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Abstract--This paper reviews discrimination procedures which provide distribution-free control over 
the individual misclassification probabilities. Particular emphasis is placed on the two-population rank 
method developed by Broffitt, Randles and Hogg, which utilizes the general formulation of Quesenberry 
and Gessaman. It is shown that the rank method extends from two to three or more populations in a 
natural and flexible fashion. A Monte Carlo study compares two suggested extensions with others 
proposed by Broffitt. 

I, INTRODUCTION 

Consider the K-population discrimination problem in which a random p-vector  W is known to 
have come from one of K populations, "try, i = 1 . . . . .  K. The objective is to identify the 
source population. Decision rules are constructed from K independent training samples of  p- 
vectors: X~I . . . . .  X~,,, a random sample of  size ni from population ~ for i = 1 . . . . .  K. 
If  the decision maker must select one and only one population as the source for W, then the 
problem is described as forced discrimination. If, on the other hand, the decision maker is 
permitted to partially identify the source population by selecting a subset of  potential populations, 
then it is called a partial discrimination problem. This formulation explicitly recognizes that 
certain observed vectors are difficult to classify as being from one specific population with 
much assurance of success. For example, with certain symptoms a clinician may find it difficult 
to determine whether the patient has disease 1 or 2, but may readily eliminate diseases 3 and 
4. This partial classification is quite useful, because having eliminated diseases 3 and 4, the 
clinician can order only the tests appropriate for separating patients with disease 1 from those 
with disease 2. Indeed, diagnostic decisions are often made via this process of  elimination. The 
partial discriminant analysis problem provides a mathematical formulation for this decision step. 

A natural and popular formulation for partial discrimination was proposed by Quesenberry 
and Gessaman[10]. Their scheme involves choosing a region A~ in R p (the Euclidean p space), 

such that 

fa f,(t) dt ~< ai,  for i = I . . . . .  K, (1) 
i 

where the et~'s are arbitrary constants between zero and one chosen by the decision maker,  f~(') 
denotes the density of  Xil, and .4,- denotes the complement ofAg. A good choice of  Ai might be 
the " smal les t "  region A,, satisfying condition (1). We would then classify W as coming from 
a population in the subset 'rh,, . . . .  a'r~, if and only if 

W ~ A~, n . . . n A,,  n . ~ i , . ,  n . . . n A,~, (2) 

where, for s = 0, 1 . . . . .  K, {it . . . . .  i,} denotes a subset of s elements from the integers 
{1 . . . . .  K} and {is+, . . . . .  Jr} is the complement of  that set. Note that s = 0 or s = K is 
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equivalent to not classifying W. For instance, 

R. H. RANDLES 

suppose K = 3. Then we classify W into 

7rl, if W ~ A 

~r,_. i f W  E,~ 

"rr 3, i f W  ~ , 4  

rh U ~r.,, i f W  E A  

wl U w3, i f W  ~ A  

~r. U "rr~, if W ~ ,~  

n ~ ,  n ~ .  

n A: n ,~:. 

n ~,, n A. 

n A, n A..  

n ~.,. n A3. 

n A, NA3. 

and W is not classified otherwise. 
We say that W ~ ws (read W is from w~) is misclassified, if W is contained in A, N Aj 

for some j ~ i, that is, if W is classified as not coming from ,-ri but is classified as from at 
least one of the other populations. These partial discrimination procedures control an upper 
bound on the probabilities of misclassification, since 

P[W is misclassified IW ~ "rr,] ~< P[W ~ "],1 W ~ "rh] ~ a,, (3) 

for i = 1 . . . . .  K by (1). This simultaneous control over all the misclassification probabilities 
is said to be distribution-free if Ai is constructed in such a way that (i) holds for a large class 
of distributions fi('), including many parametric families. 

Clearly the performance of these partial discrimination rules depends on the method used 
to construct the A,'s. Quesenberry and Gessaman[10] suggested using tolerance regions to 
construct Ai's which respectively estimate regions of concentration for a'r, i = 1 . . . . .  K. 
Their procedure has a distribution-free property. Yet it does not take into account the direction 
of the other populations when defining A~. As a result, the decision rule will often be conservative 
and will fail to classify many W-values. To reduce the conservative nature of these partial 
discriminant analysis procedures, Broffitt, Randles and Hogg[3] introduced a rank method for 
constructing the Ai's in the two-population partial discrimination problem. It is also distribution- 
free. Moreover, it takes into account the direction of the other population. That is, the rank 
procedure creates ,~t in the direction of Tr., and ,4., in the direction of w~. This results in a decision 
procedure which controls the probability of misclassification more accurately and, hence, reduces 
the probability that W is not classified. 

In the two population rank method the W is at first included in the training sample from 
population 1. The two training samples X . ,  Xt2 . . . . .  X~,,, W and X.,~ . . . . .  X_,,: of size 
nt + I and nz, respectively, are used to construct a discriminant function DI(') which treats 
the observations within each training sample symmetrically and which tends to give larger 
(smaller) values to observations from populations 1 (pop. 2). Let Rx denote the rank of Dr(W) 
among Ot(Xu) . . . . .  D,(XI,,), DffW) and define 

AI = {(nl + 1)-IRt > eq}. 

Similarly, including W in the second sample, we use the two training samples Xu . . . . .  
XI,, and X2t . . . . .  X2,:, W of size nt and n,. + 1, respectively, to construct a discriminant 
function D2(') which treats observations within each of the two training samples symmetrically 
and which tends to give larger (smaller) values to observations from population 2 (pop. 1). Let 
R2 denote the rank of D.,(W) among Oz(X.,t) . . . . .  D.,(X_,,,..), D,_(W) and define 

A., = {(n_, + I)-IR2 > or2}. 

Broffitt et al.[3] showed that with this A~ and A2, the bounds (1) hold with a broad set of 
assumptions about the distributions fi('). Moreover, they demonstrated that these rank rules 
classify a much higher percentage of W-values than were classified using the Quesenberry- 
Gessaman procedure. 
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In this paper we extend the distribution-free rank method of partial discrimination to settings 
with more than two populations in a fashion which utilizes the directions of all the other %'s 
(j # i) in constructing the region ,4i. These procedures provide maximum flexibility for em- 
phases in different directions while retaining the distribution-free property. The procedures and 
others suggested by Broffitt[4] are described in Sec. 2. A Monte Carlo comparison of these 
procedures is shown in Sec. 3. 

Other approaches and results for partial discrimination procedures (sometimes described 
as procedures with a reject option, see, for example, Hand[6], Sec. 8.4) have been given by 
Hellman[7], Devijver[5], Ambrosi[l] and Beckman and Johnson[2]. 

2. K-POPULATION EXTENSIONS OF THE RANK METHOD 

In a survey paper, Broffitt[4] has suggested two ways in which the rank method for 
constructing the Ai regions may be extended from two populations to many populations problems. 
His first suggestion was to treat the K-populations pairwise. For each j ~ i, let 

o o ( . )  = oij(.  I x , ,  . . . . .  x, . ,÷,;  x ,  . . . . .  xj.,) (4) 

denote a discriminant function constructed from the ith and jth training samples. Here the ith 
sample has been augmented to include one extra observation, namely X,,,+ a -= W. The D,j(.) 
function treats observations within each of these two training samples symmetrically and gives 
larger (smaller) values to vectors which appear to be from the ith (jth) population. 

The procedure forms 

P~j = (ni + 1)- tR,j, 

where R o is the rank of Do(W) among Do(X.) . . . . .  D,j(X~.,). Do(W). The quantity Po may 
be viewed as-a p-value for testing Ho:W ~ ~ against H . :W E %. Letting 

P,(w) = min Pij(w), 

the partial discrimination rule is defined by 

Ai = {W [ Pi(w) > (K - l)-'oti}. (5) 

We refer to this as the minimum-p procedure (MPP). Note that for this rule, 

L f~(t) dt = P[P,(W) ~< (K - l)-~oti [ W ~ ,rr~] 
i 

~< ~ P [ P , j ( W )  ~< ( K -  l ) - ' a ,  l W E  rri] 

= ( K -  l)(n, + l)-'l[(n, + l ) ( K -  1)-~,[I ~ ~,. (6) 

Here I['1[ denotes the greatest integer function. The last equality follows from the lemma in [3]. 
This procedure is distribution-free. But the first inequality in [6] is a weak link. As a result, 
the procedure sometimes fails to classify large portions of W-values. 

Broffitt recognized the weaknesses of MPP and thus proposed a second procedure which 
creates A~ by combining all the (K - l) training samples from populations rrj,j # i. This one 
"other than i"  population (denoted 1) has a sample of size NI = Ej.~ nj. Let Dit(') denote a 
discriminant function which is constructed from the augmented ith sample X ,  . . . . .  X,,,+j 
with X,,,+~ ~- W and the "other than i "  sample of size Nt. It should treat each of these two 
training samples symmetrically and should give larger (smaller) values to observations from 
population i(l). Define 

Pi(w) = (hi + 1)-lR~(w), 
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where RAw) denotes the rank of Di/(W) among D,~(X,~) . . . . .  DAX,,, ). D~(W). The procedure 
is then defined by 

Ai = {w t P,(w) > a,}. (71 

The lemma in [3] shows that this procedure is distribution free. We call this the combination 
procedure (CP) because of the combining of " 'other" training samples. It is a better rule than 
MPP because its bounds on the misclassification probabilities are sharper. However, it also has 
apparent deficiencies. If the training sample sizes do not reflect the actual mixture of  populations 
among the future observations to be classified, then the resulting decision rule will not give 
proper emphases to the directions of the individual populations. For example, if symptom 
vectors are available on 30 normal persons and l0 people diagnosed to have each of three mental 
disorders, the decision rule will not properly reflect the fact that 75% of the people to be tested 
with the decision rule will, in fact, be normal. It also does not enable the decision maker to 
adjust the emphasis of the decision rule to reflect the seriousness of  certain types of errors. For 
example, it may be more serious to misclassify a schizophrenic patient as normal than to 
misclassify that person as manic-depressive. Thus a proper many population rank procedure 
should allow for flexible yet interpretable emphases among the "'other than i "  populations when 
defining Ag. 

In the remainder of this section we define two more methods for constructing distribution- 
free rank procedures for K-population partial discrimination problems. The following lemma 
plays an important role. 

LEMMA 1. 

Let Hi(t) be a discriminant function defined over R r' which depends on the K samples X~. 
. . . .  X~,,,, . . . .  XK~ . . . . .  XK,,~ and which depends on the ith sample in a way that is symmetric 
in the observations X,~ . . . . .  X,,,. Then Hi(Xi~) . . . . .  Hi(X,,.) are exchangeable random 
variables. 

Proof:  See Theorem 11.2.3 in Randles and Wolfe[l I]. 
This result is used to construct the region Ai, as follows: Assuming W came from rr,, we 

form an augmented training sample Xi~ . . . . .  X,,,, Xi,, . t  of  size ni + I. using W = X,~.~. 
The other training samples are of size nj, j ~ i. Let D~(t) denote any discriminant function 
which treats the ith augmented sample of size r/i + 1 symmetrically and form 

Pi(W) = (hi + l ) - IRi ,  (8) 

where Ri is the rank of Di(W) among Di(X,t) . . . . .  Di(Xi,,), D~(W).  Lemma 1 shows that if 
W came from ~i, and Dg(X~) has a continuous distribution, then Pi is uniformly distributed 
over the values (n~ + 1) -z, 2(ni + 1) -~ . . . . .  (hi + l)(ni + l) -t .  This distribution alsoholds 
when Di(Xit) does not have a continuous distribution, as long as ties are broken at random. 

This extends the two-population rank method described in [3] to many population settings 
in a natural way. Note that it only requires Di( ')  to treat the ith augmented training sample 
symmetrically. It says nothing about how the other (j  -~ i) training samples are utilized. Thus, 
when constructing D~(.) we are free to use these samples separately to emphasize the directions 
of  some populations more than others. This yields enormous flexibility in the construction of 
rank procedures. Moreover, the lemma demonstrates the distribution-free property of  the rank 
method in K-population settings, since we do not need to assume a particular population 
distribution to achieve 

P [ W  ~ Al l  W E ~ 1  = [[ct~(n~ + l)ll (n~ -4- 1) -j ~ ~,, (9) 

for i = 1 . . . . .  K, where Ilxll denotes the largest integer less than or equal to x. 
Let us now describe two different methods of constructing K-population partial discrimi- 

nation procedures based on ranks. These approaches were used earlier by the authors[9] in 
forced discrimination problems. 
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The minimum distance procedure (MDP) 
The first method involves constructing DflW) by separately measuring the relative distances 

of W from Tr, in the direction of rr, for eachj  -# i. That is, let D,( ' )  represent a discriminant 
function which discriminates well between Tr, and ,-r~. Often D~j(W) measures the closeness of 
W to "rr~ relative to ~r~ by means of a ratio of the estimated densities, that is 

Z(w) 
D,~(W) = ~(W)'  (10) 

where .f,(x)(~(x)) is the estimated density of Xi~(X,~). We always construct D,(.)  so that large 
values of D,~(W) indicate W is from Tr, and small values indicate it is from rr~. A discriminant 
function for 'rr, is then formed by taking 

D,(.) = rain D0(.). (11) 
j-~i 

Thus we measure how extreme W is in ~, by finding how extreme it is in the direction of ~j 
for each j,  using, in particular, that j for which W is the least extreme in ~,. In constructing 
the Do(') functions and hence D~('), W is treated as part of the training sample from population 
'rr~. As long as each Do(.) treats augmented sample X, . . . . .  X~., X,,,_ ~ symmetrically, where 
X~,..~ = W, Lemma I shows that the procedure, described by Eq. (8) with A,'s defined as in 
Eq. (7), will be distribution free. 

Since the procedure is based on min Do(.), it is essential that the D~j(-), j # i be comparable 
quantities. This can be accomplished, for example, by using D0(.)'s as indicated in (10). where 
each estimated density )~(.) is of the same form, differing only by some estimated parameters. 
This is the case, for instance, when Fisher's LDF and QDF are used as D~fl'). These two 
discriminant functions use the ith augmented training sample only through its sample mean and 
sample dispersion matrix. They thus treat the n~ + I observations symmetrically. The perform- 
ance of MDP using Fisher's LDF and QDF is demonstrated in the next section. 

Minimum rank procedure (MRP) 
The second procedure constructs Ai by ranking the observations using the individual D~/(-) 

functions. Here D,j(') denotes a discriminant function with the same properties as in the MDP 
description. Since the rule depends only on these ranks, even if the D~j(.)'s are not comparable, 
it will not affect the decision rule. The other advantage of this procedure is that it provides a 
convenient way to vary the emphases in the directions of the different ,-rj's when forming Ai. 

Let Rij(X~) denote the rank of D~j(X~s) among D~j(X~) . . . . .  D0(X~. ~) for s = 1 . . . .  
,n~ + 1, whereX,~,.~ = W. We then form 

Qi(Xis) = min [kijRij(Xis)]. s = 1 . . . . .  ni + 1, 

where the kij are positive real numbers chosen by the experimenter. The k~j's vary the emphases 
in the directions of the samples from the different ~i's, j -~ i. Let R,(W) denote the rank of 
Qi(W) among Qi(Xit) . . . . .  Qi(Xin,, O. The p-value is then 

Pi(W) = (ni + l)-IR/(W), 

and the decision rule uses A,'s as in Eq. (7). 
We note that, when ranking Qi(W) among Qi(X,t) . . . . .  Qi(X,,,), Q,(W), ties might occur. 

In order not to destroy the uniform property of the ranking, we would break the ties randomly 
(in practice, an average rank should be used when ties occur). 

Using Lemma 1. we see that, if W U 'rri, P~(W) is uniformly distributed over the values 
(hi + 1) -~, 2(n~ + 1) -z . . . . .  (n~ + l)(n~ + 1) -I provided that Q,(.) treats X, . . . . .  
X~,,÷~ symmetrically. To see this, let (st . . . . .  s,,+O be any permutation of the integers (1, 2, 

C a~J'~A 3.2:2A-E 
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. . . .  n~ + 1). Note that 
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0.,(" X,,, . . . .  X,,..,) = min {k,j • R,,(. I X,,. . . . .  X, ...... )} 
/=i 

= min {kij • R(i(" ] Xil . . . . .  Xi~..i)} 
j*=i 

= Qi(" IX, ,  . . . . .  X , , . l l .  

because the 

Dq(" [ X,i . . . . .  Xi~-i) .  j # i, 

are symmetric in their arguments. Thus the minimum rank procedure provides a distribution- 
free bound on the probabilities of misclassification. 

For any fixed i, the k0's (j  # i) enable the experimenter to emphasize the direction of 
some of the ~j populations (j ~ i) more than others when constructing &. The role of the k~/s 
is such that k 0 times the number of X~/s in the direction of the sample from %, for each j ~ i 
are all approximately equal. Letting the training sample sizes simultaneously go to infinity, it 
can be shown that under certain conditions, k~j times the probability in A~ in the direction of w/, 
fo r j  ~- i are all equal. (Details are given in Ng[8] for the case K = 3). Thus we interpret k,/  
k 0, as the desired ratio of the probabilities in ,4~ under ~r~ in the directions of %, divided by the 
corresponding probability in the direction of ~j. The k,/s thus enable the experimenter to control 
and specify these ratios. The ratios are easily interpreted and hence often easier to obtain from 
an experimenter than are other emphasis constants like costs and priors. The performance of 
MRP using D0(.)'s which are Fisher's LDF and QDF is demonstrated in the next section. 

3. A MONTE CARLO COMPARISON 

This section describes a Monte Carlo study comparing the four procedures MDP, MRP. 
MPP and CP. We consider only bivariate distributions (p = 2) and the three-population case. 
Two main types of distributions are used in this study. They are the bivariate normal and the 
10% contaminated bivariate normal. The latter has been found to be a good model for distri- 
butions that are quite heavy-tailed. A subroutine called GGNSM in the IMSL package is used 
to generate the bivariate normal random variables. 

We consider three different mean positions with equal dispersion matrices and only one 
with unequal dispersion matrices. Thus there are all together eight distribution models: three 
mean positions for normal populations with equal dispersion matrices among the three popu- 
lations, three mean positions for contaminated normal populations with equal dispersion mat- 
rices, one mean position for normal populations with unequal dispersion matrices among the 
three populations and one mean position for contaminated normal populations with unequal 
dispersion matrices. In both equal and unequal dispersion matrix cases, the normal and the 
contaminated normal have the same mean positions. All these are summarized in Tables l(a) 
and l(b). 

In the normal with equal dispersion matrix case. the Mahalanobis distance of each pair of 
the populations is approximately equal to one for those which are substantially overlapped, and 
is approximately equal to four for those which are far apart. In the unequal dispersion matrix 
case, the Mahalanobis distances are computed based on the average of the two dispersion 
matrices involved. 

We use equal training sample sizes of 39. In the first of the four main distribution structures, 
bivariate normal or contaminated bivariate normal with equal or unequal dispersion matrices. 
89 observations are generated from each population with the mean vector (0, 0)'. They are then 
translated to the given mean positions. Then, 39 of the 89 observations from each population 
are used as a training sample to define the discrimination functions. We use both Fisher's LDF 
and QDF in constructing the rank rules. The three types of p-values (MPP, MDP and MRP) 
are computed for each of the remaining 150 obser~ations, 50 from each population. For CP, 
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Table I. The distributions of the three populations 

(a) 

IOZ Conf'a"Inated Normal 

Normal Main Population Contamlnan~ 

0)-() > oo...oo, o o ,0o o 
S t r u c t u r e  .49 u .49 

P o p u l a t i o n s  "1 ~2 w3 

Mea. 1 ( 0 , 0 )  ( - 1 . 0 ,  0 .0  ) ( 0 . 8 0 ,  0 .0  ) 
P o s i t i o n s  2 ( 0 , 0 )  ( - 1 . 0 ,  0 .0  ) (4.00, 0.0  ) 

3 (0,0) (-2.0, 2.425) (1.88, 2.12) 

(b) 

IOZ Contamlnated Normal 

231 

Populations Normal Main Population Contaminant 

,,. 7 I ok / i o'~ f~oo o'X 
' t o t o .,9] k o 

C.var ...... -~- ..... -% ....... ~ ....... -~ ......... ~, ....... ..L___~ 
i.n~. ,. /.49 0'~ /.49 ok /'49 ok 

St:ruc1:ure ----7 .... -C 7-- ..... -C ....... 7 ....... ~" .... 
~. / . 4 9  0 ~ /.49 0% [ 4 9  0% 

\o  ,) t °  ,) to ,oo) 
Populations ~1 "2 "3 

. . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

~an I (0,0) (-.350, .789) (0.320, .72) 
Positions 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

we simply use LDF and QDF to discriminate one of the populations against the "other popu- 
lation." The p-values are also computed. Based on the p-values, the 150 observations are then 
classified using the partial discrimination rules. We let all the o~i's equal 0.1. For MR[', we let 
all the kij's equal to 1, The proportions of observations correctly and incorrectly classified are 
computed. The 89 observations from each of the three populations are then translated to the 
next mean position and the process is repeated for all the three mean positions in equal dispersion 

Table 2. I000 times estimated probabilities: equal covariance structure, mean position = I 

Normal 10% Contamina~ed Normal 

LDF QDF LDF QDF 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  - -  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

PRO POP CCL PCL NCL VEL CCL PCL NCL gEL CCL PCL NCL MCL CCL PCL NCL MCL 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

l 3 584 309 I05 8 612 270 111 12 386 476 127 27 371 480 121 
CP 2 374 314 210 I03 338 360 193 109 193 342 366 100 102 360 424 114 

3 0 661 230 109 4 666 202 128 7 510 371 112 28 461 384 127 

1 l 269 677 53 1 292 637 69 5 80 859 56 16 140 777 67 
MPF 2 124 322 521 33 129 340 486 45 21 138 802 39 32 169 734 66 

3 94 316 555 35 102 327 521 50 19 107 831 43 24 188 724 64 

1 5 568 308 It9 10 557 295 138 15 354 498 133 39 302 534 125 
l~DP 2 264 425 206 104 274 408 206 113 141 371 380 109 88 309 476 126 

3 177 485 231 107 185 476 218 121 99 392 399 109 65 355 449 131 

I 4 553 337 106 8 553 316 t23 16 329 540 t15 32 310 539 119 
MRP 2 231 445 224 100 227 437 227 109 104 345 446 I05 91 323 467 |19 

3 174 472 251 102 185 464 233 118 76 392 429 103 70 353 456 121 

PRO: Procedure 
CCL: Correctly Classified 
NCL: Noc Classified 

POP: Population 
PCL: Pertlally Classified 
~CL: ~sclasslfled 
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Table 3. 1000 times est imated probabilities: equal covar iance structure,  mean position = 2 

Normal 10% Contamina=ed Normal 

LDF QDF LDF QDF 

PRO POP CCL PCL NCL FICL CCL PCL NCL MCL CCL PCL NCL MCL CCL PCL NCL MCL 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

I 368 528 0 105 370 519 1 IlO 204 656 16 123 222 641 21 I16 
CP 2 388 513 0 I00 384 514 0 i01 287 6i5 8 91 217 666 II I06 

3 0 900 0 i00 58 838 0 104 32 858 9 I01 274 600 16 II0 
............................................................................................ 

i 129 816 14 41 146 793 13 49 7 314 623 55 40 464 433 63 
MPP 2 138 828 2 32 143 811 2 43 28 379 556 37 46 501 388 65 

3 939 26 13 21 940 26 13 21 91 396 481 32 278 407 261 54 

I 363 534 9 94 381 506 I0 103 189 679 20 i13 177 679 25 119 
MDP 2 352 542 I i05 342 538 I I18 142 738 16 104 161 706 9 123 

3 893 1 67 39 892 0 66 42 784 107 14 95 634 215 28 122 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

I 312 587 47 54 308 583 48 61 178 692 25 I05 175 696 26 I02 
~P 2 233 668 5 95 234 661 6 I00 133 750 19 99 122 754 II I13 

3 900 0 83 17 899 0 82 18 510 388 15 87 652 227 19 102 
.............................................................................................. 

PRO: Procedure POP: Populauion 
CCL: Correctly Classified PCL: Partially Classified 
NCL: Not Classified MCL: Misclassified 

matrix cases and one mean position in the unequal dispersion matrix case. A~er this, another 
89 observations are generated from each population, and the whole process is repeated another 
99 times. The averages of the proportions observed in these 100 replications are computed. 
The estimates of the standard deviations of these estimated proportions are also determined. 
The entire process is repeated for all four main distribution structures. When performing this 
Monte Carlo we did not include each W value in the ith training sample when forming A~. Its 
inclusion would have changed the discnminant function only slightly but would have increased 
the run time for this Monte Carlo tremendously. 

The results are summarized in Tables 2-5.  The figures reported are 1000 times the estimated 
probabilities. We found that 57% of the estimated standard deviations were less than 0. I, and 
94% of them were less than 0.2, while only 3% of them were over 0.3, with a maximum of 
0.407. Before we make comparisons of the four partial discrimination procedures (CP, MPP, 
MDP and MRP), let us discuss some important characteristics that are used to make the 
comparison. The most impo~ant thing is to see how well the procedure attains the upper bounds 
for the probabilities of misclassification. One thing we must remember is that we do not want 
to do that unless all the populations are sufficiently overlapped relative to the size of the e~'s 

Table 4. 1000 times est imated probabilities: equal c o v a n a n c e  structure,  mean position = 3 

Normal 10% Contaminated Normal 
..................................................................................... 

LDF QDF LDF QDF 

PRO POP CCL PCL NCL MCL CCL PCL NCL MCL CCL PCL NCL MCL CCL PCL NCL MCL 
........................................................................................... 

1 75l 145 43 61 767 135 41 58 551 343 19 87 535 337 30 98 
CP 2 583 314 35 68 608 283 39 69 430 473 9 88 518 363 27 92 

3 579 328 28 65 596 310 31 63 402 492 14 92 453 408 31 108 
.............................................................................................. 

I 849 i01 12 38 845 104 13 38 55 353 551 41 170 438 333 59 
MPP 2 889 59 17 35 890 57 19 34 58 417 491 35 157 425 360 58 

3 844 99 13 44 845 97 13 45 59 366 530 44 200 431 308 61 
......................................... . ............................................. 

1 893 2 67 38 889 2 72 37 690 189 24 97 660 189 35 115 
l~P 2 894 0 76 30 894 0 75 31 709 169 27 95 665 189 40 105 

3 900 2 65 33 896 i 69 34 715 170 i8  97 647 223 16 113 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

i 897 12 50 41 894 14 52 40 474 402 33 91 534 328 32 106 
~P 2 902 3 69 26 902 3 69 26 503 380 32 85 611 258 38 93 

3 885 13 63 39 883 11 66 40 518 368 27 86 602 277 14 106 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

PRO: P r o c e d u r e  POP: Population 
CCL: Correctly Classified PCL: Partially Classified 
NCL: Not Classified MCL: b~sclassified 
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Normal 10% Con=amina=ed Normal 

LDF QDF LDF QDF 

PRO POP CCL PCL NCL MCL CCL PCL NCL b~L CCL PCL NCL MCL CCL PCL NCL ~L 

1 34 479 374 113 38 559 283 120 31 320 525 124 54 292 537 117 
CP 2 14 477 410 99 46 598 241 1~6 34 308 545 ~ 3  42 355 484 119 

3 24 483 390 103 70 556 242 132 38 307 539 116 41 341 493 124 
. . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

1 13 303 627 57 37 341 569 53 12 81 861 46 28 131 783 58 
bIPP 2 58 308 588 46 43 394 510 52 10 87 856 46 19 148 770 63 

3 41 312 603 44 37 380 53~ 53 ii 86 854 49 20 146 774 60 

1 68 405 401 126 79 470 317 134 48 278 556 118 62 240 568 131 
MDP 2 133 376 384 106 141 455 276 128 55 299 530 115 47 292 534 127 

3 91 404 396 110 117 473 286 124 51 267 554 127 57 298 531 114 

1 44 412 428 116 70 473 339 118 39 254 596 112 56 261 565 118 
~ P  2 121 372 413 93 111 477 300 112 42 278 567 112 46 306 527 121 

3 91 396 422 91 96 479 308 117 45 259 588 108 51 306 530 112 

PRO: Procedure POP: Popula t ion  
CCL: C o r r e c t l y  C l a s s i f i e d  PCL: P a r t i a l l y  C l a s s i f i e d  
NCL: NoC C l a s s i f i e d  MCL: ~Ltse lass i f i ed  

specified. In the three-population case, if two of the populations are overlapped and the third 
one is far apart from them, we want the procedure to attain the upper bounds for the misclas- 
sification probabilities of the two overlapping populations, but not the third population. The 
next thing is to see how well the decision rule correctly classifies the unknown observation 
while keeping the probability of not classifying the observation small. 

In Table 2, the MDP and MRP are quite comparable. They both do very well in attaining 
the a-level. The MPP is very conservative as expected. As a result, it does not correctly classify 
an observation well. The CP does quite well in attaining the a-level, but does very poorly in 
classifying observations from rr3. 

In Table 3, the MDP is the best. It keeps the a-levels very close to the designed levels 
for 'rr2 and 'rr 3, which are overlapped substantially. The MRP comes next. It is somewhat 
conservative, because it gives us the same amount of regions towards the other two populations. 
The MPP is even more conservative, as expected. The CP does something very unreasonable. 
It does extremely poorly in classifying an observation from rr 3, which is far apart from the 
other two populations. 

In Table 4, all four procedures do quite well, except the MPP in the contaminated case. 
In comparison, the MDP and MRP do better than the CP and MPP. In the normal case, the 
MPP does better than the CP and is close behind the MDP and MRP, whereas in the contaminated 
case, the MPP does very poorly and the CP comes somewhat behind the MDP and MRP. 

In Table 5, the MRP is the best in attaining the a-level. The MDP and CP come quite 
close to it, however. The MPP is still very conservative. The CP does somewhat better in 
correctly classifying an unknown than the MPP does. However, they both are far behind the 
MDP and MRP. 

Overall the MDP is the best, while MRP comes next. In fact, the MDP and MRP are quite 
comparable when all three populations are overlapped substantially. When two of the populations 
are overlapped and the third one is far apart from them (e.g. mean position 2) the MRP cannot 
attain the a-level for the two-overlapped populations. This is because it was constructed to give 
the same amount of region towards each of the two other populations, even though one of them 
is much closer than the other. This is not the most desirable way to use MRP. The MPP is 
conservative, as expected, whereas the CP does something very unreasonable in some situations. 
This is because the discriminant function which we used to discriminate one population against 
the others is unreasonable in that it doesn't adapt well to the many different population positions. 
But we do not have a better discriminant function to use with the CP scheme. 

In general, there is no winner between the LDF and QDF. The QDF, however, does 
somewhat better than the LDF for CP and in the contaminated case for MPP. On the other 
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hand, the QDF misclassifies more often than we expect, when there is a substantial overlap 
while the LDF tends to attain the a-level better than the QDF. 
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