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1. Introduction

Ovarian cancer is one of themost deadly malignancies that can form
in the female body. Current statistical analysis reveals ovarian cancer as
the 5th leading cause of cancer-related mortality in women worldwide
[1]. It is also labeled as themost prevalent and lethal gynecologic cancer
as well [2]. As a result, considerable research efforts have been dedicat-
ed to understanding ovarian cancer mechanisms and various methods
for possibly treating the disease. Unfortunately, there has been little
progress transitioning the research into effective clinical applications.
Only 20% of the new cases of ovarian cancer are detected in an early
stage and 5-year survival rates for patientswith advanced-stage ovarian
cancer is roughly 30% [3]. Therefore, additional translational research
must be carried out in order to progress the current state of clinical
care of ovarian cancer.

For many years, scientists researched cancer in a reductionist ap-
proach, examining single targets or pathways. Years of researching var-
ious cancers with this approach have made many great improvements
in the field of oncology, but it appears there is a limit to its efficacy, es-
pecially in improving patient mortality from ovarian cancer. In recent
times, it has become evident that cancer is a disease driven by multiple
cellular pathways, which can be affected in any number of ways [4].
Morphological and molecular studies investigating ovarian cancer
make it clear that it should not be classified as a single disease, but a col-
lection of disease subtypes with altering origins and significantly differ-
ent clinical behaviors [5,6]. In addition, tumors often have
heterogeneous cell populations, comprised of various differentiated
Fig. 1. Systems biology appro
(Reproduced with permission
cell types, which form a unique microenvironment [7]. Therefore, new
approaches to cancer medicine are required in order to improve treat-
ment outcomes. The concept of systems biology has been brought up
over the past few years and applied to cancer in efforts of developing
so-called predictive, preventive, personalized and participatory (P4)
cancer medicine [8].

Systems biology takes a broader, more holistic approach to under-
standing the basic biology of cancer (Fig. 1) [9]. It takes into account
the various biological scales (genetics, signaling pathways, etc.) and
their interaction to form the complex biological system found in a
tumor [10–12]. The main objective of cancer systems biology is essen-
tially to develop personalized cancer medicine. In order to achieve
this, data on the different biological scales must be integrated for a
more detailed picture of tumorigenesis, cancer stratification, and pro-
gression (Fig. 2) [9]. Variousmodels can also be designed in order to de-
tect, diagnose, and predict the outcome of particular treatment [13–15].

The present review will discuss advancements made in various
fields of research that can be applied to personalized ovarian cancer
medicine. It will emphasize different technologies developed over the
years and their applications to personalize care of ovarian cancer pa-
tients in the clinic.

2. Emerging technology for precise diagnosis of ovarian cancer

The field of oncology has always been an ever-expanding area of
medical care due to the massive investments and advances in the
basic sciences. New developments in various fields of research have
aches in cancer therapy.
from [9].)
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uncovered many aspects of the disease with an extreme emphasis on
the complexity and high variability it can have in different patients.
Consequently, the idea of a treating all forms of cancer with a single
“miracle” treatment finally appears impossible. By integrating knowl-
edge obtained from different research disciplines, models and algo-
rithms could be generated to guide oncologists to optimize treatment
regimens for patients based on the individual properties of their cancer.

2.1. Genetics

The genetics of humans essentially defines their individual peculiar-
ities. Subtle differences found in the geneticmakeupof a population cre-
ate the different traits observed in society. In addition, variations in a
gene among a population produce different gene isoforms that may re-
sult in altered gene function creating phenotypic variations in cell be-
havior. Unfortunately, some inherited gene isoforms can result in a
diseased state of an individual. These are typically referred to as mutat-
ed genes. In the case of ovarian cancer, mutated genes inherited from a
parent canmake a personmore susceptible to developing the disease in
their lifetime.

However, inherited mutations only account for a small fraction of
the overall cases of ovarian cancer detected. In 2015, there were an es-
timated 21,290 new cases of ovarian cancer, but it is believed that only
10–20% of these are attributed to germline mutations [16–18]. Either
sporadic mutations or deregulated gene expression should be the
major causes for most ovarian cancer patients. Recent advancements
in genomics, transcriptome profiling, and epigenetic fingerprinting
have been applied to cancer research and can possibly be integrated
into a cancer systems biology approach for improving cancer medicine.

2.1.1. Genomic sequencing techniques
Since the completion of the human genome project, massive

amounts of data have been uncovered about the relationship of many
diseases and their relation to the genome. Perturbed signaling networks
at the cellular level can alter cellular processes and cause symptoms of a
diseased state exhibited at higher biological scales [8]. As mentioned
earlier, cancer has an extremely complex etiology and during the devel-
opment of the disease any number of mutations can occur. For this rea-
son, genomic sequencing can be a valuable tool for oncologists. While
genomic sequencing was expensive to perform during the human ge-
nome project, technological advancements in next generation sequenc-
ing (NGS) techniques have reduced the cost of sequencing dramatically
and have been applied to cancer research [19].

By performing genomic screening, it is possible to determine if a pa-
tient has any pre-existing factors that wouldmake themmore suscepti-
ble to develop cancer in their lifetime. For example, mutations found in
the BRCA1 and BRCA2 genes increases a woman's risk for developing
ovarian cancer in her lifetime to roughly 40% and 18%, respectively
[20–22]. For women without germline mutations, high throughput se-
quencing allows for screening population samples in a short amount
of time and can possibly identify novel mutations in ovarian cancer.
This technique has been applied extensively to breast cancer research
and is starting to be applied to ovarian cancer aswell [23]. Another tech-
nique known as mate-pair NGS has been shown to be useful for
predicting disease progression in an individual (Fig. 3) [24]. If genomic
rearrangement were to occur during the progression of the disease,
mate-pair NGS approaches like personalized analysis of rearranged
ends (PARE) could be a method of detecting such parameters in patient
samples [24].
2.1.2. Transcriptome profiling
For normal cell function, certain genes are expressed at definite

levels to maintain regulation of the various processes occurring during
the cell cycle. Alterations that may happen in the regulatory regions of
a gene can lead to abnormal levels of its products, resulting in
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deregulation in normal cell processes. Usually such dysregulations re-
sult in one of two ways: cell death or neoplastic progression.

Screening a large population of tumor samples can help provide
gene expression profiles that can be useful for stratifying various can-
cers into subtypes on amolecular level. Expression profiles from various
populations can be integrated into various models to guide oncologists
towards optimal patient management in the clinic [25]. Several
methods have been optimized and are currently being applied to cancer
research. One technique widely used today to obtain gene expression
profiles is the quantitative reverse transcription polymerase chain reac-
tion (qRT-PCR). Total RNA is extracted and purified from homogenized
biopsy tissue, converted into complementary DNA (cDNA) by reverse
transcription (RT), and is amplified by PCR. Unlike traditional PCR, this
method employs fluorescent dyes to allow an instrument to detect
RNA levels during the PCR process. This allows scientists tomeasure ex-
pression levels in the diseased state to diagnose patient samples with
precision in relatively short periods of time [26–28].

Another popular method for transcriptome profiling is microar-
ray assays. Microarray analysis requires isolating the total RNA in
a sample and converting it into cDNA just like when performing
qRT-PCR. However, microarrays rely on in situ hybridization of
complementary nucleotide strands instead of sample amplification.
DNA spots are placed on the microarray surface and each spot con-
tains a custom designed DNA sequence that acts as a probe for spe-
cific gene detection. The sample cDNA is fluorescently labeled and
when they bind to their complementary spots on the microarray,
a fluorescent signal is emitted based on the amount of cDNA
bound to the probe DNA. Microarray assays can be performed in a
quick and cost-effective manner, which make them a promising
tool for clinical transcriptome profiling of patient tumor biopsies.
Plus, a number of studies have been conducted using microarray
analysis for various types of cancers that have shown their high po-
tential to screen patient samples for unique subtype-specific gene
signatures that can help to predict treatment response, tumor pro-
gression, and patient prognosis [25,30]. Meta-analysis of tran-
scriptome profiles can aid in patient care and allow for optimal
treatment courses (Fig. 4) [25].
2.1.3. Epigenetic fingerprinting
Many years of molecular biology research has determined that re-

versible alterations (known as epigenetics) that affect gene expression
can be made to the genome. Epigenetic alterations to the genome
occur during normal cell cycle regulation (Fig. 5) [29]. More importantly
though, research has shown these alterations tend to occur more fre-
quently than mutations. Epigenetic alterations may represent one of
the reasons why mutational analysis has been successful for guiding
treatment decisions for only small subsets of patients [31]. There are
two major forms of epigenetic regulation: one that occurs at the gene
level and a second that occurs at the chromosomal level. The first is
known as genomic methylation. Methyl groups can be added to certain
regions of genes, which can either active or inactive gene expression.
Promoter regionmethylationwill repress gene expression, whilemeth-
ylation in the body of the gene is observed in actively expressed genes
[32]. Modifying histone tails is the other major method used by cells
to regulate their gene expression levels. Acetylation, methylation, and
ubiquitination of histone groups can alter gene expression by changing
the packing density of the chromatid and altering mRNA splicing pat-
terns [33,34]. Epigenetic changes can serve as possible biomarkers for
early tumor detection. Epigenetic profiles obtained for patient samples
can augment mutational data for even more accurate tumor diagnosis
and prognosis [35].

Epigenetic fingerprint profiling can help in determining how epige-
netic regulation affects gene expression and in the case with ovarian
cancer, it may be possible to find therapeutic targets and determine
the disease progression [36].
2.1.4. Recent advanced technologies for ovarian cancer diagnosis, imaging
and surgery

Several recent studies have been carried out in order to provide for
an integrated proteogenomic characterization of ovarian cancer. These
investigations combine genomics, transcription, proteomics and
phosphoproteomics data in order to identify themolecular components
and underlyingmechanisms associated with ovarian cancer and specif-
icallywith short overall survival of patients. Recently, investigators from
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Fig. 4.Different analyticalmethodologies that have been used to build functionalmodules or enriched gene sets. (A) The binomial distributionwas used to calculate the chance probability
that a gene setwould show a given degree of enrichment in a cancer signature. Gene set enrichment scores were computed for several types of gene sets (Gene Ontology, KEGG, Biocarta)
across hundreds of cancer signatures from the Oncomine database. (B). Two functional modules (mitosis and the Y branching of actin filaments modules) enriched in a metastatic breast
cancer signature. The modules showed significant enrichment, suggesting that these processes are important for the development of metastases in breast cancer.
(Modified from [25].)
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Fig. 5. The epigenetic transcriptional machinery. BET, SEC: representative reader (proteins that bind modifications and facilitate epigenetic effects); HATs, DOT1L, DNMT, EZH2:
representative writers (enzymes that establish DNA methylation or histone modifications); histone deacetylases, JmjC–KDMs, LSDs, DNA demethylase: representative erasers (proteins
that remove DNA methylation or histone modification marks).
(Reproduced with permission from [29].)
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Pacific Northwest National Laboratory performed a comprehensive
mass-spectrometry-based proteomic characterization of 174 ovarian
tumors [37]. The integration of genomic data with proteomic measure-
ments revealed a number of mechanisms and proteins (e.g. copy-num-
ber alternations, proteins associated with chromosomal instability,
signaling pathways that diverse genome rearrangement, etc.) that
allowed for stratifying patients for therapy and predicting clinical out-
comes in high-grade serous carcinomas (HGSC). However, despite of
the remarkable advances in screening technologies, the most HGSC
cases are still detected in advanced stageswhen the efficacy of the treat-
ment and available therapeutic options are limited. The development of
efficient and sensitive imaging techniques and screening protocols for
the detection of the disease in early stage is extremely important. Cur-
rently, several imaging techniques are being used for early detection
of HGSC. In addition to established methods including serum CA-125,
ultrasound, sonography, CT, and MRI scans, innovative in vivo confocal
microlaparoscopic procedure, transvaginal sonography (especially en-
hanced transvaginal sonography and transvaginal colour Doppler so-
nography), photoacoustic and tumor-specific fluorescence imaging
have been recently investigated [38]. Such techniques allow for gather-
ing information regarding the size, composition, and location of the
tumor as well as detection of metastases. In turn, such information is
important for determining the stage of the disease and selecting treat-
ment plans. Confocal microlaparoscopes are also able to display live
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images of abnormal regions in real-time during surgery and guiding bi-
opsies. Nanotechnology has an ability of enhancing the existing imaging
techniques as well as developing novel approaches for tumor-specific
imaging that also can be applied to ovarian cancer. For instance, sin-
gle-walled carbon nanotubes have been proposed for in vivo fluores-
cence imaging [39] as well as tumor-targeted responsive nanoparticle-
based systems were recently developed for enhancing magnetic reso-
nance imaging and simultaneous therapy of ovarian cancer [40,41]. It
was shown that uniform, stable cancer targeted nanoparticles
(PEGylated water-soluble manganese oxide nanoparticles, modified
with LHRH targeting peptide) demonstrated a remarkable capability
of substantially enhancing the detection of ovarian tumor and intraper-
itoneal metastases (Fig. 6).

2.2. Proteomics

Proteins are major components involved in carrying out the func-
tions of cellular pathways. Therefore, understanding the structures
and functions of proteins is essential for understanding how they may
play a role in certain diseases. Proteins can serve as biomarkers for diag-
nosing cancers. A recently developed targeted proteomics technique
called selected reaction monitoring (SRM) has been proven to be effi-
cient at quantifying protein biomarkers in patient tissues and blood
samples [42]. This could be a possible technique for early cancer diag-
nosing, if viable biomarkers are identified and can be used in the clinic.
At the same time, detected proteins can be used as possible therapeutic
targets in cancermedicine. Cell protein receptors overexpressed in can-
cers could be targeted either to deliver a chemotherapeutic directly spe-
cifically to the tumor or as a therapeutic target itself for higher
treatment efficacy (Fig. 7) [43,44].

2.3. Single-cell analytics

One of themajor challenges facing oncologists that impedes optimal
cancer treatment is the fact that tumors are heterogeneous and contain
a number of distinct cell types (Fig. 8) [7]. In order to effectively treat
cancer, so-called cancer stem cells which initiate tumor growth and re-
occurrence need to be targeted. However, studies determined that can-
cer stems cells generally make up roughly 1% of the cell population in a
tumor [45–47]. Consequently, performing molecular analytics on a ho-
mogenized patient biopsy may not give an accurate depiction of the
Fig. 7. Receptor targeted drug loaded liposomes. Targeted Targeting ligands coupled to the di
generate a targeted PEGylated liposome system specific to upregulated cell surface receptors.
(Reproduced with permission from [44].)
underlying mechanisms that drove cancer formation. As the disease
progresses, the stem cells differentiate into different cells types that
usually have varying gene and protein expression profiles. This means
that the use of homogenized tissues from whole biopsies for determin-
ing anexpression profile can result in signal to noise complications lead-
ing to inaccurate diagnosis of patient tumors [48]. This enormous
amount of heterogeneity also makes it difficult to distinguish subtype
stratification from cancer progression [49].

In recent years, several researchers have adopted the concept of
microfluidics as a method for performing single-cell analytics. These
methods have been proven useful for sorting single cells based on cer-
tain properties [50,51]. Once the cancer stem cells have been isolated,
they can accurately be analyzed to determine what pathways have
been disturbed and drive the disease. Single-cell analytical technologies
have been emerging throughout the years and show good promise clin-
ical application.

Several whole-genome amplification (WGA) methods have been
designed to accurately amplify and detect small amounts of DNA. Sin-
gle-nucleus sequencing (SNS) is an amplification method that uses de-
generate-oligonucleotide PCR to amply DNA from a single cell. It
shows low coverage of the entire genome, but has been proven useful
for determining the copy number of particular genes [52]. Another
WGA method gaining momentum is multiple displacement amplifica-
tion (MDA). Random primers are used during the amplification process
allowing for a linear amplification. MDA generates long DNA products
and shows high genome coverage, which makes it useful for screening
genes for point mutations and identifying single nucleotide polymor-
phisms (SNPs) relevant to clinical application [53–55].

Moreover, transcriptome analysis, as mentioned earlier, is essential
for examining the driving forces of a cancer. Just like with genomics,
multiple methods have been optimized to analyze the transcriptomes
of single cells. Single-cell mRNA sequencing (mRNA-seq) is a promising
method for single cell analysis. Thismethod utilizesmultiplexed reverse
transcription and PCR to amplify specific targets in a simple one-step
protocol, which allows for high-throughput. Unfortunately, thismethod
is currently limited to analyzing a small number of genes [56,57]. Anoth-
er method for analyzing single-cell transcriptomes is SMART-seq® am-
plification (Clontech Laboratories, Inc., Mountain View, CA). The
protocol for this method involves template-switching. This includes an-
choring a primer site onto the 3′ end of cDNA fragments. The cDNA is
amplified using traditional end-point PCR and the amplified sample is
stal end of poly(ethylene glycol), which are anchored to the liposome surface in order to



Fig. 8.Development of cancer in a complex and dynamic tumormicroenvironment (TME). Cancer cells are in close relationshipwith diverse non-cancer cell typeswithin the TME, forming
a functional nexus that facilitates tumor initiation, survival, and exacerbation. Cytotoxicity generated by treatments including chemotherapy, radiation, and targeted therapy eliminates
many malignant cells within the cancer cell population; however, surviving cells are frequently retained in specific TME niches.
(Reproduced with permission from [7].)
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sequenced by sequencers. This method can identify SNPs in transcripts
and different isoforms produced during transcript maturation. Howev-
er, it has shown limited success in profiling certain transcripts that are
expressed at low levels [58,59]. Both of these techniques shown prom-
ise in a laboratory setting, but seem like have a limited application in the
clinic since each sample is handled and analyzed separately, limiting the
amount of throughput and slowing down the entire diagnostic process.
As a result, high-throughput techniques such as molecular barcoding of
single cell transcripts in reaction wells or droplets prior to generating a
transcript sequence libraries were developed [60]. Single-cell RNA-se-
quencing (CEL-seq) utilizes this approach by depositing single cells
along with barcode transcript probes into microwells. The labeled tran-
scripts are converted to cDNA and can be selectively amplified based on
the barcode labels [61]. Drop-seq is a method that separates cells into
microdroplets, where barcodes are added and associate with specific
RNA transcripts. All of the barcode-associated transcripts can be ampli-
fied and sequenced in parallel to generatemultiple sequence libraries in
a short amount of time [62]. The barcoding strategy utilized by both
methods enables high-throughput analysis of single-cell transcriptomes
and seems like it is promising for clinical application [63].

Proteomic analysis of single cells is much more challenging com-
pared to genomic and transcriptomic analysis due to the fact that pro-
teins cannot be amplified by any technology currently available [60].
Mass cytometry is one method that labels proteins with isotope-
bound antibodies, which can be analyzed using multiplexed fluores-
cence microscopy. It can help to quantify proteins in order to generate
proteomic profiles for patients [64]. Multiplexed ion beam imaging
(MIBI) can quantify proteins in single cells to produce proteomic pro-
files similarly to mass cytometry. MIBI differs slightly by using second-
ary-ion mass spectrometry to image proteins labeled by isotope-
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tagged antibodies [65]. Both of thesemethods have shown a substantial
potential for studying basic cell processes like cell-signaling pathways
and possibly can be applied to the clinical oncology.

3. Clinical application of precision ovarian cancer medicine

3.1. Biomarkers for earlier detection of ovarian cancer

Most patients with ovarian cancer do not demonstrate symptoms
until the disease has progressed into an advanced stage [66]. A method
for screening for earlier detection of ovarian cancer in patients seems to
be imperative. An ideal biomarker can be DNA, RNA, or a protein that is
tumor specific and is released into bodily fluids like the blood [67–70].
Several viable biomarkers have been identified for a few formsof cancer.
However, ovarian cancer is lacking strong biomarkers that correlate
with ovarian tumor formation and progression. One candidate biomark-
er is the CA-125 glycoprotein.Many reports have been published stating
that a number of patients with ovarian cancer exhibit elevated levels of
CA-125. Actually, some reports show that up to 78% of patients with
ovarian cancer have elevated levels of this glycoprotein [71,72]. Since
such a staggering number of patients have this commonality, screening
for CA-125 levels in women has been proposed for detecting ovarian
cancer while patients are presymptomatic. However, the validity of
CA-125 as a biomarker for detecting ovarian cancer is questionable.
CA-125 levels can become elevated due to inflammation, cirrhosis,
and diabetes mellitus [73]. There is also increasing evidence that
shows that CA-125 is sometime elevated in other cancer like
Fig. 9. Schematic diagram illustrating core molecular pathways
(Reproduced with permission from [75].)
endometrial, fallopian, and lung cancers [74]. False positive results rep-
resent therefore a substantial obstacle for this test. Other biomarkers are
required to further confirmwhether elevated levels of CA-125 observed
in a patient are due to ovarian cancer or another condition.

3.2. Targeted therapeutics

The debulking surgery is still necessary for many advanced ovarian
patients [76]. However, micronodular and floating tumor colonies,
which are spread within the peritoneal cavity, cannot be adequately
treated by surgery or radiation and require extensive chemotherapy.
Current maintenance chemotherapies including olaparib and
bevacizumab delay disease progression, but do not prevent recurrence
or death. The recent combination treatment hold promise for the
targeted chemotherapeutics [77]. The concept of personalizedmedicine
relies on treatments that can be applied to specific subtypes of ovarian
cancer seen throughout the patient population. Targeted therapy uti-
lizes the molecular profile of a patient's cancer to design a more effica-
cious plan for treating the disease. Defined biomarkers can be targeted
to create an antitumor response or as a mechanism for tumor-specific
delivery of certain traditional chemotherapeutic drugs (Fig. 9) [75].
The following targeted therapies have been studied extensively and
are used clinically to treat certain subtypes of ovarian cancer.

3.2.1. Vascular endothelial growth factor (VEGF)
Anti-angiogenic therapies have been one of themost successful clas-

ses of targeted therapeutics in the clinic for ovarian cancer perhaps due
driving ovarian cancer that represent therapeutic targets.
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to the fact that most cases of ovarian cancer are detected at more ad-
vanced stages. Angiogenesis has long been known to play a key role in
tumor growth, disease progression, and has been considered a possible
therapeutic target of tumors since the 1970s [78]. Therapeutics
inhibiting this process may slow cancer growth and progression,
which appears tomake certain subtypes of ovarian cancermore suscep-
tible to traditional chemotherapies [79].

A major component in angiogenesis is VEGF, an endogenous com-
pound that promotes tissue vascularization [80,81]. Studies have
shown it is overexpressed in a subset of patients that have poor progno-
sis comparedwith patientswith normal levels of the compound [82,83].
To exploit this feature in certain patients, Roche developed
bevacizumab (sold under the trade name Avastin®), a humanized
monoclonal antibody (MAB) that binds to VEGF and inhibits the
compound's ability to bind to it receptor [84,85]. Therefore, VEGF can-
not elicit the activation of any downstream signaling effects. This
tends to reduce vascularization and normalizes the tumor microenvi-
ronment, but does not typically show cytotoxic effects [85]. For this rea-
son, bevacizumab has been studied as a combinational therapy
administered with several cytotoxic cancer therapeutic drugs for first-
line recurrent ovarian cancer therapy.

Two phase III clinical trials, the international collaboration on
ovarian neoplasms 7 (ICON-7) and gynecologic oncology group
study 218 (GOG218), were conducted recently to evaluate the effects
of two combinational therapies involving bevacizumab combined
with carboplatin and paclitaxel [86,87]. The ICON-7 study enrolled
a total of 1873 women, who were either given carboplatin and
paclitaxel with bevacizumab or a placebo to investigate if the addi-
tion of bevacizumab could increase progression-free survival (PFS)
in the patients with stage III or IV epithelial ovarian cancer. The
study observed a prolonged median PFS in the groups receiving
bevacizumab compared to the control group and concluded the use
of bevacizumab as a first-line therapy, in combination carboplatin
and paclitaxel, as well as a maintenance monotherapy could increase
PFS in patients with advanced epithelial ovarian cancer [86]. The
GOG218 study was a complementary study to ICON-7. It enrolled
1528 women with stage III or IV epithelial ovarian cancer and these
patients were treated with carboplatin and paclitaxel combined
with either bevacizumab or a placebo to investigate PFS and interim
overall survival of the patients. The study showed improved median
PFS and overall survival in patients receiving bevacizumab and con-
cluded the addition of bevacizumab could be an approach to treating
advance-staged epithelial ovarian cancers [87].

A phase III ovarian cancer study comparing efficacy and safety of
chemotherapy and anti-angiogenic therapy in platinum-sensitive re-
current disease (OCEANS) for recurrent ovarian cancer was conducted
to investigate a combinational therapy of bevacizumab combined with
carboplatin and gemcitabine and evaluate whether the addition of
bevacizumab can increase PFS in patients with platinum-sensitive ovar-
ian tumors. There was a significant improvement in the median PFS
among the patients that received the addition of bevacizumab to the
therapeutic regime. Patients receiving bevacizumab had a median PFS
of 12.4 months compared to the median PFS 8.4 months observed
among the patients who only received carboplatin and gemcitabine
[88]. The results showed promise, but the third interim overall survival
(OS) analysis conducted in the study did not show any significant im-
provements to patient OS with the addition of bevacizumab [89]. The
AURELIA (avastin use in platinum-resistant epithelial ovarian cancer)
study, a recent phase III trial for platinum-resistant recurrent ovarian
cancer evaluated combinational therapies involving bevacizumab com-
binedwith paclitaxel, topotecan, or liposomal doxorubicin. The addition
of bevacizumab showed and improved median PFS compared to each
therapeutic agent administered without bevacizumab [90]. Themedian
patient OS was 16.6 months for patients that received chemotherapy,
combined with bevacizumab and 13.3 months for the patients that re-
ceived only chemotherapy [91].
Bevacizumab is not currently approved for first-line or maintenance
therapy of ovarian cancer by the FDA, but has been approved as a first-
line therapeutic agent, when combined with carboplatin and paclitaxel,
for treating advanced-stage ovarian cancer by the European Medicines
Agency (EMA) [84]. Perhaps if more clinical studies are conducted that
show the therapeutic benefits of supplementing chemotherapy with
bevacizumab, the FDA would reconsider approving it for the treatment
of certain ovarian cancers. Nevertheless, VEGF and its receptor are pro-
spective targets for certain cancers and could be exploited as such. More
research is required for anti-VEG inhibitors and investigating their true
potential in ovarian cancer therapy.

3.2.2. Angiokinase inhibitors
Angiogenesis involves multiple signaling pathways, which require a

number of tyrosine kinases to activate the signal cascade. Therefore,
inhibiting tyrosine kinases other than the VEGF receptors become a
promising concept for treating ovarian cancer. Tyrosine kinase inhibi-
tors are generally referred to as orally bioavailable small molecules
that can inhibit multiple tyrosine kinases with high potency [92,93].
Molecules that target tyrosine kinases involved in angiogenesis are
also commonly referred to as angiokinase inhibitors [94].

Pazopanib (GlaxoSmithKline) is an angiokinase inhibitor that targets
VEGFR, platelet-derived growth factor receptor (PDGFR) and c-kit [95].
A phase III trial (AGO-OVAR 16) was conducted to investigate
pazopanib as first-line and maintenance therapies epithelial ovarian
cancer [96]. Pazopanib was compared with a placebo to evaluate pro-
gression-free survival (PFS) in both groups. The group treated with
pazopanib has a median PFS of 17.9 months compared to 12.3 months
seen in the placebo group [97]. Another tyrosine kinase inhibitor called
nintedanib (Boehringer Ingelheim) has been investigated as first-line
and maintenance combinational therapies with carboplatin and pacli-
taxel. The study is ongoing and results are expected in 2016 [98]. A
third tyrosine kinase inhibitor called cediranib (AstraZeneca) was re-
cently investigated in the double blind ICON6 study as a combinational
first-line therapy with platinum-based chemotherapeutics and a main-
tenance monotherapy. The study investigated the efficacy of cediranib,
while also evaluating toxicity, PFS, quality of life (QOL), and OS [99].
The median PFS increased by 3.2 months when comparing the treat-
ment group with the control group [100]. Overall, angiokinase inhibi-
tion appears to be a promising approach to treating ovarian cancer.
The molecules mentioned above have good overall patient response
rates when administered alone or as a part of a combinational therapy.

3.2.3. Poly-ADP ribose polymerase (PARP) inhibitors
Base excision repair is a DNA repair pathway forfixing single-strand-

ed breaks inwhich PARP enzymesplay a key role.When PARP inhibition
occurs, the single-stranded breaks in the DNA eventually collapse and
form double-stranded breaks during replication [101,102]. Double-
stranded breaks in DNA are repaired by homologous recombination, a
process mediated by the BRCA enzymes, or by non-homologous end
joining, an error prone repair mechanism that usually leads to genetic
instability. PARP inhibition in individuals with BRCA-deficiencies only
allows for double-stranded breaks to be repaired by non-homologous
end joining, which usually results in cell death [103–105]. Ovarian can-
cer patients with BRCA mutations are a subset of patients whomwould
benefit the most from PARP inhibition therapy and a considerable
amount of effort has been invested into the evaluation of the concept.

Olaparib is a PARP inhibitor (AstraZeneca) that has shown a promise
for treating BRCA-deficient ovarian tumors in patients [106,107]. It has
been studied extensively as a monotherapy as well as in combination
with various chemotherapeutic drugs traditionally used for ovarian can-
cer patients. A phase-II trial was conducted using olaparib as a mainte-
nance therapy for patients that had recurrent ovarian cancer with or
without BRCA 1/2 mutation. The Study concluded that individuals
with BRCA mutation(s) exhibited a longer progression-free survival
compared to individuals without the mutations [108,109]. Due to the
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promising results for patients with BRCA-deficient tumors, the SOLO
studies, two phase III trials are currently being conducted using olaparib
as a maintenance monotherapy for patients that are known to have
these mutations and have undergone platinum-based chemotherapy
as a first-line treatment [110,111]. Primary outcome measurements
and analysis are expected in 2016.

Other PARP inhibitors are currently being studied as well. Rucaparib
(Covis) is currently being investigated in a phase-II trail (ARIEL2) for
platinum-sensitive, relapsed high-grade ovarian cancer. The study is
currently recruiting participants and expects to obtain primary results
in 2017 [112]. Veliparib (Abbot) is currently in a phase-II trial, evaluat-
ing patients with mutation in the BRCA 1 and/or 2 gene(s). Results for
this study are expected in 2016 [113]. Niraparib (Tesaro) is currently
being investigated in a phase III trial study as a maintenance therapy
for patients with platinum-sensitive tumors either with or without
BRCA1 and/or 2 genemutation(s). The studywill determine the efficacy
of niraparib as a maintenance monotherapy for patients treated with
platinum-based chemotherapy. Results are expected towards the end
of 2016 [114].

Overall, the results emerging from clinical trials on PARP inhibitors
demonstrate they might have a lot of potential treating various cancers.
Patients with gynecologic cancers containing BRCA 1 and/or 2 muta-
tion(s) appear to benefit the most from chemotherapy supplemented
with a PARP inhibitor. Even still, PARP inhibitors are a relatively new
class of anticancer agents and need to be investigated even further to
determine their full potential. Also, further studies should be conducted
to investigate any potential toxicity issues that may arise from interac-
tions of the agents in combinational therapies including PARP inhibitors
and conventional chemotherapies [84].

3.2.4. Folate and folate receptor alpha (FRα) antagonists
Folate and its respective receptors are essential components of cells

that rapidly divide. Folate is important for DNA synthesis and helps pro-
mote cell division. Inhibiting folate synthesis represents therefore a po-
tential method for slowing tumor growth and potentially cause
cytotoxic effects in cancers that are highly dependent on folatemetabo-
lism for DNA replication during cell division [115]. Several folatemetab-
olism inhibitors have been studied extensively to date. Aminopterin and
its successor methotrexate are molecules that competitively compete
with folate for the binding site of the dihydrofolate reductase enzyme
[116]. Fluorouracil-5 is a pyrimidine analog that acts as a suicide inhib-
itor by irreversibly binding to the thymidylate synthase enzyme [117].
These drugs have been studied for treating various cancers, but have
been shown some limited success partly due to toxicity and patient tol-
erance issues [118,119].

However in recent years, other thymidylate synthase inhibitors
called pemetrexed (Eli Lilly) and raltitrexed (AstraZeneca) have been
investigated as potential antifolate therapies for ovarian cancer [120].
Pemetrexed, combined with bevacizumab, has been evaluated as a
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combinational therapy for ovarian cancer patients with recurrent tu-
mors. Median patient PFS improved to 7.9 months and median OS in-
creased to 25.7 months [121].

Targeting FRα seems to be another promising approach for treating
ovarian cancer. Reports have shown that as high as 80% of epithelial
ovarian cancers overexpress FRα, while the normal ovarian tissue in
the same patient show extremely low levels of the expression [122,
123]. In addition, levels of FRα expression correlatewith staging andde-
termining the grade of ovarian cancer [124,125]. This makes FRα a
promising target for certain ovarian cancer patients. Farletuzumab
(Morphotek) represents a fully humanized monoclonal antibody
(MAB) that binds FRα, but does not inhibit folate metabolism. In fact,
when farletuzumab binds FRα it promotes cell lysis by antibody-depen-
dent cellular cytotoxicity (ADCC) and complement-dependent cytotox-
icity (CDC) [126]. A phase II trial conducted with platinum-sensitive
recurrent ovarian tumors evaluated farletuzumab combined with
carboplatin and taxane followed by farletuzumab monotherapy for
maintenance. The study concluded that the combinational therapy im-
proved the overall tumor response rate and farletuzumab was well tol-
erated by patients [127]. However the phase III FAR-131 study, which
investigated farletuzumab combined with carboplatin and taxane as a
combinational therapy for platinum-sensitive recurrent ovarian tumors,
failed to reach the primary PFS endpoint and raised concerns whether
farletuzumab would be effective in the clinic [128]. Further testing
may yield better results.

Folate-conjugated therapeutic agents are one more approach for
exploiting ovarian tumors overexpressing FRα. The therapeutic agent
relies on the folate molecule to target FRα in the tumor for increased
tumor-specific drug disposition [129]. Vintafolide (Merck) is a folate
molecule conjugated with desacetylvinlastine hydrazine, a highly po-
tent vinca alkaloid [130]. Vinca alkaloids are a set of anti-mitotic alkaloid
agents derived from plants belonging to the genus Vinca [131].
Vintafolidewas investigated as a combinational therapywith PEGylated
liposomal doxorubicin (PLD) for recurrent platinum-resistant ovarian
tumors in patients that have undergone less than three separate chemo-
therapeutic regimens in the phase II PRECEDENT study. The combina-
tional therapy was compared with PLD as a monotherapy and the
advantages of the combinational therapy were confirmed. Patients
treated with PLD only had a median PFS of 2.7 months and patients
treated with PLD and vintafolide had a median PFS of 5.0 months
[132]. A phase III PROCEED study is currently underway and results
are expected in 2016 [133].

In conclusion, therapies that disrupt folate metabolism appear like a
possible approach to treating recurrent platinum-sensitive ovarian tu-
mors. Although, farletuzumab has shown promised results in phase II
trials, but data fromphase III trials did not confirm its clinical applicabil-
ity. The real potential for exploiting the overexpressed FRα that is regis-
tered frequently in epithelial ovarian cancer cases appears to be with
the folate-conjugates therapeutic agents. Targeting the folate receptor
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could be a possible approach to systematic treatment of ovarian cancers
that may have already metastasized.

3.2.5. Human epidermal growth factor receptor (HER) antagonists
The ERBB2 gene is a known proto-oncogene that encode for the

human epidermal growth factor 2 (HER2). It has been extensively stud-
ied in breast cancer and its overexpression correlates with poor progno-
sis [134]. HER2 generally has no correlation with the prognosis of
ovarian cancer. It typically is never seen at elevated levels in most
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per week within 4 weeks with LHRH-Dendrimer-PTX (B) and LHRH-Dendrimer-PTX + LHRH-
ovarian cancers, but is elevated in advanced stage epithelial ovarian
cancer patients in rare cases [135]. Consequently, it could potentially
be a small subtype of ovarian cancer that could benefit from HER2 inhi-
bition. Trastuzumab (Herceptin®) and pertuzumab humanized MABs
(Roche) that have shown great efficacy treating HER2-positive breast
cancers [136,137]. No clinical evidence to date supports trastuzumab
as a viable treatment for ovarian cancer [138]. Interestingly,
pertuzumab does not show promise as a monotherapy, but might be
useful in combination with other chemotherapeutic for treating
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platinum-resistant ovarian tumors [139]. In a phase II trial conducted on
patients with platinum-resistant ovarian tumors, investigated the effi-
cacy of a combinational therapy of containing pertuzumab and
gemcitabine. Treatment response rate for patients that received the
combinational therapy was 13.8%, a significant increase from the 4.6%
response rate observed by the patients who received gemcitabine and
a placebo [140]. An ongoing phase III study is currently being
conducting on recurrent platinum-resistant ovarian tumors to investi-
gate combinational therapies of pertuzumab or a placebo with
gemcitabine, paclitaxel, or gemcitabine [141]. Results for this study are
expected in 2016.

The promising outlook for pertuzumab is most likely due to its
mechanism of action. The MAB binds to HER2 in a manner that inhibits
its ability to dimerize with HER3 [142]. It is significant because HER3
overexpression has been associatedwith poor prognosis in ovarian can-
cer [143]. A HER3-targeted MAB named MM-121 (Merrimack Pharma-
ceuticals) is under current investigation as a combinational therapy
with paclitaxel in a phase II study for platinum-resistant, advanced-
stage ovarian tumors [144]. Finally, HER antagonist showed someprom-
ise and could be used as a targeted therapy for platinum-resistant tu-
mors and for ovarian cancers that overexpress ERBB2 and/or ERBB3
genes.
3.2.6. Estrogen receptor (ER) antagonists
The estrogen receptor (ER) has been studied extensively in breast

cancer. Evidence has revealed that estrogen influences increased prolif-
eration in a subset of ovarian cancers [145]. In fact, it has been reported
that up to 60% of patients with ovarian cancer are ER positive [146]. Ta-
moxifen has been investigated for treating recurrent ER-positive ovari-
an cancer tumors since it has had success treating ER positive breast
cancers. However, a meta-analysis of 20 clinical trials shows a median
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overall patient response rate to tamoxifen therapy of only 13% [146]. A
novel ER antagonist called fulvestrant (AstraZeneca) was investigated
as monotherapy for recurrent ER-positive ovarian tumors in a phase II
trial. Patients treated with fulvestrant showed a 38% overall response
rate. The results from this study have warranted a phase III trial study
to be conducted [147]. ER-positive ovarian tumors make up a decent
subset of the overall cases seen. Therefore even though ER antagonists
have had little success thus far, there could still be potential for this
therapeutic approach. Perhaps a combinational therapy may be effica-
cious in treating ER-positive ovarian tumors.
3.2.7. Aromatase inhibitors
Aromatase is also known as the estrogen synthase enzyme. As the

name suggests, it plays a role in estrogen production and has been
thought of as another approach to treating ER-positive tumors [148].
Anastrozole (AstraZeneca) is one aromatase inhibitor that has been
studied for possible treatment for ER-positive ovarian tumors. It com-
petes with various androgens for the aromatase-binding pocket, revers-
ibly binding to inhibit the production of estrogen [149]. Letrozole
(Novartis) is another aromatase inhibitor with themechanism of action
similar to anastrozole [150]. A third aromatase inhibitor called
exemestane (Pfizer) has a differentmode of action. It acts as a suicide in-
hibitor, binding to the active site of the enzyme, permanently
inactivating it and inhibiting estrogen synthesis [151]. Exemestane has
been investigated for treating refractory ovarian cancers [152]. A
meta-analysis of nine clinical studies showed the three demonstrated
about the same overall patient response rateswith roughly 8% of the pa-
tients tested in all of the trials exhibiting a therapeutic response [146].
While this is not a pronounced value, there may be a potential future
for aromatase inhibitors in combinational therapies with ER antagonists
and/or chemotherapeutics.
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Fig. 15.Algorithm for predictive BRCA testing in tumor tissue. Patients with recurrent, high-grade serous ovarian, tubal, or primary peritoneal carcinomamay be considered for an olaparib
maintenance therapy. For patients with unknown BRCA status or patients who have previously been tested negative for a BRCA germline mutation BRCA status should be determined in
tumor tissue, which enables the detection of germline and somatic mutations (green). Patients in whom a tumoral BRCAmutation is detected are eligible for therapy. Patients who have
previously been tested positive for a germline BRCA mutation are eligible for therapy and do not need further testing (red).
(Reproduced with permission from [23].)

Fig. 14. A typical flowchart for single-cell data analysis.
(Reproduced with permission from [60].)
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3.3. Nanotechnology approach for personalized targeted therapy of ovarian
cancer

Recently, we proposed an innovative approach for targeted person-
alized treatment of different cancers that can also be successfully ap-
plied to ovarian cancer [153–155]. Based on the extensive preliminary
data obtained in our laboratory, we concluded that for the effective sup-
pression of the growth of ovarian tumor, an inducer(s) of cell death (an-
ticancer drug(s)) should be delivered to the cancer cells simultaneously
with the suppressors of multidrug resistance and cell death defensive
mechanisms [153–165]. However, different proteins can be responsible
for tumor progression, drug resistance and cell death defense in differ-
ent patients. Consequently, during the personalized precision treatment
of a particular patient with ovarian tumor, only those of such proteins
that overexpressed in particular tumor tissues from a particular patient
should be suppressed.We identified a set of targets that: (1) are respon-
sible for multidrug resistance, tumor progression and anti-apoptotic
cellular defense in ovarian cancer cells and (2) are most often
overexpressed in patient tumor samples when compared with sur-
rounding healthy ovarian tissues. Also, a set of nanotechnology-based
targeted delivery systems (NTDSs) was synthesized. Each of NTDS con-
tains only one protein inhibitor (siRNA) to suppress one targeted pro-
tein or an anticancer drug. These NTDSs can be used in any
combination with each other. Each of these NTDSs also contains a
tumor targeting moiety (a synthetic analog of luteinizing hormone re-
leasing hormone, LHRH) that is used for the delivery of drugs and
siRNA specifically to ovarian tumors and minimize adverse side effects.
The proposed simplified treatment protocol looks as follows (Fig. 10)
[153]. Ovarian tumor tissue and surrounding normal tissue samples
are taken from the patient. Total RNA from the samples is isolated and
subjected to qRT-PCR using selected panel of primers. Based on the re-
sults of the measurements, the most overexpressed proteins are select-
ed as targets for the personalized treatment. Corresponding NTDSs
containing anticancer drug(s) and targeted siRNAs are selected, mixed
and used for the treatment. Preliminary in vitro and in vivo data showed
that such a personalized treatment approach is much more effective
when compared with a standard treatment protocol.

In order to support the proposed personalized approach, the expres-
sions of mRNAs were measured in samples of primary tumors and ma-
lignant ascites obtained from different patients with ovarian carcinoma.
Initially, the expression of 191 genes in cells isolated from these samples
was analyzed using three different commercial cancer gene profiling
qRT-PCR kits (Human Apoptosis and Breast Cancer RT2 Profiler™ PCR
Arrays and qBiomarker Copy Number PCR Array Human Ovarian Can-
cer, Qiagen, Valencia, CA). Based on the results of these measurements,
83 genes were selected for the creation of a custom qRT-PCR array (Fig.
11). The expression of luteinizing-hormone-releasing hormone (LHRH)
- an excellent ovarian cancer-targeting moiety [154,155,165] was also
measured.Weused previously selected and characterizedmultidrug re-
sistant cells isolated from tumor samples of a patient with metastatic
ovarian cancer and used these cells to initiate subcutaneous tumor in
nude mice. The cells were labeled with luciferase as previously de-
scribed [154] and injected subcutaneously into the flanks of nude
mice. 15–20 days after transplantation primary tumors reached a size
of ~0.4 cm3 and about 80% of mice developed intraperitoneal metasta-
ses. The progression of the subcutaneous tumor aswell as intraperitone-
al metastases was assessed by three different imaging systems (optical,
MRI, ultrasound), direct measurements of the size/volume of primary
tumors and intraperitoneal metastases and histopathological evalua-
tion. Gene expression profile in the primary subcutaneous tumors was
similar to those registered in the original resistant cells isolated form
the patient. Five genes (BCL2, MDR1, CD44, MMP9, PGR) overexpressed
in these cells were selected as targets specific for this patient (Fig. 11).
The overexpression of selected mRNAs was confirmed by the measure-
ments of corresponding protein (Fig. 12). In order to effectively deliver
an anticancer drug (paclitaxel, PTX) and siRNA targeted to the selected
genes/mRNAs, we developed a tumor-targeted (by the LHRH peptide)
dendrimer-based delivery system [155,166]. Treating the mice with
free non-bound PTX or dendrimer-bound PTXwithout siRNA increased
the expression of all five selected targets (Fig. 11B). The application of
dendrimer-bound PTX delivered in the mixture with dendrimers con-
taining five siRNAs (selected specifically for this patient), decreased
the expression of all target genes and proteins (Figs. 11C and 12). It
should also be stressed that LHRH-targeted dendrimers accumulated
predominately in the tumor, while similar but non-targeted dendrimers
distributed mainly between the tumor, liver, spleen, kidney and lungs.
Further experiments showed that non-bound free and non-targeted
dendrimeric PTX triggered apoptosis in the tumor and several healthy
organs inducing adverse side effects, only slightly delayed tumor
growth and the development of intraperitoneal metastases. The deliv-
ery of PTX by dendrimers significantly enhanced the induction of cell
death in the tumor and limited the side effects, while the combination
of dendrimers containing PTX and five siRNAs targeted to the selected
for this patientmRNAs (Fig. 11) significantly enhanced cell death induc-
tion, imposed tumor shrinkage and completely prevented the develop-
ment of intraperitoneal metastases (Fig. 13). Consequently, these data
support the proposed concept of nanotechnology approach for person-
alized treatment of ovarian cancer.

3.4. Integrating data to generate personalized ovarian cancer medicine
guidelines and protocols

Integration of enormous libraries of data will make it easier to diag-
nose patients and allow for improved patient treatment outcomes (Fig.
14). One such database is the cancer genome atlas (TCGA). The project
began in 2005 and has been ever expanding since [167]. The project
aims to incorporatemolecular data discovered over the years. Ultimate-
ly, the goal is to set up thesemodels, algorithms, and guideline protocols
using cancer research data. The data from the TCGA could help provide
biomarkers for diagnosing patient tumors with increased accuracy
[168]. Then as research continues to advance, the tools can be adjusted
and finely tuned to the pointwheremortality rates are reduced asmuch
as humanly possible.

Modeling helps further stratify ovarian cancers beyond histological
subtyping. Molecular biomarkers and clinical data can shape protocols
for guiding oncologists to decide on an optimal treatment course for a
particular patient. For instance, patients with germline mutations for
BRCA 1/2 will benefit the most from a PARP inhibitor added to chemo-
therapy (Fig. 15) [23]. Furthermore, if a patient is ER positive, then the
addition of an ER agonist or estrogen antimetabolite could increase
treatment efficacy.

4. Future directions to further improve personalized ovarian cancer
medicine

An enormous catalog of data exists from both the basic sciences and
clinical research. To help oncologists decide on an optimal treatment
course to use for a particular patient, certain screening guidelines and
diagnostic protocols should be generated. At present, screening for
ovarian cancer is limited. At present, the only two methods for screen-
ing for ovarian cancer are transvaginal ultrasound and the CA-125
blood test. Controversy surrounds the efficacy of screening patients
using thesemethods [66]. Therefore, new predictive biomarkers are es-
sential for earlier detection of ovarian tumors in patients. Targeted ther-
apeutics has come a longway for ovarian cancer care and demonstrate a
clinical promise in the future. The key to efficacious personalized cancer
care is to discover and diagnose tumors as early and accurately as possi-
ble. This is themain obstacle for ovarian cancer care and needs to be im-
proved in order to improve the patient treatment outcomes and reduce
patientmortality rates. If ovarian tumors can be detected early, especial-
ly when the patient is presymptomatic, patients will have the greatest
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chance for overcoming the disease and destroying ovarian
malignancies.
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