Deflection of light

When light approaches a massive body, such as the sun, it gets deflected from a straight line 
by an angle given by [22, p. 189]

�φ = 2

∞∫
r0

1

r
√

α(r)

(
r2

r2
0

α(r0)

α(r)
− 1

)−1/2

dr − π, (46)

where r0 is the distance of closest approach to the sun. In general relativity the deflection angle 
to first order in M/r0 is given by

�φGR 
 4M

r0
. (47)

To calculate that deflection angle for the modified metric, we begin by making the transformation 
u ≡ r0/r in Eq. (46)

�φ = 2

1∫
0

1√
α

(
r0
u

)
(

α(r0)

α
(

r0
u

) − u2

)−1/2

du − π. (48)

To simplify the integral, we expand the integrand to first order in h̄ and M/r0 to get
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1√
α

(
r0
u

)
(

α(r0)

α
(

r0
u

) − u2

)−1/2

≈ 1√
1 − u2

+ M
(
u2 + u + 1

)
r0(u + 1)

√
1 − u2

− η
(
u2 + 1

)
h̄

2r2
0

√
1 − u2

. (49)

Thus, Eq. (48) evaluates to

�φ ≈ 4M

r0
− 3πηh̄

4r2
0

. (50)

The best accuracy of measuring the deflection of light by the sun is from measuring the deflection 
of radio waves from distant quasars using the Very Long Baseline Array (VLBA) [23], which 
achieved an accuracy of 3 × 10−4. Thus,

δ�φ

�φGR

≈ 3πηh̄/4r2
0

4M/r0
< 3 × 10−4. (51)

Assuming that light grazes the surface of the sun r0 
 R = 6.96 × 108 m and M = M =
1.99 × 1030 kg = 1.477 × 103 m with h̄ = 2.61 × 10−70 m2 in geometric units, we get an upper 
bound on η of

η < 2.0 × 1078. (52)

7.2. Gravitational redshift

When light moves between two radii r1 to r2, its frequency changes. To find the frequency 
change, we apply the metric at the two radii by putting dr = 0 and dφ = 0, and solve for dt . 
Since the time measured by a remote observer is the same for the two radii, we get

dt = dτ1√
α(r1)

= dτ2√
α(r2)

, (53)

where dτ 2 = −ds2, and α = 1 − 2M/r + ηh̄/r2. The relative frequency is

ω2

ω1
= dτ1

dτ2
=

√
α(r1)

α(r2)
, (54)

expanding to first order in h̄

ω2

ω1
=

√
1 − 2M/r1

1 − 2M/r2

(
1 + r2

2 − r2
1 − 2Mr2 + 2Mr1

2r1r2(2M − r1)(2M − r2)
ηh̄

)
. (55)

Subtracting one from the previous result we get

ω2 − ω1

ω1
= (S − 1)

(
1 +

(
S

S − 1

)
r2

2 − r2
1 − 2Mr2 + 2Mr1

2r1r2(2M − r1)(2M − r2)
ηh̄

)
, (56)

where

S ≡
√

1 − 2M/r1

1 − 2M/r2
. (57)

The most accurate measurement of gravitational redshift is from Gravity Probe A [24] in 1976. 
The satellite was at an altitude of 107 m, and achieved an accuracy of 7.0 × 10−5, which means 
that the new term in Eq. (56)
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S

S − 1

r2
2 − r2

1 − 2Mr2 + 2Mr1

2r1r2(2M − r1)(2M − r2)
ηh̄ < 7.0 × 10−5. (58)

Using the mass and radius of the earth, M⊕ = 5.97 × 1024 kg = 4.44 × 10−3 m, r1 = R⊕ =
6.38 × 106 m, and r2 = r1 + 107 m, we get the bound

η < 1.1 × 1070. (59)

This bound is large, but not inconsistent with observations. Also, since the constant η could be 
much larger than one, future experiments could produce better constraints.

8. Conclusions

In this work, we investigated the implications of quantum corrections, that have been obtained 
by replacing quantal geodesics with classical geodesics, on black hole physics. We obtained a 
new modified Schwarzschild metric, and found that the thermodynamic properties of this quan-
tum black hole are greatly changed when the black hole size approaches the Planck scale. We 
found that our quantum corrections lead to forming an extremal BH which yields a “frozen” hori-
zon and hence the BH evaporation stops, forming a black hole remnant. Besides, we found that 
the physical singularity of the black hole turned to be a timelike singularity, and that the quantal 
trajectories never go there and feel the singularity. Timelike singularity has the interesting feature 
that a timelike curve can be constructed such that an observer can have the singularity next to 
them without necessarily falling into it. This may ameliorate the information loss problem. These 
results need further studies with different types of black holes. We hope to report on these in the 
future.
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