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Abstract

In this paper, we study the semicrossed product of a finite dimensionalC∗-algebra for two types o
Z2+-actions, and identify them with matrix algebras of analytic functions in two variables. We
at the connections with semicrossed byZ+-actions.
 2003 Elsevier Inc. All rights reserved.

1. Introduction

The study of semicrossed products with respect toZ+-actions was begun in [3,7], an
higher dimensional actions have also been considered (e.g., [5,8]). In this note we co
the program of [1,2,4], which studiedZ+-actions on finite dimensionalC∗ algebras, to the
case ofZ2+-actions.

For a transitive actionσ on a finite setX, card(X)= k, the crossed productZ ×σ C(X)
is Mk ⊗ C(T). The semicrossed product, which is the closed subalgebra correspo
to nonnegative powers of the automorphism, is notMk ⊗ A(D) (whereA(D) is the disk
algebra), but rather a proper subalgebra (cf. Section 2). For a transitiveZ2-action onX,
the crossed product isMk ⊗ C(T2), and the semicrossed product is a matrix algebr
bianalytic functions, which is a proper subalgebra ofMk ⊗ A(D2) (whereA(D2) is the
bidisk algebra), card(X)= k.
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However, different transitive actions, though having the sameC∗-crossed product, ma
give rise to nonisomorphic semicrossed products. In fact, we exhibit two transitivZ2-
actionsσ , σ ′ on a finite setX for which the semicrossed products are not isomorphic.

In Proposition 4.3 we show that ifσ = (σ1, σ2) is aZ2-action onX, card(X)= k, then
the semicrossed product with respect to the action onC(X) is the norm closure of th
algebra generated by

zP1, wP2, D ∈D,

wherePi is thek× k permutation matrix associated withσi , i = 1,2, andD is the algebra
of diagonal matrices inMk . The closure is inMk ⊗A(D2).

Ideally, a classification theorem for theseZ2-actions onX would establish necessa
and sufficient conditions for two semicrossed products to be (completely) isometrical
morphic, in terms of some invariants of the permutation matrices. Such a theorem h
been achieved here. Our results, which enable us to distinguish the semicrossed p
coming from certain (nonconjugate)Z2-actions, are obtained by computing the codim
sions of maximal ideals of the algebra.

One of the main theorems for semicrossed products of the formZ+ ×σ C(X) (for X a
compact metric space) is that two such semicrossed products are isomorphic if and
the actions are conjugate. ForZ2-actions, the question is open. The work here lends sup
to the conjecture that the analogue of the theorem forZ-actions may hold forZ2-actions
as well.

2. Some matrix function algebras

We will let D be the open unit disk, andD2 = D × D, the bidisk.A(D) will denote the
disk algebra, the subalgebra ofC(D̄) of functions which are analytic on the interior ofD,

andA(D2) the bidisk algebra, i.e., the subalgebra ofC(D̄2) of bianalytic functions. We
recall the matrix algebras of analytic functions studied in [4],

Bk =
{
(fij )

k−1
i,j=0: fij ∈A(D), fij ∼

∞∑
n=0

a
(ij)
n zl(i,j)+nk

}
,

wherel(i, j) ∈ {0, . . . , k − 1} andl(i, j)≡ i − j [modk]. Note we are labeling the matri
entries from 0 tok − 1 rather than from 1 tok.

For k ∈ Z
+, let Ak denote the subalgebra ofA(D) whose nonzero Fourier coefficien

are multiples ofk. Then the algebraBk takes the form


Ak zk−1Ak · · · zAk
zAk Ak · · · z2Ak
...

...
. . .

...

zk−1Ak zk−2Ak · · · Ak


 . (1)

The algebrasBk were first studied in [4] and later in [1,2], arise as semicrossed prod
of actions ofZ+ onCk .
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Next we introduce a two variable analog of this algebra,

Bk,2 =
{
(fij )

k−1
i,j=0: fij ∈A(D2), fij ∼

∞∑
m,n�0

m+n≡l(i,j)[modk]

a
(i,j)
mn z

mwn

}
.

Another algebra which will play an auxiliary role is

Ak(D
2) :=

{
f ∈A(D2): f ∼

∞∑
m,n�0

m+n=0[modk]

amnz
mwn

}
.

Using Fejer’s theorem in two variables [10, Vol. 2, p. 304] and the fact that Ce
means of a function inAk(D2) are polynomials in the same algebra, we see that the p
nomials inAk(D2) are dense inAk(D2). Similarly, the subalgebra ofBk,2 whose matrix
entries are polynomials is dense inBk,2.

3. Maximal ideals

One of the main tools in studying and distinguishing various matrix function alge
is the space of maximal ideals. First we recall [1,2] the maximal ideal structure oBk.
Let F = (fij ) ∈ Bk and 0� i0 � k − 1. Setψi00 :Bk → C, ψi00 (F ) = fi0i0(0), and for

λ ∈ D̄ \ {0}, setψλ(F ) = F(λ), that is,ψλ(F ) is thek × k matrix (fij (λ)). ThenJ i00 :=
ker(ψi00 ), andJλ := ker(ψλ), λ ∈ D̄ \ {0}, are all the maximal ideals ofBk .

To study the maximal ideals ofBk,2 we first look atAk(D2).

Lemma 3.1. Ak(D2) is a Banach subalgebra ofA(D2) and its maximal ideals are of th
form

Nλ,µ = {
f ∈Ak(D2): f (λ,µ)= 0

}
for (λ,µ) ∈ D̄

2.

Proof. It is routine to check thatAk(D2) is a Banach subalgebra. For the maximal ide
let χ be a multiplicative linear functional onAk(D2). Let λ be akth root ofχ(zk) andµ
a kth root ofχ(wk). Note thatχ(zwk−1) has the formωλµk−1, whereω is akth root of
unity. Indeed,(χ(zwk−1))k = χ(zk)(χ(wk))k−1 = (λµk−1)k. Thus, replacingλ by ωλ we
may assume thatχ(zwk−1)= λµk−1. Then

χ(z2wk−2)= (
χ(zwk−1)

)2
χ(wk)−1 = λ2µk−2.

Continuing in this way, we have thatχ(zrwk−r ) = λrµk−r , 0 � r � k. Hence ifp is
any polynomial inAk(D2), χ(p) = p(λ,µ). By continuity this holds for all functions in
Ak(D

2). ✷
Remark 3.2. For k > 1, the correspondence between maximal ideals and points i
bidisk is not bijective. Indeed, for(λ,µ) ∈ D̄2 andω a kth root of unity, the mapsf ∈
Ak(D

2) �→ f (λ,µ) andf ∈ Ak(D2) �→ f (ωλ,ωµ) are identical. Only in the casek = 1,
the bidisk algebra, is the correspondence bijective.
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Next we identify the maximal ideals ofBk,2. Let F = (fij )k−1
i,j=0 ∈ Bk,2. Observe tha

the mapF �→ F(0,0) mapsF to ak × k matrix which is zero except along the diagon
Thus if we fix!, 0� !� k − 1, the map

ψ!0 :Bk,2 → C, ψ!0(F )= f!!(0,0), F = (fij )k−1
i,j=0,

is a (nonzero) multiplicative linear functional, and hence ker(ψ!0) is a maximal ideal. We
will call this ideal “of zero type” and denote it byJ !(0,0).

The second type of mapping is parameterized by(λ,µ) ∈ D̄2\{(0,0)} and takes the
form

ψλ,µ :Bk,2 → Mk, ψλ,µ(F )= F(λ,µ).
By this we mean of course that each of the component functions ofF is evaluated at the

point (λ,µ). It is routine to check that this mapping is surjective and multiplicative. T
ker(ψλ,µ) provides us with another type of maximal ideal, which we denoteJ(λ,µ).

Proposition 3.3. LetJ be a maximal ideal ofBk,2. Then either

J = J(λ,µ) for some(λ,µ) �= (0,0) in the closed bidisk

or

J = J !
(0,0) for some! ∈ {0, . . . , k − 1}.

Proof. Let eij , 0� i, j � k− 1, be matrix units forMk. That is,eij is the matrix which is
1 in the(i, j) position and 0 elsewhere. SinceJ is proper, it cannot contain all theeii , for
then it would contain the identity. We will assumeJ does not containe00 ⊗ 1; the other
cases are similar.

For anyF = (fij ) ∈J we have

(e00 ⊗ 1)F (ej0 ⊗ zj )= e00 ⊗ zjf0j ,

soe00 ⊗ zjf0j ∈ Bk,2JBk,2 = J .
Similarly, e00 ⊗wjf0j ∈J . Also,

e00 ⊗ zk+j−ifij = (e0i ⊗ zk−i )F (ej0 ⊗ zj ) ∈J for i, j ∈ {0, . . . , k − 1}.
Similarly, e00 ⊗wk+j−ifij ∈J .

Consider the closed idealI in Ak(D2) generated by

zjf0j , w
jf0j , z

k+j−ifij , andwk+j−ifij for 0 � i, j � k − 1,

and wherefij are the entries ofF = (fij ) asF ranges throughJ . Note thate00 ⊗ I ⊂ J .
Since by assumptionJ does not containe00 ⊗ 1, it follows that 1/∈ I, andI is proper in
Ak(D

2). By Lemma 3.1 ,I ⊂ {f ∈Ak(D2): f (λ,µ)= 0} for some(λ,µ) ∈ D̄2.
If (λ,µ)= (0,0), thenJ ⊂ J 0

00. Indeed, elements ofJ 0
00 have the same components

elements ofBk,2, except for the(0,0) component. AsJ is maximal, this forcesJ = J 0
00.

If λ �= 0 andF = (fij ) ∈ J , thenλjf0j (λ,µ) = 0 andλk+j−ifij (λ,µ) = 0, which
imply F(λ,µ) = 0. Similarly, if µ �= 0, we concludeF(λ,µ) = 0. But thenJ ⊂ Jλ,µ,
and so by maximalityJ = Jλ,µ. ✷
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4. Semicrossed products by Z
2+-actions

LetA be aC∗-algebra, and Aut(A) the group of star automorphisms ofA. An actionα
of Z2 onA is a (group) homomorphism fromZ2 to Aut(A). The triple(A,Z2, α) is called
aC∗-dynamical system. In the case ofZ2, α defines two commuting automorphisms ofA,
α1 = α(1,0), α2 = α(0,1). Conversely, any two commuting automorphisms ofA define a
Z2-actionα.

We briefly recall the crossed product and semicrossed product constructions (se
[6,7] for more details). Let

l1(Z2,A, α)=
{
F : Z

2 →A, such that
∑
i,j∈Z

∥∥F(i, j)∥∥<∞
}
,

equipped with the usual multiplication

(δij ⊗ f )(δkl ⊗ g)= δi+k,j+l ⊗ fα(i, j)(g)= δi+k,j+l ⊗ f αi1αj2(g)
and involution

(δij ⊗ f )∗ = δ−i,−j ⊗ f ∗,

wheref,g ∈ A andδij ⊗ f denotes the functionF :Z2 → A which takes the valuef at
the point(i, j) ∈ Z

2 and zero elsewhere.
The crossed productZ2 ×αA is the completion ofl1(Z2,A, α) with respect to the norm

‖F‖ = sup
{∥∥π(F)∥∥: π a nondegenerate star representation ofl1(Z2,A, α)

}
.

The subalgebral1(Z2+,A, α) of l1(Z2,A, α) consists of functionsF :Z2 → A such that
F(i, j)= 0 if either i or j is negative. The subalgebra is not star-closed. The semicro
product,Z2+ ×α A, has been defined in other contexts (e.g., [7]) as the completion o
l1-algebra with respect to the norm

‖F‖c := sup
{∥∥π(F)∥∥: π a contractive representation ofl1(Z2+,A, α)

}
.

Since nondegenerate star representations are contractive, we have‖F‖ � ‖F‖c. But in this
case the reverse inequality also holds.

Lemma 4.1. For anyF ∈ l1(Z2+,A, α), we have‖F‖c = ‖F‖, and consequentlyZ2+ ×αA
is the completion ofl1(Z2+,A, α) in Z2 ×α A.

Proof. Let ρ be a contractive representation ofl1(Z2+,A, α). It is then also contrac
tive with respect to‖ · ‖c, and hence it can be extended to a contractive represen
of Z2+ ×α A. By Ling and Muhly [5], ρ is completely contractive, and by Arveso
Stinespring theorem [3], there exists aC∗ dilation ρ̃. If ρ acts on the Hilbert spaceH,
and ρ̃ acts onK, there is an isometryV from H into K such thatρ(F ) = V ∗ρ̃(F )V .
Hence,‖ρ(F )‖ � ‖ρ̃(F )‖ � ‖F‖.

It follows that‖F‖c � ‖F‖. ✷
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4.1. Canonical representations of semicrossed products

By Pedersen [6, Theorem 7.7.7], and the fact thatZ2 is amenable, it follows that the fu
crossed product coincides with the reduced crossed product. Hence if(π,H) is a faithful
representation ofA, then(π̃×U,!2(Z2,H)) is a faithful representation ofZ×αA, where
U :Z2 → L(!2(Z2,H))),U(s, t) :=Us1Ut2, U1(δm,n⊗h)= δm+1,n⊗h, andU2(δm,n⊗h)
= δm,n+1 ⊗ h. We think ofU1,U2 as the horizontal and vertical shifts.
π̃ is a representation ofA on!2(Z2,H) given by

π̃(a)(δm,n ⊗ h)= δm,n ⊗ π(
α(−m,−n)a) = δm,n ⊗ π(

α−m
1 α−n

2 a
)
.

Finally, π̃ × U is a representation ofZ2+ ×α A on !2(Z2,H) defined on generatin
elementsδi,j ⊗ a by

(π̃ ×U)(δi,j ⊗ a)= π̃ (a)Ui1Uj2 .
In this paper we are concerned with actions ofZ

2 on finite dimensionalC∗-algebras,
and we will identify the resulting semicrossed products with matrix algebras of an
functions. We begin with the very simplest case,A = C.

Example 4.2. If the C∗-algebraA = C, the actionsα1, α2 are trivial. Takeπ to be the
identity representation ofC on (the Hilbert space)H = C. Thenπ̃(a)(δm,n⊗ h)= δm,n ⊗
π(a)h. LetW :L2(T2)→ !2(Z2) be the two dimensional Fourier transform,

W

( ∑
m,n∈Z

xmnz
mwn

)
=

∑
m,n∈Z

δm,n ⊗ xmn.

The representation AdW ◦ (π̃ × U) takes the element
∑N
i,j=0 δij ⊗ aij in the semi-

crossed product to the multiplication operatorMp onL2(T2),Mpg = pg, wherep(z,w)=∑N
i,j=0 amnz

mwn, N ∈ Z+. It follows that the semicrossed productZ2+ ×α C, which is the
closure of the set of elements of the above form, is identified with the closure of the po
mials in two variables in the supremum norm, that is, the bidisk algebraA(D2). Of course
the crossed product is theC∗-envelope,C(T2).

Next we characterize the general case of semicrossed productsZ
2+ ×α C(X), where

X is finite. Fix an integerk > 1 and letσ1, σ2 be two commuting permutations o
{0,1, . . . , k − 1}. Let X = {x0, . . . , xk−1} andα = (α1, α2) the Z2-action onA = C(X)
given byαi(f )(xj )= f (xσi(j)), i = 1,2.

Proposition 4.3. The algebraZ2+ ×α C(X) is unitarily equivalent to the operator algebr

on
⊕k−1
j=0L

2(T2) with the generatorsV1 = zP1, V2 =wP2, andD(f ), f ∈ C(X), where
Pi are the permutation matrices

Pi =
k−1∑
ej,σi (j), i = 1,2,
j=0
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D(f )=
k−1∑
j=0

f (xj )ej,j , f ∈C(X).

Proof. Let π be the faithful representation ofC(X) onH = Ck , π(f )h= (f (x0)h0, . . . ,

f (xk−1)hk−1) for h= (h0, . . . , hk−1) ∈ H, f ∈ C(X). Thenπ̃ is a representation ofC(X)
on H̃ = !2(Z2,H), and

π̃(f )(δm,n ⊗ h)= δm,n ⊗ π(
αm1 α

n
2f

)
h.

Let hj = (0, . . . ,0,1,0, . . . ,0), j = 0, . . . , k − 1, be the standard basis vectors forH,
and letW :

⊕k−1
j=0L

2(T2)→ !2(Z2,H) be the unitary operator given by

W(0, . . . ,0, zmwn,0, . . . ,0)= δm,n ⊗ hj ′ ,

where ifzmwn occurs in thej th column on the left (with the first column corresponding
j = 0), thenj ′ = σ−m

1 σ−n
2 (j).

We now calculate

W∗U1W(0, . . . ,0, zmwn,0, . . . ,0)=W∗U1(δm,n ⊗ hj ′)

=W∗(δm+1,n ⊗ hj ′)= (0, . . . ,0, zm+1wn,0, . . . ,0),

where the termzm+1wn appears in theσ1(j) column. In other words,W∗U1W =
z(

∑k−1
j=0 ej,σ1(j))= zP1 = V1. Similarly,W∗U2W = V2.

Moreover, forf ∈C(X) andgj ∈L2(T2), j = 0, . . . , k − 1, it is straightforward that

W∗π̃(f )W(g0, . . . , gk−1)=
(
f (x0)g0, . . . , f (xk−1)gk−1

)
,

so thatW∗π̃ (f )W =D(f ). ✷
Example 4.4. Let σ1 = σ2 = σ = (k − 1, k − 2, . . . ,1,0) be the forward shift on
{0,1, . . . , k − 1}. Then

P1 = P2 =




0 0 . . . 1
1 0 . . . 0

0 1
. . . 0

...
...
. . .

...

0 0 1 0


 .

It is straightforward to verify that the algebra generated byV1 = zP1, V2 = wP2, and
the set of all diagonal matrices generate the subalgebra ofBk,2 for which the functions
fij are polynomials inz,w. Thus ifα1, α2 are the automorphisms ofC(X) corresponding
to σ1, σ2, it follows from Proposition 4.3 that the semicrossed productZ2+ ×α C(X) is
isometrically isomorphic toBk,2.

Corollary 4.5. Let A =Mn ⊗ C(X) andα = (α1, α2) be as in the previous example,
αi(B⊗f )= B⊗αi(f ), i = 1,2. ThenZ2+ ×αA is isometrically isomorphic toMn⊗Bk,2.
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The proof is clear and thus is omitted.

Remark 4.6. In Example 4.4 and in the corollary the condition ‘isometrically isomorp
can be replaced by ‘completely isometrically isomorphic.’ Indeed, this is immediate
the unitary equivalence in Proposition 4.3.

4.2. Tensor products ofBk ’s

As the operator algebrasBk were identified as semicrossed products by (transitiveZ-
actions onCk (cf. Section 2), it may seem intuitively clear that the tensor product oBk
with B! would correspond to semicrossed products byZ2 ‘product actions’ onCk⊗C!. We
will in fact establish such a result. First, however, we examine the maximal ideal stru
of these tensor products.

Realizing the operator algebraBk (cf. Section 2) as ak× k matrix function algebra act
ing on the direct sum

⊕k−1
j=0L

2(T), the algebraic tensor productBk ⊗ B! acts naturally on⊕k!−1
j=0 L

2(T). The spatial tensor productBk ⊗̌B! is the completion of the algebraic tens

product in this representation. Alternatively,Bk ⊗̌B! can be viewed as the completion
the algebraic tensor product inMk! ⊗A(D2).

As before, leteij , 0� i, j � k − 1, denote matrix units forMk , and similarly letēi′j ′ ,
0 � i ′, j ′ � !− 1, denote matrix units forM!. Thus, the algebraic tensor productBk ⊗ B!
is spanned by linear combinations of elements of the form

eij ⊗ ēi′j ′ ⊗ zi−j [modk]+mkwi′−j ′[mod!]+n!, m,n ∈ Z, m,n� 0,

where as beforei − j [modk] lies in {0, . . . , k − 1} (respectively,i ′ − j ′[mod!] ∈
{0, . . . , ! − 1}. Thus,Bk ⊗̌B! is a k! × k! matrix of functionsf(ij)(i′j ′) ∈ A(D2) whose
Fourier series have the form

f(ij)(i′j ′)(z,w)∼
∑
m,n�0

amnz
i−j [modk]+mkwi′−j ′[mod!]+n!.

Observe that functions in the diagonal subalgebra ofBk ⊗̌B! belong toAk(D) ⊗̌A!(D).
Lemma 4.7. The maximal ideals ofAk(D) ⊗̌A!(D) are kernels of the evaluation hom
morphismsf �→ f (λ,µ), (λ,µ) ∈ D̄2.

Proof. This is in the spirit of Lemma 3.1. ✷
As with the earlier lemma, the correspondence between maximal ideals and po

the closed bidisk is not bijective.
For 0� i0 � k − 1 and 0� i ′0 � !− 1, define

ψ
i0i

′
0

00 :Bk ⊗̌B! → C byψ
i0i

′
0

00 (F )= f(i0i0)(i′0i′0)(0,0), whereF = (f(ij)(i′j ′)).

Define

ψ
i0
0µ : Bk ⊗̌B! →M!, ψ

i0
0µ(F )=

(
f(i0i0)(i′j ′)(0,µ)

)!−1
i′j ′=0,

ψ
i′0 :Bk ⊗̌B! →Mk, ψ

i′0 (F )= (
f(ij)(i′ i′ )(λ,0)

)k−1
,
λ0 λ0 0 0 ij=0
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ψλµ :Bk ⊗̌B! →Mk!, ψλµ(F )= F(λ,µ)=
(
f(ij)(i′j ′)(λ,µ)

)(k−1)(!−1)
(ij)(i′j ′)=(0)(0).

Denote the kernels of these homomorphisms, respectively, byJ
i0i

′
0

00 , J i00µ, J
i′0
λ0, andJλµ.

Proposition 4.8. Every maximal ideal ofBk ⊗̌B! is of the formJ
i0i

′
0

00 , J i00µ, J
i′0
λ0, or Jλµ, for

λ,µ ∈ D̄ \ {0}.

Proof. Note that theψ-homomorphisms are all onto simple algebras, so their kernel
maximal ideals.

The proof is similar to that of Proposition 3.3. LetJ be a maximal ideal ofBk ⊗̌B!.
SinceJ cannot contain the identity, there are indicesi0, i ′0 such that for allF ∈ J , F =
(f(ij)(i′j ′)), f(i0i0)(i′0i′0)) �= 1. Indeed, if that were not the case, so we could findFii′ whose
((ii), (i ′i ′)) component was 1, 0 � i � k − 1, 0� i ′ � !− 1, then we would obtain

i=k−1, i′=!−1∑
i,i′=0

(eii ⊗ ēi′i′)Fii′ (eii ⊗ ēi′i′)= I ∈ J,

a contradiction.
Without loss of generality, we may assume that for allF ∈ J , F = (f(ij)(i′j ′)),

f(00)(00) �= 1. Let I be the ideal inAk(D) ⊗̌A!(D) generated by{f = f(00)(00) for some
F = (f(ij)(i′j ′))) ∈ J }. By assumptionI is proper, so it is contained in some maximal id
given by evaluation at(λ,µ) ∈ D̄2.

If (λ,µ) = (0,0) thenJ ⊂ J 00
00 and henceJ = J 00

00 by maximality ofJ . If (λ,µ) =
(λ,0) for someλ ∈ D̄ \ {0}, we claimJ = J 0

λ,0. Let F ∈ J , F = (f(ij)(i′j ′)), and select
0 � i, j � k − 1. From the ideal property ofJ we obtain

(zk−i ⊗ e0i ⊗ ē00)F (z
j ⊗ ej0 ⊗ ē00)= zk+j−if(ij)(00) ⊗ e00 ⊗ ē00 ∈ J,

whenceλk+j−if(ij)(00)(λ,0)= 0, and in particularf(ij)(00)(λ,0)= 0. This shows thatJ ⊂
J 0
λ,0, and by maximality ofJ equality prevails.

The other cases are analogous.✷
Corollary 4.9. For positive integersk, !,p, k, ! > 1, the Banach algebrasBp,2,Bk ⊗̌B!
are not isomorphic.

Proof. Bp,2 has maximal ideals of at most two distinct codimensions, whereasBk ⊗̌B!
has maximal ideals of at least three distinct codimensions.✷
4.3. Perpendicular actions

In Example 4.4 the algebraBk,2 was identified with the semicrossed productZ2+ ×α
C(X), whereα = (α1, α2) in which α1 = α2 was implemented by a cyclic permutatio
acting transitively onX. In this section we consider the opposite extreme, namely, w
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α = (α1, α2), αi is implemented by a permutationσi , i = 1,2, such thatσ = (σ1, σ2) is
transitive as aZ2 action, but neitherσi is transitive, and furthermore the orbits ofσ1, σ2
overlap minimally, that is, in a single point. To state this formally, we make the follow

Definition 4.10. Let X be a finite set,σi , i = 1,2, commuting permutations onX, and
σ = (σ1, σ2) the inducedZ2-action onX. We say thatσ is aperpendicularaction if there
exist finite setsX1,X2, cyclic (transitive) permutationsτi onXi , i = 1,2, and a bijection
h :X→X1 ×X2 such that for allx0 ∈X,

h
(
σ1(x0)

) = (
τ1(x1), x2

)
and h

(
σ2(x0)

) = (
x1, τ2(x2)

)
,

where (x1, x2) = h(x0). In other words,h ◦ σ = τ ◦ h, where τ (m,n) = τm1 × τn2 on
X1 ×X2.

In the language of dynamics,σ is a perpendicular action if it is conjugate to a prod
of transitive actions on finite sets.

While the following proposition is elementary, we are not aware of it in the dynam
systems literature.

Proposition 4.11. Let X be a finite set,σi , i = 1,2, commuting permutations, andσ =
(σ1, σ2) the inducedZ2-action. Thenσ is a perpendicular action if and only if

(i) For anyx, y ∈X, Oxσ1
∩Oyσ2 consists of a single point, whereOxσ1

(respectively,Oyσ2)
denotes the orbit ofx underσ1 (respectively, the orbit ofy underσ2);

(ii) All Oxσ1
(x ∈X) have the same cardinality, and allOyσ2, y ∈ Y , have the same card

nality.

Proof. First, if σ is a perpendicular action it is transitive, and it is clear that (i) and (ii)
satisfied.

Suppose now that (i) and (ii) are satisfied. Observe thatσ is a transitive action. Indeed
if x, y ∈ X by (i) there arem,n ∈ Z such thatσm1 (x)= σn2 (y); that isy = σ(m,−n)(x),
which is transitivity.

Choosex0 ∈ X and letX1 = Ox0
σ1 andX2 = Ox0

σ2. Define a maph :X→ X1 × X2 by
h(x)= (y1, y2), wherey1 is the unique element inOx0

σ1 ∩Oxσ2
andy2 is the unique elemen

in Oxσ1
∩Ox0

σ2. We show that the mappingh is a bijection.
Injectivity. Let h(x) = h(x ′). Then (y1, y2) = (y ′

1, y
′
2), whereOx0

σ1 ∩ Oxσ2
= {y1} =

{y ′
1} = Ox0

σ1 ∩ Ox ′
σ2
. Since the orbitsOxσ2

andOx ′
σ2

have a point in common, they are equ

Similarly, Oxσ1
= Ox ′

σ1
. So we haveOx ′

σ1
∩ Oxσ2

= Oxσ1
∩ Oxσ2

= {x}, and on the other han

Ox ′
σ1

∩Oxσ2
=Ox ′

σ1
∩Ox ′

σ2
= {x ′}. Hencex = x ′.

Surjectivity.Let (y1, y2) ∈X1 ×X2. Let z denote the unique element in the intersect
Oy2
σ1 ∩Oy1

σ2. As y1 is in Ozσ2
andy2 is in Ozσ1

, we haveOx0
σ1 ∩Ozσ2

= {y1} andOzσ1
∩Ox0

σ2 =
{y2}. Henceh(z)= (y1, y2).

Let us now show that the action is perpendicular. Take(y1, y2) ∈ X1 × X2 and set
σ̂i := h−1 ◦ σi ◦ h, i = 1,2. Let h= (h1, h2); that is,hi = πi ◦ h, whereπi is theith coor-
dinate projection,i = 1,2. First we show thatπ2 ◦ σ̂1(y1, y2)= y2. Call z = h−1(y1, y2).
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As Ozσ1
= Oσ1(z)

σ1 , it follows {h2(σ1(z))} = Oσ1(z)
σ1 ∩ Ox0

σ2 = Ozσ1
∩ Ox0

σ2 = {h2(z)}. Hence,
h2(σ1(z)) = h2(z). Therefore there is a mapτ1 :X1 × X2 → X1 such thatσ̂1(y1, y2) =
(τ1(y1, y2), y2).

It remains to show thatτ1 depends only ony1, and hence can be viewed as a m
X1 →X1. We show thatτ1(y1, y2) = τ1(y1, y

′
2). Let h−1(y1, y2) = z, h−1(y1, y

′
2) = z′.

Sinceσ is a transitive action,z′ = σ(m,n)z = σm1 σ
n
2 (z) for some(m,n) ∈ Z2. But as

we have noted above,h2(z) = h2(σ1(z)) and similarlyh1(z) = h1(σ2(z)), so it is an ac-
tion of σ2 that mapsz to z′, sayz′ = σn2 (z). Sinceσ1, σ2 commute,σ1(z

′)= σ1(σ
n
2 (z))=

σn2 (σ1(z)), so thatσ1(z
′), σ1(z) are on the sameσ2-orbit. Hence,τ1(y1, y2)= h1(σ1(z

′))=
τ1(y1, y

′
2). ✷

Remark 4.12. (1) If σ is a perpendicularZ2 action which is conjugate to a product acti
τ1 × τ2 onX1 ×X2 and also conjugate toτ ′

1 × τ ′
2 onX′

1 ×X′
2, then card(Xi)= card(X′

i ),
i = 1,2.

(2) Is there a version of Proposition 4.11 for topological dynamics?

Example 4.13. TakeX = {0,1, . . . ,5}, σ1 = (0,1,2)(3,4,5) andσ2 = (0,3)(1,4)(2,5).
Then the conditions of the proposition are satisfied, and withX1 = {0,1,2}, X2 = {0,3},
andx0 = 0 we haveh(i)= (i,0), i = 0,1,2, andh(i)= (i,3), i = 3,4,5.

4.4. Semicrossed products by perpendicular actions

Earlier (in Section 4.1) we reviewed the construction of the (semi)crossed product
completion of an!1-algebra in a canonical representation. In the case of a perpend
Z2-action, the canonical representation can be taken to be a product representati
this allows us to view the (semi)crossed product as the tensor product of (semi)c
products with respect toZ-actions. In what follows we consider (semi)crossed produc
C(X), whereX is a compact metric space.

Let Xi be a compact metric space,σi a homeomorphism ofXi , andαi the induced
automorphism ofC(Xi), αi(f )= f ◦σi , f ∈ C(Xi), i = 1,2. Letπi be a faithful represen
tation ofC(Xi) on a Hilbert spaceHi . Denote byK(Z,C(Xi),αi) the dense subalgeb
of !1(Z,C(Xi),αi) consisting of finite sums of the generators

∑
m δ

i
m ⊗ fm. Then, as

in Section 4.1, the (semi)crossed productZ ×αi C(Xi) (respectively,Z+ ×αi C(Xi)) is
the completion ofK(Z,C(Xi),αi) (respectively,K(Z+,C(Xi),αi)) in the representatio
π̃i ×Ui on the Hilbert spacẽHi = !2(Z,Hi ).

(π̃1 ×U1)⊗ (π̃2 ×U2)
(
K

(
Z,C(X1), α1

)) ⊗ (
K

(
Z,C(X2), α2

))
= (
(π̃1 ⊗ π̃2)×U

)(
K

(
Z

2,C(X1)⊗C(X2), α
))
, (2)

whereα is theZ2-actionα = (α1, α2), π̃1 ⊗ π̃2 acts of the Hilbert spacẽH = H̃1 ⊗̂ H̃2,
andU(m,n)= Um1 ⊗Un2 . Since the algebraic tensor productC(X1)⊗ C(X2) is dense in
C(X1 ×X2), andπ1 ⊗ π2 is a faithful representation ofC(X1 ×X2), it follows that the
completion of the right-hand side of (2) is the crossed productZ2 ×α C(X),X =X1 ×X2.
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Proposition 4.14. With notation as above,(
Z ×α1 C(X1)

) ⊗̌ (
Z ×α2 C(X2)

) = Z
2 ×α C(X)

and (
Z+ ×α1 C(X1)

) ⊗̌ (
Z+ ×α2 C(X2)

) = Z
2+ ×α C(X).

Proof. The completion of(K(Z,C(X1), α1))⊗ (K(Z,C(X2), α2)) in the norm provided
by the representation(π̃1 ×U1)⊗ (π̃2×U2) onL(H̃) is aC∗-norm on the algebraic tenso
product(Z ×α1 C(X1)) ⊗ (Z ×α2 C(X2)). However, the crossed productZ ×αi C(Xi)
is nuclear (e.g., [9, Proposition 2.1.2]), so there is only one completion, and hen
completion isZ2 ×α C(X). The statement about semicrossed products follows from
fact that the semicrossed product norm is, by Lemma 4.1, the restriction of theC∗-crossed
product norm. ✷
Corollary 4.15. LetX be a finite set,σ a perpendicularZ2-action onX, so thatσ is conju-
gate toτ1 × τ2 acting onX1 ×X2, whereτi is a transitiveZ-action onXi . If card(X1)= k,
card(X2)= !, then the semicrossed productZ2+ ×σ C(X) is identified withBk ⊗̌B!.

Proof. This follows immediately from the above and the identification ofZ+ ×σi C(Xi)
with Bk (i = 1) or B! (i = 2). ✷
Corollary 4.16. With the same assumptions as in Corollary4.15, Z2+ ×α C(X) is generated
by{zPk⊗wP!,Dk⊗D!: Dk ∈ diag(Mk),D! ∈ diag(M!)}, wherediag(Mk) (respectively,
diag(M!)) is the algebra of diagonal matrices inMk (respectively,M!). Pk ∈ Mk and
P! ∈M! have the form of the matrix in Example4.4.

Proof. This follows from the form ofBk (see (1)) and the fact that the subalgebra ofBk
consisting of matrix functions with polynomial entries are dense inBk. ✷
Corollary 4.17. There are transitiveZ2-actionsσ , σ ′ on a finite setX such that the semi
crossed productsZ2 ×σ C(X) andZ2 ×σ ′ C(X) are not isomorphic.

Proof. This follows from Corollary 4.9, Example 4.4, and Corollary 4.15.✷
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