The Maximal Subgroups of the Finite 8-Dimensional Orthogonal Groups $PO_8^+(q)$ and of Their Automorphism Groups

PETER B. KLEIDMAN

D.P.M.M.S., 16 Mill Lane, Cambridge CB2 1SB, United Kingdom

Communicated by Walter Feit

Received November 13, 1985

PART 1. PRELIMINARIES

1.1. Introduction

During this century, and even before, a substantial amount of work has been devoted to finding the maximal subgroups of finite simple groups and their automorphism groups. Some of the earliest published results of this nature appear in Wiman [42] and Moore [33], where the maximal subgroups of the groups $L_2(q) = PSL_2(q)$ are determined for all q. Then Mitchell [31, 32] and Hartley [15] found the maximal subgroups of $L_3(q)$, $U_3(q) = PSU_3(q)$, and also $PSp_4(q)$ for odd q. Several decades later, analogous results appeared for various other low-dimensional classical groups, including $PGL_2(q)$ with q even, $L_4(q)$, $U_4(q)$, and $L_5(q)$. (The bibliographies of [10] and [43] serve as good sources of reference.)

Recently Aschbacher [2] made a significant contribution to the solution of the problem of finding the maximal subgroups of any group whose socle is a classical simple group. The main theorem of [2] says the following. Let G_0 be a finite classical simple group with natural projective module V, and let G be a group with socle G_0 (i.e., $G_0 \leq G \leq \text{Aut}(G_0)$). Assume that if $G_0 \cong PO_8^+(q)$ then G does not contain a triality automorphism of G_0. If M is a maximal subgroup of G not containing G_0, then one of the following holds:

(a) M is a known group with a well-described projective action on V;

(β) the socle $S = \text{soc}(M)$ of M is a non-abelian simple group whose projective representation in $PGL(V)$ corresponds to an absolutely irreducible representation of the covering group of S in $GL(V)$.

So roughly speaking, the main theorem of [2] "reduces" the problem of finding the maximal subgroups of G to that of finding its absolutely
irreducible simple subgroups. Thus one is left to answer: Which quasisimple groups have an absolutely irreducible representation in $GL(V)$? If the dimension $\dim(V)$ of V is small enough, then the answer can be obtained by invoking the classification of finite simple groups. In this way, we have determined the maximal subgroups of G when $\dim(V) \leq 12$. In [24] we treat the case in which G_0 is isomorphic to one of these low-dimensional classical groups other than $P\Omega_8^+(q)$, and in this paper we handle the case $G_0 \cong P\Omega_8^+(q)$. There are essentially two reasons for giving $P\Omega_8^+(q)$ this special attention. First, the geometry associated with $P\Omega_8^+(q)$ is perhaps the richest low-dimensional classical geometry, and thus many groups occur under (a). Second, unlike the other classical groups, our analysis must go beyond the scope of the main theorem of [2], because that theorem does not cover the case in which G contains a triality automorphism of $P\Omega_8^+(q)$. So in some sense, this paper serves to fill in the gap occurring in the main theorem of [2]. Our proof uses the classification of finite simple groups and the statement of our results appears in the results matrix, Table I, described in Section 1.5.

Although we have mentioned only the classical finite simple groups so far, there are in fact numerous results concerning the maximal subgroups of other simple groups. For instance, the maximal subgroups of the following exceptional groups of Lie type have been found: $Sz(q) = 2B_2(q)$ [37], $G_2(q)$ [3, 10, 25, 30], $2G_2(q)$ [25], $3D_4(q)$ [23] and $2F_4(q)$ [35]. Moreover, a classification (but not an explicit enumeration) of the maximal subgroups of the alternating and symmetric groups appears in [29], and presently the maximal subgroups of 21 of the sporadic simple groups are known (see [9]).

1.2. Notation and Prerequisites

Our conventions for expressing the structure of groups run as follows. (Note that all groups in this paper are finite.) If H and K are arbitrary groups, then $H.K$ denotes any extension of H by K. The expressions $H:K$ and $H.K$ denote split and nonsplit extensions, respectively, while $H_0 K$ denotes a central product of H and K. Also, $(1/m)H$ refers to a subgroup of index m in H. The symbol $[m]$ denotes an arbitrary group of order m, while Z_m or simply "$m"$ denotes a cyclic group of that order. The dihedral group of order m is written D_m. If r is prime, then $(Z_r)^e$ or simply "$r^e"$ denotes an elementary abelian group of order r^e, and 2_{+}^{1+e} denotes an extraspecial group of order 2^7 isomorphic to $D_8 \circ D_8 \circ D_8$. We write $L_m(r^e)$ for the group $L_m(r^e)$ or $U_m(r^e)$, according as e is $+$ or $-$. Let V_i be an m-dimensional vector space over $F_1 = GF(q_1)$ and $Q_1: V_1 \rightarrow F_1$ a quadratic form with associated bilinear form $(\cdot, \cdot)_1$. Assume that Q_1 is nondegenerate, which is to say $(\cdot, \cdot)_1$ is nondegenerate. If $v \in V_1$ and $Q(v) = 0$, then v and the 1-space $<v>$ are called singular. Otherwise v
and $\langle v \rangle$ are nonsingular. The norm of v is $(v, v)_1$. A subspace W is non-degenerate (n.d.) if the restriction $(Q_1)_W$ of Q_1 to W is a nondegenerate quadratic form on W. However, if Q_1 vanishes on W, then W is totally singular (t.s.).

Denote by $\Gamma L(V_1, F_1)$ the group of all nonsingular semilinear transformations of V_1 and define

$$
\Gamma(V_1, Q_1, F_1) = \{ g \in \Gamma L(V_1, F_1); Q_1(v^g) = \lambda_g Q_1(v)^{\sigma_g} \text{ for all } v \in V_1, \text{ where } \lambda_g \in F_1^* \text{ and } \sigma_g \in \text{Aut}(F_1) \text{ depend only on } g \},
$$

$$
\Delta(V_1, Q_1, F_1) = \{ g \in \Gamma(V_1, Q_1, F_1); \sigma_g = 1 \} \leq GL(V_1),
$$

$$
O(V_1, Q_1, F_1) = \{ g \in \Delta(V_1, Q_1, F_1); \lambda_g = 1 \},
$$

$$
SO(V_1, Q_1, F_1) = \{ g \in O(V_1, Q_1, F_1); \det(g) = 1 \}.
$$

$$
\Omega(V_1, Q_1, F_1) = [O(V_1, Q_1, F_1), O(V_1, Q_1, F_1)].
$$

If $\dim(V_1) = m$ is odd, then $\Omega_m(q_1)$ denotes the abstract group isomorphic to $\Omega(V_1, Q_1, F_1)$. If $m = 2h$ is even, then the corresponding abstract group is written $\Omega^{\varepsilon}_m(q_1)$, where ε is + or − according as Q_1 has (Witt) defect 0 or 1 (i.e., according as the maximal t.s. subspaces of V_1 have dimension h or $h - 1$). We also write $PY = Y/Z(Y)$, where Y is either $\Omega_m(q_1)$ or $\Omega^{\varepsilon}_m(q_1)$. Similar remarks hold for the groups $SO_m(q_1)$, $SO^\varepsilon_m(q_1)$, $O_m(q_1)$, etc. Recall the isomorphisms $O^{\varepsilon}_2(q) \cong D_2(q_{-\varepsilon})$, $\Omega_2(q) \cong L_2(q)$, $\Omega^\varepsilon_2(q) \cong SL_2(q)$, $SL_2(q)$, $\Omega_{4^\varepsilon}(q) \cong L_2(q^2)$, $\Omega_5(q) \cong PSp_4(q)$, and $PQ_8^+(q) \cong L_4^\varepsilon(q)$.

Define the discriminant $\text{disc}(Q_1)$ of Q_1 to be the determinant $(\text{mod}(F^*)^2)$ of the matrix of $(\ , \)_1$ with respect to some basis of V_1 (see [1, p. 107]). When q_1 is odd and m is even, then the defect of Q_1 is determined by $\text{disc}(Q_1)$.

Lemma 1.2.1. When q_1 is odd and m is even, Q_1 has defect 0 if and only if one of the following holds:

(i) $m \equiv 0 \text{ mod } 4$ and $\text{disc}(Q_1)$ is a square;

(ii) $m \equiv 2 \text{ mod } 4$, $q_1 \equiv 1 \text{ mod } 4$, and $\text{disc}(Q_1)$ is a square;

(iii) $m \equiv 2 \text{ mod } 4$, $q_1 \equiv 3 \text{ mod } 4$, and $\text{disc}(Q_1)$ is a nonsquare.

For a thorough description of the basic properties of the orthogonal groups, see [1, Chap. V]. There is also a good compendium of information in the introduction of [9] and in [20].

Now fix an 8-dimensional vector space V over $F = GF(q)$, where $q = p^n$ and p is prime. Assume that $Q : V \to F$ is a nondegenerate quadratic form of defect 0 (thus the maximal t.s. subspaces have dimension 4). Write $(\ , \)$ for the associated bilinear form and put $X = X(V, Q, F)$, where X ranges over the symbols Γ, Δ, O, SO, and Ω. The corresponding projective groups will
be denoted PX. When q is odd, $-1 \in \Omega$ by Theorem 5.19 of [1]. When q is even we regard $-1 = 1$, so that we may write $\langle -1 \rangle = Z(\Omega)$ for all q. Define

$$G_0 = P\Omega \cong P\Omega^+_q(q),$$

a simple group. Also define Z to be the group of scalars in $GL(V)$ and put $d = (2, q-1)$. Then

$$\Gamma/A \cong P\Gamma/P\Lambda \cong \text{Aut}(F) \cong Z_n,$$

$$|A:OZ| = |P\Lambda:PO| = d,$$

$$|O:SO| = |PO:PSO| = d,$$

$$|SO:\Omega| = |PSO:G_0| = 2,$$

$$|G_0| = \frac{1}{d^2} q^{12}(q^2 - 1)(q^4 - 1)^2(q^6 - 1).$$

Also define $A = \text{Aut}(G_0)$. Thus $G_0 \leq P\Gamma \leq A$, and in fact $|A:P\Gamma| = 3$; the group A is generated by $P\Gamma$ and a triality automorphism of G_0 (see [7, Theorem 12.5.1]). Throughout this paper, G denotes a group satisfying

$$G_0 \leq G \leq A.$$

Further M is a maximal subgroup of G not containing G_0 and $M_0 = M \cap G_0$. The term triality automorphism refers to any element of A inducing a symmetry of order 3 on the Dynkin diagram of G_0, and we let \mathcal{T} be the set of triality automorphisms in A.

Let W be a n.d. subspace of V of dimension m. If m is even, then W inherits an O_m^+-geometry from V, where ε is $+$ or $-$. In this case we call W an em-space. If m is odd, then q must be odd and we call W a $+m$-space (resp. $-m$-space) if $\text{disc}(Q_w)$ is a square (resp. nonsquare). We write $\Omega(W) = \Omega(W, Q_w, F)$ and regard $\Omega(W)$ as a subgroup of Ω: elements of $\Omega(W)$ act naturally on W and centralize W^\perp. Similar remarks hold for $SO(W)$, $O(W)$, and so on. We write -1_w for the element in $GL(V)$ which acts as -1 on W and $+1$ on W^\perp. (When q is even, $-1_w = 1$.) Clearly $-1_w \in O(W) \leq O$.

We extend the definition of “$+1$-space” to subspaces of V in even characteristic. Namely, when $p = 2$ we call W a $+1$-space provided W is a nonsingular 1-space.

If $H \leq O$ and $U \leq V$ is H-invariant, define

$$H(U) = H/C_H(U).$$

Thus $H(U)$ acts faithfully on U and if U is n.d. then $H(U) \leq O(U)$.
If \(V_1, \ldots, V_k \) are subspaces of \(V \), then for any \(H \) contained in \(\Gamma \) or \(\Pi \), \(N_H(V_1, \ldots, V_k) \) is the set of elements of \(H \) which permute the spaces \(V_i \) amongst themselves, while \(N_p(V_1, \ldots, V_k) \) is the set of elements of \(H \) which fix each \(V_i \). If \(V = V_1 \oplus \cdots \oplus V_k \), then the spaces \(V_i \) form a decomposition of \(V \), and we usually let \(\partial \) designate such a decomposition. We define the centralizer of \(\partial \) by

\[
C_H(\partial) = N_H(V_1, \ldots, V_k),
\]

and the normalizer or stabilizer of \(\partial \) by

\[
N_H(\partial) = N_H(V_1, \ldots, V_k),
\]

and if \(H \leq N_p(\partial) \) (or \(H \leq N_p(\partial) \)) then we write

\[
H^\partial = H/C_H(\partial).
\]

Thus \(H^\partial \) acts faithfully on the set \(\{V_1, \ldots, V_k\} \). If each \(V_i \) has dimension \(m \) for some fixed \(m \), then \(\partial \) is called an \(m \)-decomposition. If each \(V_i \) in an \(m \)-decomposition is t.s., then \(\partial \) is called an \(sm \)-decomposition (s \(\equiv \) singular). If, on the other hand, each \(V_i \) is an \(sm \)-space and the sum is also an orthogonal sum (i.e., \(V_i \) is orthogonal to \(V_j \) for all \(i \neq j \)), then \(\partial \) is called an \(\epsilon m \)-decomposition. If \(U \) and \(W \) are subspaces of \(V \), then the expression \(U \perp W \) indicates that \(U \cap W = 0 \) and \(U \) is orthogonal to \(W \). Thus an \(\epsilon m \)-decomposition may be written

\[
V = V_1 \perp \cdots \perp V_k,
\]

where \(km = 8 \). Note that if \(\partial \) is an \(\epsilon 1 \)-decomposition, then \(q \) is odd.

Remark. (i) If \(X \) is a group, then \(O(X) \) usually refers to the largest normal odd-order subgroup of \(X \). However, in this paper the symbol \(O(X) \) appears only when \(X \) is a n.d. subspace of \(V \). Thus \(O(X) \) is always a subgroup of \(O = O(V, Q, F) \) which acts faithfully on \(X \).

(ii) The terms "\(m \)-space" and "\(+m \)-space" have different meanings. When a subspace \(W \) is called an \(m \)-space, then no assumptions about non-degeneracy or nonsingularity are to be made about \(W \). However, when \(W \) is called a \(+m \)-space, then \(W \) is a n.d. subspace (or a nonsingular 1-space in even characteristic) according to the definitions above.

(iii) As in (ii), there is an analogous distinction between "\(m \)-decomposition" and "\(+m \)-decomposition."

In the event that \(W \leq V \) is a \(+m \)-space, where \(m = 2h \) is even, \(W \) contains a standard basis

\[
\beta = (e_1, \ldots, e_h, f_1, \ldots, f_h).
\]
where each e_i and f_j is a t.s. vector and $(e_i, f_j) = \delta_{ij}$. The proof of the following lemma is left to the reader.

Lemma 1.2.2. Suppose that $g \in GL(W)$ fixes both $\langle e_1, ..., e_n \rangle$ and $\langle f_1, ..., f_n \rangle$. Then $g \in O(W)$ if and only if

$$g = \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} \quad (a \in GL_n(q))$$

with respect to β, where t denotes transpose. Further, $g \in \Omega(W)$ if and only if $\det(a)$ is a square.

Now suppose that $(e_1, ..., e_4, f_1, ..., f_4)$ is a standard basis of V. Observe that the map d_2 defined by

$$e_i \mapsto \lambda e_i, \quad f_i \mapsto f_i, \quad (1 \leq i \leq 4)$$ \hfill (1a)

multiplies Q by λ. Hence if λ is a nonsquare, then $d_2 \in A \setminus OZ$. Some of the elements in $O \setminus Q$ are the reflections: if $v \in V$ is nonsingular, then the reflection in v is the element $r_v \in O \setminus Q$ given by

$$r_v(x) = x - ((v, v) / Q(v)) v,$$

for all $x \in V$. When q is odd, elements of $SO \setminus Q$ are those which have spinor norm a nonsquare (see [1, p. 193ff]). When q is even, elements of $SO \setminus O$ are those which interchange two families of maximal t.s. subspaces of V (see [20] and Section 1.6).

For any $X \subseteq I'$, let X be the image of X in P'. If $Y \subseteq PO$ let Y be the full preimage of Y in O, and if $Y \subseteq P \Delta$ but $Y \subseteq PO$, let Y be the full preimage of Y in A. If $y \in P \Delta$, let $y \in \Delta$ be a preimage of y, and if $y \in PO$, choose y to lie in O. Moreover, if $y \in O$ and $|y|$ is odd, then choose y so that $|y| = |y|$. The letter β usually denotes an ordered basis of V, and $\text{diag}_\rho(a_1, ..., a_8)$ denotes the corresponding diagonal matrix with respect to β.

If H is any group and ρ a set of primes, then $O_\rho(H)$ is the largest normal ρ-subgroup of H, and $O_\rho(H)$ is the subgroup of H generated by all ρ'-elements of H. Also $\text{soc}(H)$ is the socle of H, the group generated by all minimal normal subgroups of H. If H is an r-group for some prime r, then $\Omega_1(H) = \langle h \in H : h^r = 1 \rangle$. If H is a subgroup of K and $k \in K$, then $C_H^K(k) = C_H^K(\langle k \rangle) = \langle h \in H : k^h = k \text{ or } k^h = k^{-1} \rangle$. If $H \leq A$, then $\text{Hom}_A(V) = \{ g \in \text{End}_A(V) : \text{gh} = gh \text{ for all } h \in H \}$. Thus if H is irreducible on V, then $\text{Hom}_A(V)$ is a field extension of F by Schur's Lemma. We conclude this section with an easy yet useful result.
LEMMA 1.2.3. Suppose that $H \leq G_0$ and $O^2(H) = H$. If $c \in C_{Pa}(H)$ then $\hat{c} \in C_{\hat{a}}(\hat{H})$.

Proof. Clearly we may assume that q is odd. Take $h \in H$ with $|h|$ odd, so that $\hat{h}^c = \pm \hat{h}$. By our convention, $|\hat{h}| = |h|$ and so $|\hat{-h}|$ is even. Therefore $\hat{h}^c = \hat{h}$ and the result now follows because H is generated by elements of odd order. \qed

1.3. Some Terminology and Lemmas

(Some of the material here is based on [41].) In this section, K denotes an arbitrary (finite) group, H a normal subgroup of K, T a maximal subgroup of K not containing H and $T_0 = T \cap H$.

Definition. If $L, J \subseteq K$ then $L, J = \bigcap_{\sigma \in J} L^\sigma$, the largest subgroup of L which is normalized by J.

Lemma 1.3.1. Assume that H is non-abelian and simple and let L satisfy $T < L \leq H$. Then

(i) $1 \neq T_0 = L_T$;

(ii) $T/T_0 \cong K/H$;

(iii) if $1 < J \leq T_0$ and $J \leq T$, then $T_0 = N_H(J)$;

(iv) if $O_r(T_0)$ is a nontrivial Sylow r-subgroup of T_0 for some prime r, then T_0 is a Sylow r-normalizer in H.

(v) $O_r(T_0) \neq 1$ for some prime r, then $O_r(L) \leq O_r(T_0)$.

Proof. Lemma 2.1 of [41] shows that $T_0 \neq 1$, hence $L_T \neq 1$ as $T_0 \leq L_T$. Clearly $T \leq TL_T \leq K$, and so TL_T equals T or K. However, $1 \neq L_T \cong TL_T$, hence $TL_T \neq K$ by the simplicity of H. Hence $T \cong TL_T$ and $T_0 = H \cap TL_T = (H \cap T) L_T = L_T$, proving (i). Assertion (ii) is obvious and (iii) is an immediate consequence of the simplicity of H and the maximality of T. As for (iv), we see that $O_r(T_0) \in \text{Syl}_r(H)$ by (iii) and the fact that every proper subgroup of an r-group is properly contained in its normalizer. Thus by (iii), $T_0 = N_H(O_r(T_0))$ is a Sylow r-normalizer in H. To prove (v) put $R = O_r(T_0)$ and $S = O_r(L)$, so that $S \cap T_0 \leq R$. By (iii), $T_0 = N_H(R)$, hence

$N_{RS}(R) = RS \cap T_0 = R(S \cap T_0) \neq R$.

Thus $RS = R$, as desired. \qed

Terminology. The group T is called an H-novelty if T_0 is nonmaximal in H. If L is any subgroup of H, then we say L extends from H to K if $HN_K(L) = K$. If L is self-normalizing and nonmaximal in H, yet $N_K(L)$ is
maximal in K, then we say L extends to an H-novelty in K. Also define $[L]_H$ to be the H-class of groups containing L, that is,

$$[L]_H = \{L^h : h \in H\}.$$

When using this terminology we often omit reference to the group H, in which case it is understood that $H = G_0$. Thus "novelty," "extends to $K"," and "[L]_H" are short for "G_0-novelty," "extends from G_0 to $K"," and "[L]_{G_0}." We make use of this next result implicitly throughout the paper.

Lemma 1.3.2. Assume that $L \leq H$.

(i) If $H \leq J \leq K$ and L extends from H to K, then L extends from H to J.

(ii) Assume that $H \leq J_i \leq K$ for $i = 1, 2$, and that L extends from H to J_i, for $i = 1, 2$. Then L extends from H to $\langle J_1, J_2 \rangle$.

(iii) If L is maximal and self-normalizing in H, and L extends from H to K, then $N_K(L)$ is maximal in K.

(iv) The K-class $[L]_K$ splits into $|K:N_K(L)|$ classes in H.

(v) If L does not extend to K, then $N_K(L)$ is nonmaximal in K.

The following lemma helps to show that certain subgroups of G_0 cannot extend to a novelty in any G (see, e.g., 1.6.1).

Lemma 1.3.3. Assume that $1 < L \leq J < H$, and H is non-abelian and simple. Also suppose that J extends from H to K and L extends from J to $N_K(J)$.

(i) If $N_H(L) = L$, then $N_K(L) \leq N_K(J)$.

(ii) If $T_0 = L$, then $L = J$.

Proof: (i) Define $P = N_K(J)$ and $N = N_P(L)$. By assumption, $PH = K$ and $NJ = P$. Therefore $NH = K$, which means $N_K(L) H = K$. Because I is self-normalizing in H, we also have $N \cap H = N_K(L) \cap H = L$. Therefore $|N| = |K| |L| / |H| = |N_K(L)|$, whence $N_K(L) = N \leq P$, as required.

(ii) By 1.3.1(iii) L is self-normalizing in H. Thus by (i) and the maximality of T we conclude $T = N_K(J)$. Thus $J \geq L = T_0 = N_H(J) \geq J$, and (ii) follows.

1.4. **The Groups $A = \text{Aut}(G_0)$, $\text{Out}(G_0)$ and Σ**

Let $e_1, \ldots, e_4, f_1, \ldots, f_4$ be a standard basis of V (see Sect. 1.2) and consider the map $\phi \in \Gamma L(V)$ given by

$$\left(\sum_{i=1}^{4} \alpha_i e_i + \beta_i f_i \right) ^{\phi} = \sum_{i=1}^{4} \alpha_i^{\phi} e_i + \beta_i^{\phi} f_i,$$
where \(x, y \in F \) and \(\langle \sigma \rangle = \text{Aut}(F) \). Clearly \(Q(v^\sigma) = Q(v)^\sigma \) for all \(v \in V \), hence \(\Gamma = A : \langle \phi \rangle \). Thus \(P\Gamma = PA : \Phi \), where \(\Phi = \langle \phi \rangle \). We claim that

\[
[PA, \Phi] \leq G_0.
\]

(1b)

When \(q \) is even, \(PA = PO = PSO \cong G_0,2 \); hence \(PA/G_0 \) is a normal subgroup of order 2 in \(P\Gamma /G_0 \) so (1b) holds. Now assume that \(q \) is odd and observe \((r_v)^\phi = r_v^\phi \) for each nonsingular \(v \in V \). Thus the spinor norm of \(r_v(r_v)^\phi \) is \((v, v)(v^\phi, v^\phi) = (v, v)(v, v)^\phi \in (F^*)^2 \), and so \([r_v, \phi] \in \Omega \). Since the reflections generate \(O \), it follows that \([O, \phi] \leq \Omega \) and so \([PO, \Phi] \leq G_0 \).

Also \((d_j)^\phi = d_j^\lambda \), where \(d_j \) is as in (1a), hence \([d_j, \phi] = d_j^\lambda \). Now \(\lambda^\phi = \mu^2 \) for some \(\mu \in F^* \), and so \([d_j, \phi] = \mu g \) where \(g \) acts as the scalar \(\mu \) on \(\langle e_1, \ldots, e_4 \rangle \) and the scalar \(\mu^{-1} \) on \(\langle f_1, \ldots, f_4 \rangle \). By 1.2.2, \(g \in \Omega \) and hence \([A, \phi] \leq \Omega Z \). This proves (1b).

The group \(\Phi \) consists of field automorphisms of \(G_0 \) in the sense of [7, p. 200], and so by [7, Theorem 12.2.3], \(\Phi \) centralizes a triality automorphism. It follows from (1b) that

\[
[A, \Phi] \leq G_0.
\]

(1c)

In particular \(G_0 \Phi \leq A \).

Define \(D \) to be the group of inner and diagonal automorphisms of \(G_0 \). Thus \(D \leq PA \) and \(D \leq A \) and

\[
D/G_0 \cong \begin{cases} 1 & \text{if } q \text{ is even} \\ 2^2 & \text{if } q \text{ is odd}. \end{cases}
\]

It is well known that \(A/D \cong S_3 \times \mathbb{Z}_n \), and when \(q \) is odd the \(S_3 \) acts faithfully on \(D/G_0 \cong 2^2 \). Consequently \(D \leq A' \) and

\[
A'/D \cong \mathbb{Z}_3 \quad \quad \quad \quad \text{and} \quad \quad \quad \quad A'/G_0 \cong \begin{cases} \mathbb{Z}_3 & \text{if } q \text{ is even} \\ A_4 & \text{if } q \text{ is odd}. \end{cases}
\]

(1d)

We also define

\[
\theta = A'PA.
\]

(1e)

Thus

\[
\theta/G_0 \cong \begin{cases} S_3 & \text{if } q \text{ is even} \\ S_4 & \text{if } q \text{ is odd}. \end{cases}
\]

(1f)

Evidently \(A = \theta : \Phi \) and

\[
\text{Out}(G_0) = A/G_0 = \theta/G_0 \times \Phi G_0/G_0 \cong \begin{cases} S_3 \times \mathbb{Z}_n & \text{if } q \text{ is even} \\ S_4 \times \mathbb{Z}_n & \text{if } q \text{ is odd}. \end{cases}
\]
It is convenient to define B as the kernel of the action of A on the Dynkin diagram of G_0. Thus

$$A/B \cong S_3 \quad \text{and} \quad B = D\Phi.$$ \hfill (1g)

By (1f) there exists a homomorphism π from Θ to Σ with kernel G_0, where Σ is S_3 or S_4 according as q is even or odd. When q is odd, $\pi(D)$ is the normal 4-group V_4 in $\Sigma \cong S_4$, whence

$$\pi(D) = \begin{cases} 1 & \text{if } q \text{ is even} \\ V_4 = \langle(12)(34), (13)(24)\rangle & \text{if } q \text{ is odd}. \end{cases} \hfill (1h)$$

Now let $r \in O$ be a reflection in a vector whose norm is a square in F^*. Then $r \in PO/D$ and so $\pi(r)$ is a 2-cycle in Σ. Without loss we put

$$\pi(r) = (12),$$

and $PA = D \langle r \rangle$ we obtain

$$\pi(PA) = \begin{cases} \langle(12)\rangle & \text{if } q \text{ is even} \\ D_8 = \langle(12), (13)(24)\rangle & \text{if } q \text{ is odd}. \end{cases} \hfill (1i)$$

Assume that q is odd and let $s \in O$ be a reflection in a vector with norm λ, a nonsquare in F. Then $\pi(s)$ (like $\pi(r)$) is a 2-cycle and as $r \hat{s} \in PSO\setminus G_0$, we have $\pi(r) \neq \pi(s)$. However, $[r, s] \in \Omega$, hence $[\pi(r), \pi(s)] = 1$ and so

$$\pi(s) = (34).$$

Thus

$$\pi(PSO) = \begin{cases} \pi(O) = \pi(PA) = \langle(12)\rangle & \text{if } q \text{ is even} \\ \langle(12)(34)\rangle & \text{if } q \text{ is odd}. \end{cases} \hfill (1k)$$

and

$$\pi(PO) = \begin{cases} \langle(12)\rangle & \text{if } q \text{ is even} \\ \pi(G_0\langle r, \hat{s} \rangle) = \langle(12), (34)\rangle & \text{if } q \text{ is odd}. \end{cases} \hfill (1l)$$

We now enlarge the domain of π from θ to A by enlarging the kernel from G_0 to $G_0\Phi$. Thus for $g \in \Theta$ and $\psi \in \Phi$, we have $\pi(g\psi) = \pi(g)$. For any subgroup $\Pi \leq \Sigma$, define $G_\Pi = \pi^{-1}(\Pi) \leq A$. If $\Pi = \langle a \rangle$, then write $G_a = G_\Pi$. Thus

$$G_1 = \ker(\pi), \quad A/G_1 \cong \theta/G_0 \cong \Sigma,$$ \hfill (1m)
and the following holds:

<table>
<thead>
<tr>
<th>q odd</th>
<th>q even</th>
</tr>
</thead>
<tbody>
<tr>
<td>G_1</td>
<td>$G_0 \Phi$</td>
</tr>
<tr>
<td>$G_{(12)}$</td>
<td>$G_1 \langle \tilde{r} \rangle$</td>
</tr>
<tr>
<td>$G_{< (12), (34)>}$</td>
<td>$PO.\Phi$</td>
</tr>
<tr>
<td>G_{ν_4}</td>
<td>$B = D \Phi$</td>
</tr>
<tr>
<td>G_{D_8}</td>
<td>$P \Gamma = P A. \Phi$</td>
</tr>
<tr>
<td>G_{A_4}</td>
<td>$A' \Phi$</td>
</tr>
<tr>
<td>G_{Σ}</td>
<td>A</td>
</tr>
</tbody>
</table>

Also observe that the set of triality automorphisms \mathcal{T} in A satisfies

$$\mathcal{T} = \{ a \in A : \pi(a) \text{ is a 3-cycle} \}.$$ \hspace{1cm} (1n)

It is often useful to exploit the structure of $\text{Out}(G_0)$ to obtain information about the subgroups of G_0. We do so with the help of these next few results. The first appears in [14, Theorem 9.1].

Proposition 1.4.1. Suppose that $\tau \in \mathcal{T}$ has order 3 and put $C = C_{G_0}(\tau)$. Then one of the following occurs:

(i) $C \cong 3D_4(q_1)$ where $q = q_1^3$;

(ii) $C \cong G_2(q)$;

(iii) $p = 3$ and $C \cong [q^5].\text{SL}_2(q)$;

(iv) $q \equiv \pm 1 \mod 3$ and $C \cong P\text{GL}_3(q)$, where $\varepsilon = \pm$.

Conversely, each of these groups do in fact occur as centralizers in G_0 of triality automorphisms of order 3.

Lemma 1.4.2. Let H be a subgroup of G not containing G_0, and assume that $H_0 = H \cap G_0$ has an H-invariant subgroup N such that $C_D(N) = 1$.

(i) If $c \in C_A(N)$ then $N_{G_0}(N) \leq C_{G_0}(c)$, and if $c \in \mathcal{T}$, then $|N_{P_A}(N) : N_{G_0}(N)| \leq 2$.

(ii) If H is maximal in G, then at least one of the following holds:

(a) H_0 appears in 1.4.1 (but not 1.4.1(iii));

(b) $H_0 = C_{G_0}(x)$ for all $x \in C_A(N) \setminus 1$.

Proof. (i) Clearly $[N_{G_0}(N), c] \leq C_{G_0}(N) = 1$, hence $N_{G_0}(N) \leq C_{G_0}(c)$. Now suppose that $c \in \mathcal{T}$ and take $g \in N_{P_A}(N)$. If $\pi(g)$ does not normalize $\langle \pi(c) \rangle$, then q is odd, $\Sigma \cong S_4$ and $[\pi(c), \pi(g), \pi(c)] \in V_4 \setminus 1$. Consequently $1 \neq [c, g, c] \in G_{\nu_4} \cap A' = D$, hence $[c, g, c] \in C_D(N) \setminus 1$, a contradiction.
Therefore \(\pi(g) \) normalizes \(\langle \pi(c) \rangle \). If \([\pi(g), \pi(c)] = 1 \), then \(g \in \ker(\pi) \cap \mathcal{P} = G_0 \), and it now follows that \(|N_{\mathcal{P}_A}(N) : N_{G_0}(N)| \leq 2 \).

(ii) Since \(|\mathcal{A}' : D| = 3 \), the condition \(C_\mathcal{A}(N) = 1 \) ensures that \(|C_\mathcal{A}(N)| \mid 3 \). If \(|C_\mathcal{A}(N)| = 1 \), then \([H, C_\mathcal{A}(N)] = 1 \). Thus for \(x \in C_\mathcal{A}(N) \setminus \{1\} \) the maximality of \(H \) yields \(H = C_\mathcal{A}(x) \). Consequently \(H_0 = C_{G_0}(x) \) and (b) occurs. Assume therefore that \(C_\mathcal{A}(N) = \langle \tau \rangle \) has order 3. Clearly \(H = N_G(\langle \tau \rangle) \), hence \(H_0 = C_{G_0}(\tau) \). Thus \(H_0 \) appears in 1.4.1, but not 1.4.1(iii) by [4] and 1.3.1(v). Therefore (a) holds. \(\square \)

Lemma 1.4.3. Assume that \(H \leq G_0 \) and that the \(\theta \)-class \([H]_{\theta} \) splits into 4 classes in \(G_0 \). Suppose further that \([H]_{\theta} = [H]_{\mathcal{A}} \). Then \(A / G_{1} \cong S_4 \) acts naturally on these 4 classes.

Proof. Let \(K \) be the kernel of the action of \(A \) on the 4 \(G_0 \)-classes. Clearly \(\theta/G_0 \) acts naturally as \(S_4 \) on the 4 classes, hence so does \(A/K \). By (1c), \(\Phi K / K \leq Z(A/K) \cong Z(S_4) = 1 \), hence \(G_1 = G_0 \Phi \leq K \). Since \(A / G_1 \cong \Sigma \cong A/K \), we have \(G_1 = K \), as desired. \(\square \)

1.5. The Results Matrix and Our Theorem

We now present the main result of this paper. We exhibit a collection \(\mathcal{G} \) of subgroups of \(G_0 \) such that \(M_0 = M \cap G_0 \) is \(G_0 \)-conjugate to some \(H \in \mathcal{G} \). In this case \(M = N_G(M_0) \) is \(G \)-conjugate to \(N_G(H) \) and \(M \cong H(G/G_0) \). Conversely, for a given \(H \in \mathcal{G} \) we determine precisely those groups \(G \) for which \(N_G(H) \) is maximal in \(G \). Thus for any \(G \), one can identify all classes of maximal subgroups of \(G \) not containing \(G_0 \).

It turns out that for a given \(H \in \mathcal{G} \), the maximality of \(H \) in \(G \) depends only on \(q \) and \(\pi(G) \). Thus we can express our results in a matrix—called the results matrix—whose rows are indexed by the groups \(H \in \mathcal{G} \) and whose columns are indexed by representatives of the conjugacy classes of subgroups of \(\Sigma \). If \(\Pi \leq \Sigma \) heads a column, then the \((H, \Pi) \)-entry of the results matrix contains the values of \(q \) for which \(N_G(H) \) is a maximal subgroup of any group \(G \) with \(\pi(G) = \Pi \). The goal of this paper is to prove

Theorem. The results matrix holds.

The results matrix appears in Table I, and we now explain the notation used therein. Column I contains the name of the group \(H \in \mathcal{G} \) and column XV indicates where in the paper a discussion of the relevant group occurs. Column II usually gives the structure of \(H \in \mathcal{G} \). Sometimes, however, it is convenient to write the structure of the preimage \(\hat{H} \leq \Omega \); in these cases, the symbol “\(^\wedge\)” appears just before the structure is given. (Since \(A \) does not act on \(\Omega \), the structure of \(\hat{H} \) may be different from \(\hat{H}^a \) for
some \(a \in A \).) Two groups in \(\mathfrak{C} \) are separated by a horizontal line in the results matrix if and only if they are not \(A \)-conjugate.

Column III contains certain restrictions on \(q \), and the symbol * in the results matrix is an abbreviation for those values of \(q \) which appear in column III. The symbol \(\circ \) is an abbreviation for \("q \text{ odd}" \); for example, \(\circ, q \geq 5 \) in row 19 and column X stands for \("q \text{ odd and } q \geq 5." \)

We now describe the symbol \(\dagger \) which frequently appears in the results matrix. As we determine the groups in \(\mathfrak{C} \) in the course of this paper, we will also show that the action of \(A \) on \([\mathfrak{C}]=\{[H], H \in \mathfrak{C}\}\) contains \(G_1 = G_0 \Phi \) in its kernel. Thus \(\Sigma \) acts on \([\mathfrak{C}]\) via the homomorphism \(\pi \) defined in Section 1.4, and two groups \(H, K \in \mathfrak{C} \) are joined by the symbol \(\dagger \) in the \(n \)-th column if there exists an element of \(\Pi \) which takes \([H]\) to \([K]\). If this occurs, and if \(\pi(G) = \Pi \), then neither \(H \) nor \(K \) extends to \(G \), and hence \(N_G(K) \) and \(N_G(H) \) are nonmaximal in \(G \) (see 1.3.2(v)).

We remark that the subgroup \(S_3 \leq \Sigma \) which heads column VII is the subgroup \(\langle (123), (12) \rangle \). Thus \(S_3 = \Sigma \) when \(q \) is even, while \(|\Sigma: S_3| = 4 \) when \(q \) is odd.

Observe that we have compressed 12 classes in \(\mathfrak{C} \) to the single row 75. The symbol \(@ \) in column V of that row indicates that the 12 classes of \(A_{10} \) in \(G_0 \) are permuted transitively by \(A \) with stabilizer \(G_{(12)} \). Similarly, an \((\dagger) \) appears in column VII of row 70 because the \(d^2 \) classes of \(PGL_3(q) \) in \(G_0 \) are permuted transitively by \(A \) with stabilizer \(G_{S_3} \). The same notation is used in rows 63, 71–74.

If \(G \cap \mathcal{F} = \phi \), then \(\pi(G) \) is a 2-group hence \(\pi(G) \) is \(\Sigma \)-conjugate to a subgroup of \(\pi(PFG) \). Thus \(G \) is \(A \)-conjugate to a subgroup of \(PFG \), hence we may divide our analysis into two cases: \(G \leq PFG \) and \(G \cap \mathcal{F} \neq \phi \). Accordingly, we obtain two collections, \(\mathfrak{C}_1 \) (2.4.1) and \(\mathfrak{C}_2 \) (4.2.1), whose union is \(\mathfrak{C} \), such that \(M_0 \) is \(G_0 \)-conjugate to some member of \(\mathfrak{C}_1 \) (resp. \(\mathfrak{C}_2 \)) if \(G \leq PFG \) (resp. \(G \cap \mathcal{F} \neq \phi \)). The case \(G \leq PFG \) is handled using the main theorem of [2] and the classification of finite simple groups, as described in Section 1.1. The case \(G \cap \mathcal{F} \neq \phi \) depends on results in Sections 2.2, 2.3 and Part 3, along with the fundamental ideas of 1.3.1.

1.6. Some Parabolic Subgroups of \(G_0 \) and Their Incidence

We fix a Borel subgroup \(B_0 \) of \(G_0 \) and consider the parabolic subgroups of \(G_0 \) containing \(B_0 \). The Dynkin diagram of \(G_0 \) is

```
    r_3
     |
  r_1 --- r_2
     |
    r_4
```

and \(P_{i,j,...} \) denotes the parabolic subgroup of \(G_0 \) corresponding to the set of
Table I: The Results Matrix

<table>
<thead>
<tr>
<th>Restrictions</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
<th>IX</th>
<th>X</th>
<th>XI</th>
<th>XII</th>
<th>XIII</th>
<th>XIV</th>
<th>XV</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R_1</td>
<td>R_{12}</td>
<td>R_{13}</td>
<td>R_{14}</td>
<td>R_{15}</td>
<td>R_{16}</td>
<td>R_{17}</td>
<td>R_{18}</td>
<td>R_{19}</td>
<td>R_{20}</td>
<td>R_{21}</td>
<td>R_{22}</td>
<td>R_{23}</td>
<td>R_{24}</td>
<td>R_{25}</td>
<td>2.2.1.2</td>
</tr>
<tr>
<td>2</td>
<td>P_1</td>
<td>P_{12}</td>
<td>P_{13}</td>
<td>P_{14}</td>
<td>P_{15}</td>
<td>P_{16}</td>
<td>P_{17}</td>
<td>P_{18}</td>
<td>P_{19}</td>
<td>P_{20}</td>
<td>P_{21}</td>
<td>P_{22}</td>
<td>P_{23}</td>
<td>P_{24}</td>
<td>P_{25}</td>
<td>2.2.2, 2.4.2</td>
</tr>
<tr>
<td>3</td>
<td>R_2</td>
<td>R_{22}</td>
<td>R_{23}</td>
<td>R_{24}</td>
<td>R_{25}</td>
<td>R_{26}</td>
<td>R_{27}</td>
<td>R_{28}</td>
<td>R_{29}</td>
<td>R_{30}</td>
<td>R_{31}</td>
<td>R_{32}</td>
<td>R_{33}</td>
<td>R_{34}</td>
<td>R_{35}</td>
<td>2.2.3, 2.4.3</td>
</tr>
<tr>
<td>4</td>
<td>P_2</td>
<td>P_{22}</td>
<td>P_{23}</td>
<td>P_{24}</td>
<td>P_{25}</td>
<td>P_{26}</td>
<td>P_{27}</td>
<td>P_{28}</td>
<td>P_{29}</td>
<td>P_{30}</td>
<td>P_{31}</td>
<td>P_{32}</td>
<td>P_{33}</td>
<td>P_{34}</td>
<td>P_{35}</td>
<td>2.2.4, 2.4.5</td>
</tr>
<tr>
<td>5</td>
<td>R_3</td>
<td>R_{32}</td>
<td>R_{33}</td>
<td>R_{34}</td>
<td>R_{35}</td>
<td>R_{36}</td>
<td>R_{37}</td>
<td>R_{38}</td>
<td>R_{39}</td>
<td>R_{40}</td>
<td>R_{41}</td>
<td>R_{42}</td>
<td>R_{43}</td>
<td>R_{44}</td>
<td>R_{45}</td>
<td>2.2.5, 2.4.6</td>
</tr>
<tr>
<td>6</td>
<td>P_3</td>
<td>P_{32}</td>
<td>P_{33}</td>
<td>P_{34}</td>
<td>P_{35}</td>
<td>P_{36}</td>
<td>P_{37}</td>
<td>P_{38}</td>
<td>P_{39}</td>
<td>P_{40}</td>
<td>P_{41}</td>
<td>P_{42}</td>
<td>P_{43}</td>
<td>P_{44}</td>
<td>P_{45}</td>
<td>2.2.6, 2.4.7</td>
</tr>
</tbody>
</table>

References: 1.6, 2.2.3, 2.4.3, 4.1.5, 4.1.2, 2.2.2, 2.4.2, 4.1.4, 2.2.3, 2.4.3.
<table>
<thead>
<tr>
<th>9</th>
<th>R_{-1}</th>
<th>$\Omega_{1}(q)$</th>
<th>all</th>
<th>all</th>
<th>2.2.4, 2.4.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>K_{1}</td>
<td>all</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>K_{1}</td>
<td>all</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>R_{-1}</td>
<td>q odd</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>K_{1}</td>
<td>q odd</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>K_{1}</td>
<td>q odd</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>G_{2}^{1}</td>
<td>$G_{2}(q)$</td>
<td>none</td>
<td>none</td>
<td>all</td>
</tr>
<tr>
<td>16</td>
<td>G_{2}^{2}</td>
<td>q odd</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>G_{2}^{3}</td>
<td>q odd</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>G_{2}^{3}</td>
<td>q odd</td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>R_{-2}</td>
<td>$\left(\frac{1}{d}Z_{q-1} \times \Omega_{1}(q)\right)_{2^d}$</td>
<td>$q \geq 4$</td>
<td>$q \geq 4$</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>E_{4}</td>
<td>$q \geq 4$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>F_{4}</td>
<td>$q \geq 4$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>N_{2}</td>
<td>$\left(\frac{1}{d}Z_{q-1} \times \frac{1}{d}GL_{2}(q)\right)_{2^d}$</td>
<td>none</td>
<td>none</td>
<td>$q \geq 4$</td>
</tr>
</tbody>
</table>

Table continued
TABLE I—Continued

<table>
<thead>
<tr>
<th>I</th>
<th>II</th>
<th>III Restrictions</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
<th>IX</th>
<th>X</th>
<th>XI</th>
<th>XII</th>
<th>XIII</th>
<th>XIV</th>
<th>XV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Structure</td>
<td>l</td>
<td>(12)</td>
<td>(123)</td>
<td>S_4</td>
<td>(13)(24)</td>
<td>(1423)</td>
<td>(12), (34)</td>
<td>V_A</td>
<td>D_n</td>
<td>A_4</td>
<td>S_4</td>
<td>Reference</td>
</tr>
<tr>
<td>23</td>
<td>R_{-2}</td>
<td>$\left(\frac{1}{d}Z_{d+1} \times \Omega_{d}(q)\right)^{2^n}$</td>
<td>all</td>
<td>all</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.2.3</td>
</tr>
<tr>
<td>24</td>
<td>F_2</td>
<td>all</td>
<td></td>
<td>2.2.8, 2.4.6</td>
</tr>
<tr>
<td>25</td>
<td>F_2</td>
<td>all</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>N_1</td>
<td>$\left(\frac{1}{d}Z_{d+1} \times \frac{1}{d}GSp(q)\right)^{2^n}$</td>
<td>none</td>
<td>none</td>
<td>all</td>
<td>all</td>
<td>none</td>
<td>none</td>
<td>none</td>
<td>none</td>
<td>none</td>
<td>none</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.2.2, 4.1.2, 4.2.4</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>R_{+3}</td>
<td>$(L_2(q) \times PSp_4(q))^{2}$</td>
<td>q odd</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>T^4</td>
<td>q odd</td>
<td></td>
<td>2.2.5, 2.4.8</td>
</tr>
<tr>
<td>29</td>
<td>T^2</td>
<td>q odd</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>R_{-3}</td>
<td>q odd</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>T^3</td>
<td>q odd</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>T^4</td>
<td>q odd</td>
<td></td>
</tr>
</tbody>
</table>

PETER B. KLEIDMAN
<table>
<thead>
<tr>
<th></th>
<th>33 $I_{3,1}$</th>
<th>$2^n \cdot A_8$</th>
<th>$q\equiv p \pm 3(8)$</th>
<th>none</th>
<th>*</th>
<th>*</th>
<th>*</th>
<th>*</th>
<th>*</th>
<th>2.2.6, 2.4.10</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>E^3</td>
<td>$q\equiv p \pm 3(8)$</td>
<td>none</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>E^4</td>
<td>$q\equiv p \pm 3(8)$</td>
<td>none</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>I_{-1}</td>
<td>$q\equiv p \pm 3(8)$</td>
<td>none</td>
<td>none</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>E^5</td>
<td>$q\equiv p \pm 3(8)$</td>
<td>none</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>E^6</td>
<td>$q\equiv p \pm 3(8)$</td>
<td>none</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>$I_{0,1}$</td>
<td>$2^n \cdot S_8$</td>
<td>$q\equiv p \pm 1(8)$</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.2.6, 2.4.10</td>
</tr>
<tr>
<td>40</td>
<td>E^7</td>
<td>$q\equiv p \pm 1(8)$</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>E^8</td>
<td>$q\equiv p \pm 1(8)$</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>I_{-1}</td>
<td>$q\equiv p \pm 1(8)$</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>E^9</td>
<td>$q\equiv p \pm 1(8)$</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>E^{10}</td>
<td>$q\equiv p \pm 1(8)$</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>I_{-1}</td>
<td>$q\equiv p \pm 1(8)$</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>E^{11}</td>
<td>$q\equiv p \pm 1(8)$</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>E^{12}</td>
<td>$q\equiv p \pm 1(8)$</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>I_{-1}</td>
<td>$q\equiv p \pm 1(8)$</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>E^{13}</td>
<td>$q\equiv p \pm 1(8)$</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>E^{14}</td>
<td>$q\equiv p \pm 1(8)$</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE I—Continued

<table>
<thead>
<tr>
<th>I</th>
<th>II</th>
<th>III Restrictions</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
<th>IX</th>
<th>X</th>
<th>XI</th>
<th>XII</th>
<th>XIII</th>
<th>XIV</th>
<th>XV</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>\mathcal{N}_0^4</td>
<td>$[2^3]:L_3(2)$</td>
<td>$q = p \geq 3$</td>
<td>none</td>
<td>none</td>
<td>none</td>
<td>S_4</td>
<td>S_4</td>
<td>(123)*</td>
<td>S_4</td>
<td>$(13)(24)$</td>
<td>(1423)</td>
<td>$<(12), (34)>$</td>
<td>V_4</td>
<td>D_8</td>
</tr>
<tr>
<td>52</td>
<td>\mathcal{N}_0^2</td>
<td>$q = p \geq 3$</td>
<td>none</td>
</tr>
<tr>
<td>53</td>
<td>\mathcal{N}_0^3</td>
<td>$q = p \geq 3$</td>
<td>none</td>
</tr>
<tr>
<td>54</td>
<td>\mathcal{N}_0^4</td>
<td>$q = p \geq 3$</td>
<td>none</td>
</tr>
<tr>
<td>55</td>
<td>i_{+2}</td>
<td>$\left(\frac{1}{d_2}Z_{d-1}\right)^4$ $d_2^2, 2^d, S_4$</td>
<td>$q \geq 7$</td>
<td>$q \geq 7$</td>
<td>$q \geq 7$</td>
<td>$q \geq 7$</td>
<td>$q \geq 3$</td>
<td>$q \geq 5$</td>
<td>2.2.7, 2.4.11</td>
</tr>
<tr>
<td>56</td>
<td>i_{-2}</td>
<td>$\left(\frac{1}{d_2}Z_{d+1}\right)^4$ $d_2^2, 2^d, S_4$</td>
<td>$q \neq 3$</td>
<td>$q \geq 5$</td>
<td>2.2.7, 2.4.12</td>
</tr>
<tr>
<td>57</td>
<td>l_{-4}</td>
<td>$(\Omega^+_d(q) \times \Omega^+_d(q))^2$</td>
<td>$q \geq 3$</td>
<td>2.2.7, 2.4.13</td>
</tr>
<tr>
<td>58</td>
<td>l_{-4}</td>
<td>$(\Omega^-_d(q) \times \Omega^-_d(q))^2$</td>
<td>all</td>
</tr>
<tr>
<td>59</td>
<td>F_1^3</td>
<td>all</td>
</tr>
<tr>
<td>60</td>
<td>F_1^3</td>
<td>all</td>
</tr>
<tr>
<td>61</td>
<td>N_3</td>
<td>$(D_{12}(d^2) \times D_{12}(d^2))^{2^2}$</td>
<td>none</td>
<td>none</td>
<td>$q \neq 3$</td>
<td>$q \neq 3$</td>
<td>none</td>
<td>none</td>
<td>none</td>
<td>none</td>
<td>none</td>
<td>none</td>
<td>none</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>$P\Omega_4^+ (q)$</td>
<td>$g\langle q, \langle g \rangle \rangle$</td>
<td>$\Omega_4^- (q)$</td>
<td>$\Omega_4^+ (q)$</td>
<td>$\Omega_8^- (q)$</td>
<td>$\Omega_8^+ (q)$</td>
<td>$\Omega_{16}^- (q)$</td>
<td>$\Omega_{16}^+ (q)$</td>
<td>$\Omega_{32}^- (q)$</td>
<td>$\Omega_{32}^+ (q)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62 S_4</td>
<td>$g\langle q, \langle g \rangle \rangle$</td>
<td>$\Omega_4^- (q)$</td>
<td>$\Omega_4^+ (q)$</td>
<td>$\Omega_8^- (q)$</td>
<td>$\Omega_8^+ (q)$</td>
<td>$\Omega_{16}^- (q)$</td>
<td>$\Omega_{16}^+ (q)$</td>
<td>$\Omega_{32}^- (q)$</td>
<td>$\Omega_{32}^+ (q)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63 S_2, $1 \leq i \leq 4$</td>
<td>$g\langle q, \langle g \rangle \rangle$</td>
<td>$\Omega_4^- (q)$</td>
<td>$\Omega_4^+ (q)$</td>
<td>$\Omega_8^- (q)$</td>
<td>$\Omega_8^+ (q)$</td>
<td>$\Omega_{16}^- (q)$</td>
<td>$\Omega_{16}^+ (q)$</td>
<td>$\Omega_{32}^- (q)$</td>
<td>$\Omega_{32}^+ (q)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64 S_2</td>
<td>$g\langle q, \langle g \rangle \rangle$</td>
<td>$\Omega_4^- (q)$</td>
<td>$\Omega_4^+ (q)$</td>
<td>$\Omega_8^- (q)$</td>
<td>$\Omega_8^+ (q)$</td>
<td>$\Omega_{16}^- (q)$</td>
<td>$\Omega_{16}^+ (q)$</td>
<td>$\Omega_{32}^- (q)$</td>
<td>$\Omega_{32}^+ (q)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65 K_1</td>
<td>$g\langle q, \langle g \rangle \rangle$</td>
<td>$\Omega_4^- (q)$</td>
<td>$\Omega_4^+ (q)$</td>
<td>$\Omega_8^- (q)$</td>
<td>$\Omega_8^+ (q)$</td>
<td>$\Omega_{16}^- (q)$</td>
<td>$\Omega_{16}^+ (q)$</td>
<td>$\Omega_{32}^- (q)$</td>
<td>$\Omega_{32}^+ (q)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66 K_2</td>
<td>$g\langle q, \langle g \rangle \rangle$</td>
<td>$\Omega_4^- (q)$</td>
<td>$\Omega_4^+ (q)$</td>
<td>$\Omega_8^- (q)$</td>
<td>$\Omega_8^+ (q)$</td>
<td>$\Omega_{16}^- (q)$</td>
<td>$\Omega_{16}^+ (q)$</td>
<td>$\Omega_{32}^- (q)$</td>
<td>$\Omega_{32}^+ (q)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67 S_2</td>
<td>$g\langle q, \langle g \rangle \rangle$</td>
<td>$\Omega_4^- (q)$</td>
<td>$\Omega_4^+ (q)$</td>
<td>$\Omega_8^- (q)$</td>
<td>$\Omega_8^+ (q)$</td>
<td>$\Omega_{16}^- (q)$</td>
<td>$\Omega_{16}^+ (q)$</td>
<td>$\Omega_{32}^- (q)$</td>
<td>$\Omega_{32}^+ (q)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68 K_3</td>
<td>$g\langle q, \langle g \rangle \rangle$</td>
<td>$\Omega_4^- (q)$</td>
<td>$\Omega_4^+ (q)$</td>
<td>$\Omega_8^- (q)$</td>
<td>$\Omega_8^+ (q)$</td>
<td>$\Omega_{16}^- (q)$</td>
<td>$\Omega_{16}^+ (q)$</td>
<td>$\Omega_{32}^- (q)$</td>
<td>$\Omega_{32}^+ (q)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69 K_2</td>
<td>$g\langle q, \langle g \rangle \rangle$</td>
<td>$\Omega_4^- (q)$</td>
<td>$\Omega_4^+ (q)$</td>
<td>$\Omega_8^- (q)$</td>
<td>$\Omega_8^+ (q)$</td>
<td>$\Omega_{16}^- (q)$</td>
<td>$\Omega_{16}^+ (q)$</td>
<td>$\Omega_{32}^- (q)$</td>
<td>$\Omega_{32}^+ (q)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70 K_3, $1 \leq i \leq 8$</td>
<td>$g\langle q, \langle g \rangle \rangle$</td>
<td>$\Omega_4^- (q)$</td>
<td>$\Omega_4^+ (q)$</td>
<td>$\Omega_8^- (q)$</td>
<td>$\Omega_8^+ (q)$</td>
<td>$\Omega_{16}^- (q)$</td>
<td>$\Omega_{16}^+ (q)$</td>
<td>$\Omega_{32}^- (q)$</td>
<td>$\Omega_{32}^+ (q)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71 K_3, $1 \leq i \leq 8$</td>
<td>$g\langle q, \langle g \rangle \rangle$</td>
<td>$\Omega_4^- (q)$</td>
<td>$\Omega_4^+ (q)$</td>
<td>$\Omega_8^- (q)$</td>
<td>$\Omega_8^+ (q)$</td>
<td>$\Omega_{16}^- (q)$</td>
<td>$\Omega_{16}^+ (q)$</td>
<td>$\Omega_{32}^- (q)$</td>
<td>$\Omega_{32}^+ (q)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72 K_3, $1 \leq i \leq 8$</td>
<td>$g\langle q, \langle g \rangle \rangle$</td>
<td>$\Omega_4^- (q)$</td>
<td>$\Omega_4^+ (q)$</td>
<td>$\Omega_8^- (q)$</td>
<td>$\Omega_8^+ (q)$</td>
<td>$\Omega_{16}^- (q)$</td>
<td>$\Omega_{16}^+ (q)$</td>
<td>$\Omega_{32}^- (q)$</td>
<td>$\Omega_{32}^+ (q)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>73 K_3, $1 \leq i \leq 8$</td>
<td>$g\langle q, \langle g \rangle \rangle$</td>
<td>$\Omega_4^- (q)$</td>
<td>$\Omega_4^+ (q)$</td>
<td>$\Omega_8^- (q)$</td>
<td>$\Omega_8^+ (q)$</td>
<td>$\Omega_{16}^- (q)$</td>
<td>$\Omega_{16}^+ (q)$</td>
<td>$\Omega_{32}^- (q)$</td>
<td>$\Omega_{32}^+ (q)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74 K_3, $1 \leq i \leq 8$</td>
<td>$g\langle q, \langle g \rangle \rangle$</td>
<td>$\Omega_4^- (q)$</td>
<td>$\Omega_4^+ (q)$</td>
<td>$\Omega_8^- (q)$</td>
<td>$\Omega_8^+ (q)$</td>
<td>$\Omega_{16}^- (q)$</td>
<td>$\Omega_{16}^+ (q)$</td>
<td>$\Omega_{32}^- (q)$</td>
<td>$\Omega_{32}^+ (q)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75 K_3, $1 \leq i \leq 8$</td>
<td>$g\langle q, \langle g \rangle \rangle$</td>
<td>$\Omega_4^- (q)$</td>
<td>$\Omega_4^+ (q)$</td>
<td>$\Omega_8^- (q)$</td>
<td>$\Omega_8^+ (q)$</td>
<td>$\Omega_{16}^- (q)$</td>
<td>$\Omega_{16}^+ (q)$</td>
<td>$\Omega_{32}^- (q)$</td>
<td>$\Omega_{32}^+ (q)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
nodes \{r_1, r_j, ...\}. The maximal parabolic subgroups of \(G_0\) have the following geometric interpretations:

\[
\begin{align*}
P_{1,2,3} &= N_{G_0}(S), \\
P_{1,2,4} &= N_{G_0}(T), \\
P_{2,3,4} &= N_{G_0}(U), \\
P_{1,3,4} &= N_{G_0}(W),
\end{align*}
\]

where \(S\) and \(T\) are t.s. 4-spaces (or t.s. solids), \(U\) is a t.s. point, \(W\) is a t.s. line, and \(U < W < S \cap T\). The group \(G_0\) is transitive on the sets \(\mathcal{P}\) of t.s. points and \(\mathcal{L}\) of t.s. lines and has just two orbits \(\mathcal{S}_1, \mathcal{S}_2\) of t.s. solids, with representatives \(S\) and \(T\). Two t.s. solids lie in the same orbit if and only if their intersection has even dimension. This fact ensures that each t.s. 3-space (or t.s. plane) lies in exactly two t.s. solids, one in each \(\mathcal{S}\). Thus the normalizer in \(G_0\) of a t.s. plane is the intersection of the normalizers of the two t.s. solids which contain it. Therefore

\[
P_{1,2} = P_{1,2,3} \cap P_{1,2,4} = N_{G_0}(S, T) = N_{G_0}(S \cap T).
\]

Furthermore \(G_0\) is transitive on t.s. planes.

Two parabolic subgroups are said to be incident if their intersection is again a parabolic subgroup. Also, two t.s. subspaces of \(V\) are incident if one contains the other, or if they are a pair of solids which intersect in a plane. It is easy to verify that two t.s. subspaces are incident if and only if their normalizers in \(G_0\) are incident.

If \(X \in \mathcal{P} \cup \mathcal{L} \cup \mathcal{S}_1 \cup \mathcal{S}_2\) and \(a \in A\), then \(X^a\) is defined by \(N_{G_0}(X^a) = N_{G_0}(X)^a\). In this way \(A\) acts on the set of t.s. points, lines and solids. (Of course this action agrees with the usual action of \(P\Gamma\).) Since \(A\) preserves incidence amongst the parabolics, \(A\) also preserves incidence in \(\mathcal{P} \cup \mathcal{L} \cup \mathcal{S}_1 \cup \mathcal{S}_2\). For example, let \(\tau \in \mathcal{S}\) induce the symmetry \(r_1 \mapsto r_4 \mapsto r_3\) on the Dynkin diagram. Then \(\mathcal{P}' = \mathcal{S}_1\) and \(\mathcal{S}' = \mathcal{S}_2\), and if \(X \in \mathcal{P}\), then \(X \leq X'\) if and only if \(\dim(X^\tau \cap X'^\tau) = 3\). We will make use of these remarks in the proof of 4.1.4.

The only proper parabolic subgroups which extend to \(A\) lie in \([P_{1,3,4}] \cup [P_2] \cup [B_0]\). The Borel subgroups (i.e., groups in \([B_0]\)) are the stabilizers of flags. A flag is a sequence of four subspaces \((V_1, \ldots, V_4)\) of \(V\) such that \(V_i < V_{i+1}\) for \(i \leq 3\), and \(V_i\) is a t.s. \(i\)-space. For example, \((U, W, S \cap T, S)\) is a flag. Observe that \(P_2 = P_{1,2,3} \cap P_{1,2,4} \cap P_{2,3,4} = N_{G_0}(U, S, T)\). Conversely, if \((U', S', T')\) is any triple of subspaces of \(V\) such that \(U' \in \mathcal{P}, S' \in \mathcal{S}_1, T' \in \mathcal{S}_2,\) and \(S' \cap T'\) is a plane containing \(U'\), then \(N_{G_0}(U', S', T') \in [P_2]\). Although \(P_2\) is nonmaximal in \(G_0\), \(P_2\) extends to a novelty in groups \(G \leq A\) which contain a triality automorphism (see 4.2.2). However, 1.3.3 shows that \(B_0\) never extends to a novelty.
1.6.1. Lemma. M_0 is not a Borel subgroup of G_0.

Proof. Since B_0 is a Sylow p-normalizer of P_2, the Frattini argument shows that B_0 extends from P_2 to $N_{G}(P_2)$ (recall $G_0 \leq G \leq A$). But P_2 extends to A, and hence to G (1.3.2(i)). Thus $N_{G}(B_0) < N_{G}(P_2)$ by 1.3.3(i). \(\blacksquare\)

1.7. Counting Classes

In some of the discussions below, we will need to determine the number of conjugacy classes of absolutely irreducible subgroups of G_0 with a given structure. Here are some remarks about counting such classes.

1.7.1. Lemma. Let $H \leq \Omega$ be absolutely irreducible.

(i) Q and its scalar multiples are the only quadratic forms fixed by H. Hence $N_{\Gamma(V)}(H) \leq 1$.

(ii) If H is perfect, then the number of conjugacy classes of absolutely irreducible copies of H in Δ is at most the number of such classes in $GL(V)$.

Proof. (i) Let P be a nonzero quadratic form preserved by H. Let F be the matrix of the bilinear form $(,)$ with respect to some basis of V, and let E be the corresponding matrix for P (with respect to the same basis). Thus

$$h(FE^{-1}) = F \quad \text{and} \quad hEh^{-1} = E$$

for all $h \in H$. Therefore,

$$h(Fe^{-1})h^{-1} = hFh^{-1}(h^{-1})'E^{-1}h^{-1} = FE^{-1},$$

and as H is absolutely irreducible, $E = \lambda F$ for some $\lambda \in \mathbb{F}^\times$. Thus P and λQ have the same associated bilinear form. The equality $P = \lambda Q$ is immediate for odd q and follows from 4.9 of [2] for even q. The second assertion in (i) is clear, since $\Gamma = N_{\Gamma(V)}(\Omega)$.

(ii) Assume that $H^x \leq \Delta$ for some $x \in GL(V)$. Then $H \leq \Delta^{x^{-1}}$, and since H is perfect, $H \leq \Omega^{x^{-1}}$. Therefore H stabilizes the quadratic form $P(v) = Q(v^x)$, and by (i), $P = \lambda Q$ for some $\lambda \in \mathbb{F}^\times$. Therefore $x \in \Delta$ and (ii) holds. \(\blacksquare\)

Let $\rho, \sigma : H \to GL(V)$ be representations of a group H. We say that ρ and σ are quasiequivalent if there exists $\alpha \in \text{Aut}(H)$ such that σ is equivalent to $\alpha \rho$. It is trivial to prove

1.7.2. Lemma. If ρ and σ are quasiequivalent, then H^ρ and H^σ are conjugate in $GL(V)$. In particular, if all the irreducible faithful representations of H in $GL(V)$ are quasiequivalent, then there is a unique class of irreducible copies of H in $GL(V)$.

MAXIMAL SUBGROUPS OF $PO_8^+(q)$
PART 2. THE CASE $G \leq P\Gamma$

Throughout Part 2 (except for Section 2.3) G satisfies

$$G_0 \leq G \leq P\Gamma.$$

2.1. The Classical Subgroups

Aschbacher [2, pp. 472ff] describes eight collections C_1, \ldots, C_8 of subgroups of G, such that M is either a member of one of these collections or $\text{soc}(M)$ is a non-abelian simple group. A subgroup of G is called a classical subgroup if it is a member of one of these eight collections. We use these letters $R, I, F, T, S,$ and E to denote members of C_1 (the reducible groups), C_2 (the imprimitive groups), C_3 (the normalizers of field extensions of F), C_4 or C_7 (the stabilizers of tensor product decompositions of V), C_5 (the stabilizers of subfields of F), and C_6 (whose preimages in Γ normalize extraspecial groups), respectively. The collection C_8 is void for the orthogonal groups. (We warn the reader that the letters $R, I, F,$ etc., may be used in contexts other than the ones mentioned here.) The groups with simple socle satisfying the description on p. 469 of [2] will be called C_9-groups, since they comprise, in effect, Aschbacher's ninth collection.

Result 15.1 of [2] indicates how a triality automorphism of G_0 acts on various subgroups of G_0. (Regarding 15.1.13 of [2], however, we remark that a certain $P\Delta$-orbit of S-groups is not an A-orbit—see 2.2.10.) In particular, the proofs of 15.1.12 and 15.1.14 of [2] show that T-groups, other than normalizers of $Sp_2(q) \otimes Sp_4(q)$ in odd characteristic, are contained in members of C_2, C_3, or a suitable C_9-group. Thus "T-group" refers only to a normalizer of $Sp_2(q) \otimes Sp_4(q)$ with q odd. In the table below, we explain our notation for the classical subgroups.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{sm}</td>
<td>stabilizer of a t.s. m-space</td>
</tr>
<tr>
<td>R_{em}</td>
<td>stabilizer of an em-space</td>
</tr>
<tr>
<td>I_{sm}</td>
<td>stabilizer of an sm-decomposition</td>
</tr>
<tr>
<td>I_{sa}</td>
<td>stabilizer of an sa-decomposition</td>
</tr>
<tr>
<td>F_1</td>
<td>preimage in Ω is normalizer of an irreducible $\Omega^+_4(q^2)$</td>
</tr>
<tr>
<td>F_2</td>
<td>preimage in Ω is normalizer of an irreducible $SU_4(q)$</td>
</tr>
<tr>
<td>T</td>
<td>preimage in Ω is normalizer of $Sp_2(q) \otimes Sp_4(q), q$ odd</td>
</tr>
<tr>
<td>S_a</td>
<td>normalizer of subfield group $P\Omega^+_6(q_0), q = q_0^p, q$ prime</td>
</tr>
<tr>
<td>S_s</td>
<td>normalizer of subfield group $\Omega^{+6}((q^2)), q$ a square</td>
</tr>
<tr>
<td>E</td>
<td>preimage in Ω is normalizer of $2^{1+6}, q = p \geq 3$</td>
</tr>
</tbody>
</table>
Remarks. (i) The letter s occurs in the names R_{s4}, I_{s4}, as a mnemonic for totally singular.

(ii) The groups in the table are subgroups of G_0. The classical subgroups of G are the normalizers in G of the classical subgroups of G_0. For example, if $\hat{\sigma}$ is a $+2$-decomposition of V, then $N_{\sigma}(\hat{\sigma}) = N_{\sigma}(N_{G_0}(\hat{\sigma}))$.

2.2. The A-Conjugates of the Classical Subgroups

Here we determine the number of classes in G_0 of a given type of classical subgroup (e.g., the number of classes of T-groups), and determine where these classes are sent under the action of A. Recall (Sect. 1.3) that if $H \subseteq G_0$, then $[H]$ denotes the G_0-class containing H, also define

$$[H]^A = \{[H^a] : a \in A\}.$$

If there is more than one G_0-class of a given type of classical subgroup or C_s-group, then we add superscripts to distinguish the classes. For example, there are two classes of R_{s4}-groups, corresponding to the two families \mathcal{Y}_i, \mathcal{S}_2 of t.s. solids (see Sect. 1.6). Thus we write R_{s4}^1 and R_{s4}^2 to denote representatives of the two classes.

Let C be a classical subgroup of G_0 and suppose that C extends to $G_1 = G_0 \Phi$. Thus $[C]^g = [C]$ for all $g \in G_1$, and if $a \in A$ then C^a extends to $G_1^a = G_1$ (see (1c)). Therefore A/G_1 acts transitively on $[C]^A$ and so Σ acts transitively on $[C]^A$ via the homomorphism π given in Section 1.4. We thus describe the action of A on $[C]^A$ in terms of the action of Σ. For example, let C be an R_{s4}-group, (i.e., the stabilizer in G_0 of a t.s. point). As G_0 is transitive on \mathcal{P} (the set of t.s. points), there is a unique class of R_{s4}-groups in G_0. And because G_1 acts on \mathcal{P}, it follows that C extends to G_1. Thus Σ acts transitively on $[C]^A$. Now $P \Gamma$ acts on \mathcal{P}, so C extends to $P \Gamma$. Therefore $\pi(P \Gamma) \subseteq N_\Sigma([C])$, which means $N_\Sigma([C])$ equals $\pi(P \Gamma)$ or Σ. However, if $\tau \in \mathcal{T}$, then C^τ is an R_{s4}-group and so $[C] \neq [C^\tau]$. Therefore $N_\Sigma([C]) - \pi(P \Gamma)$, which equals $\langle (12) \rangle$ or D_8 according as q is even or odd (see (1j)). Thus there are $|\Sigma : N_\Sigma([C])| = 3$ classes in $[C]^A$ and it is clear from Section 1.6 that $[C]^A = \{[R_{s1}], [R_{s4}^1], [R_{s4}^2]\}$. This shows

Proposition 2.2.1. There is a unique class of R_{s1}-groups in G_0 and just 2 classes of R_{s4}-groups. Furthermore, we have

\[
\begin{array}{ccc}
(12) & (123) & (13)(24) \\
R_{s1} & \times & \\
R_{s4}^1 & \times & \\
R_{s4}^2 & \times & \\
\end{array}
\]
If \(\alpha \) is one of the elements of \(\Sigma \) in the top row of the table above, and \(R \) is one of the groups on the left, then an "x" appears in the \((R, \alpha)\)-entry if and only if \(\alpha \) fixes \([R]\). This occurs if and only if \(R \) extends to \(G_\alpha = \pi^{-1}(\langle \alpha \rangle) \); that is, if and only if \(G_\alpha \leq N_A(R)G_0 \). As in the results matrix, two groups \(R, R^* \) on the left are joined by "\(\cdot \)" in the \(\alpha \)-th column if and only if \(\langle \alpha \rangle \) takes \([R]\) to \([R^*]\). The last column is to be ignored when \(q \) is even. We use diagrams of this sort in most of the propositions in this section. These next two results follow directly from Section 1.6.

Proposition 2.2.2. There is a unique class of \(R_s \)-groups in \(G_0 \) and \(R_{s_2} \) extends to \(A \).

Proposition 2.2.3. There is a unique class of \(R_3 \)-groups in \(G_0 \) and using the notation of Section 1.6 we have

\[
\begin{array}{ccc}
(12) & (123) & (13)(24) \\
R_{s_3} = P_{1,2} & \times & \\
P_{\gamma,1} & \bullet & \bullet \\
P_{2,4} & \bullet & \times
\end{array}
\]

Proposition 2.2.4. There are just \(2d \) classes of \(C_q \)-groups in \(G_0 \) with socle \(\Omega_7(q) \). Let \(K_i, 1 \leq i \leq 2d \) be representatives of these classes. There are just \(d \) classes of \(R_{s_1} \)-groups. We have \(K_i \cong R_{s_1} \cong \Omega_7(q) \) and

\[
\begin{array}{ccc}
(12) & (123) & (13)(24) \\
R_{s_1} & \times & \\
K_1^1 & \bullet & \bullet & \bullet \\
K_1^2 & \bullet & \bullet & \times \\
R_{s_1} (q \text{ odd}) & \times & \\
K_1^3 (q \text{ odd}) & \bullet & \bullet & \\
K_1^4 (q \text{ odd}) & \bullet & \bullet & \times
\end{array}
\]
Remark. When q is even, $O_7(q) = \Omega_7(q) = Sp_6(q)$. Also, recall $d = (2, q - 1)$.

Proof. It is known that G_0 is transitive on any full set of isometric 1-spaces, thus G_0 has just d classes of R_{+1}-groups. Clearly $G_1 = G_0 \Phi$ acts on the set of $+1$-spaces in V, hence R_{+1} extends to G_1. Therefore, as described above, Σ acts transitively on $[R_{+1}]^4$. Since PO acts on the $+1$-spaces, R_{+1} extends to PO. Therefore $(12) \in N_\Sigma([R_{+1}])$ by (11), and if q is odd then also $(34) \in N_\Sigma([R_{+1}])$. When q is odd, $P\Delta$ fuses the two classes $[R_{+1}]$, $[R_{-1}]$, and so $(13)(24) \notin N_\Sigma([R_{+1}])$. Further, it is well known that if $\sigma \in \mathcal{F}$ then R_{+1}^σ realizes an irreducible spin representation of $\Omega_7(q)$ in G_0, hence $N_\Sigma([R_{+1}])$ does not contain a 3-cycle (see (1n)). We conclude that $N_\Sigma([R_{+1}]) = \pi(PO)$. Thus there are just $|\Sigma: \pi(PO)| = 3d$ classes in $[R_{+1}]^4$. Clearly $2d$ of these classes are comprised of C_9-groups, so it remains to show that there are no other C_9-groups with socle $\Omega_7(q)$.

By Theorem 1.1 of [27], all (absolutely) irreducible representations of $B_3(q)$ in $GL(V)$ are quasiequivalent, where $B_3(q)$ is the full covering group of $\Omega_7(q)$. Hence by 1.7.2 and 1.7.1(ii), $P\Delta$ has a unique class of absolutely irreducible $\Omega_7(q)$. Thus any such copy of $\Omega_7(q)$ in G_0 must be A-conjugate to R_{+1}, and the proof is complete.

Remark. The term K_i-group or the symbol K_i refers to an arbitrary member of $[K_i]$ for some i. Similar terminology holds for $K_2, ..., K_8$, below.

Proposition 2.2.5. For odd q, there are just 2 classes of R_{+3}-groups and just 4 classes of T-groups. We have

\[
\begin{array}{ccc}
(12) & (123) & (13)(24) \\
R_{+3} & \times & \\
T^1 & & \\
T^2 & & \times \\
R_{-3} & \times & \\
T^3 & & \\
T^4 & & \times \\
\end{array}
\]

Proof. The group G_0 is transitive on $+3$-spaces and on -3-spaces,
hence there are just 2 classes of R_0-groups in G_0, namely $[R_{+3}]$ and $[R_{-3}]$. Since $PO.\Phi$ acts on the $+3$-spaces, R_{+3} extends to $PO.\Phi$. In particular, R_{+3} extends to G_1, hence Σ acts transitively on $[R_{+3}]^A$ and $\langle(12), (34)\rangle \leq N_2([R_{+3}])$. Now $P\Delta$ fuses the two classes $[R_{+3}]$ and $[R_{-3}]$, hence $(13)(24) \notin N_2([R_{+3}])$. Therefore $N_2([R_{+3}]) = \langle(12), (34)\rangle$, so there are $|\Sigma : N_2([R_{+3}])| = 6$ classes in $[R_{+3}]^A$. By 15.1.6 of [2], the 4 classes in $[R_{+3}]^A$ other than $[R_{+3}]$ and $[R_{-3}]$ are classes of T-groups; we write T^1, \ldots, T^4 for representatives of these classes. Clearly $[T^1] \cup \cdots \cup [T^4]$ is a $P\Delta$-orbit of T-groups, and by Theorem B4.4 of [2], any T-group is G_0-conjugate to some T^i. Thus there are just 4 classes of T-groups, and it is clear that the action of Σ on the 6 classes $[R_{+3}]^A$ is as stated in the Proposition.

Proposition 2.2.6. (i) If $q = p \equiv +1 \mod 8$, then $I_{e_1} \cong 2^6.S_8$ and there are precisely 4 classes of I_{e_1}-groups and 8 classes of E-groups. We have

<table>
<thead>
<tr>
<th>I^1_{-1}</th>
<th>E^1</th>
<th>E^2</th>
<th>P^2_{+1}</th>
<th>E^3</th>
<th>E^4</th>
<th>I^1_{+1}</th>
<th>E^5</th>
<th>E^6</th>
<th>P^2_{-1}</th>
<th>E^7</th>
<th>E^8</th>
</tr>
</thead>
</table>
(ii) If \(q = p \equiv \pm 3 \mod 8 \), then \(I_{e_1} \cong 2^6 \cdot A_8 \), and there are just 2 classes of \(I_{e_1} \)-groups and 4 classes of \(E \)-groups. We have

\[
\begin{array}{ccc}
I_{+1} & \times & \bullet \\
E^1 & \times & \bullet \\
E^2 & \times & \bullet \\
I_{-1} & \times & \bullet \\
E^3 & \times & \bullet \\
E^4 & \times & \bullet \\
\end{array}
\]

Proof. Let \(\bar{\sigma} \) be a \(+1\)-decomposition \(V = \langle v_1 \rangle \perp \cdots \perp \langle v_8 \rangle \), where \((v_i, v_j) = 1 \) for all \(i \). Put \(J = N_\Omega(\bar{\sigma}) \cong 2 \cdot S_8 \) and \(I = J \cap \Omega = N_\Omega(\bar{\sigma}) \), so that \(\bar{I} \) is an \(I_{+1} \)-group in \(G_0 \). Clearly \(I \) contains a perfect subgroup \(2^7 \cdot A_8 \). Further \(J = N_\Omega(I) \), hence by 1.3.2(iv) the \(PO \)-class \(\lfloor \bar{I} \rfloor_{PO} \) splits into \(|O: \Omega| \) classes in \(G_0 \). So as \(PO \) is transitive on \(+1\)-decompositions, \(G_0 \) contains precisely \(|O: \Omega| \) classes of \(I_{+1} \)-groups.

Observe \(v_1 \) interchanges \(v_1 \) and \(v_2 \) and \(J = I \langle r_{v_1-v_2}, r_{v_3} \rangle \). Now \(\langle r_{v_1-v_2}, r_{v_3} \rangle \) is a \(4 \)-group and \(I \cap \langle r_{v_1-v_2}, r_{v_3} \rangle \leq \langle r_{v_1-v_2}, r_{v_3} \rangle \). The spinor norm of \(r_{v_1-v_2} r_{v_3} \) is 2 and so \(|I \cap \langle r_{v_1-v_2}, r_{v_3} \rangle| = 2 \) or 1 according as 2 is a square or nonsquare in \(F \).

Thus when \(p = q = \pm 3 \mod 8 \), we have \(|J\Omega: \Omega| = |J:I| = 4 \), which means \(J\Omega = O \). Hence \(G_0 \) has a unique class of \(I_{+1} \)-groups with representative \(\bar{I} = I_{+1} \), and similarly \(G_0 \) has a unique class of \(I_{-1} \)-groups. Now \(\Sigma \) acts on \(\lfloor I_{+1} \rfloor^4 \) because \(G_0 = G_1 \) (since \(q = p \)), and \(\langle (12), (34) \rangle = \pi(\bar{J}) \leq N_2(\lfloor \bar{I} \rfloor) = N_2(\lfloor I_{+1} \rfloor) \). Notice, however, that \(PD \) fuses \(\lfloor I_{+1} \rfloor \) and \(\lfloor I_{-1} \rfloor \), so as in the proofs of 2.2.4 and 2.2.5, \((13)(24) \notin N_2(\lfloor I_{+1} \rfloor) \). Consequently \(N_2(\lfloor I_{+1} \rfloor) = \langle (12), (34) \rangle \) which means there are \(|\Sigma : \langle (12), (34) \rangle| = 6 \) classes in \(\lfloor I_{+1} \rfloor^4 \). By 15.1.11 of [2] the remaining 4 classes are \(E \)-groups, and as in 2.2.4 and 2.2.5, there are precisely 4 classes of \(E \)-groups. Thus the diagram in (ii) holds. Moreover \(I \cong 2^7 \cdot A_8 \) and \(\bar{I} \cong 2^6 \cdot A_8 \), hence the proof of (ii) is finished.

When \(p = q = \pm 1 \mod 8 \) then \(|J\Omega: \Omega| = |J:I| = 2 \), hence \(G_0 \) has \(|O:J\Omega| = 2 \) classes of \(I_{+1} \)-groups, with representatives \(\bar{I} = I_{+1}^1 \) and \(I_{+1}^2 \). Similarly \(G_0 \) has just 2 classes of \(I_{-1} \)-groups \(\lfloor I_{-1}^2 \rfloor \), \(\lfloor I_{-1}^2 \rfloor \). Thus there are at least 4 classes in \(\lfloor \bar{I} \rfloor^4 \). And by 15.1.11 of [2], \(\bar{I} \) is \(A \)-conjugate to an \(E \)-group, which means there are at least 5 classes in \(\lfloor \bar{I} \rfloor^4 \), whence \(|N_2(\lfloor \bar{I} \rfloor)| \leq 4 \). However \(N_{PO}(\bar{I}) = \bar{J} = I \langle r_{v_1} \rangle \), hence \(N_2(\lfloor \bar{I} \rfloor) \cap \lfloor \bar{I} \rfloor^4 \) has at least 5 classes.
\[\langle (12), (34) \rangle = \pi(\mathcal{J}) = \langle \pi(\mathcal{R}_m) \rangle = \langle (12) \rangle. \]

It now follows that \(N_{x}(\mathcal{I}) = \langle (12) \rangle \), so there are 12 classes in \([\mathcal{I}]\). As before, the remaining 8 classes in \([\mathcal{I}]^d\) exhaust the classes of \(E\)-groups in \(G_0\). Since \((13)(24)\) interchanges the classes of \(I_{+1}\)-groups with the classes of \(I_{-1}\)-groups, it is easily seen that the diagram in (i) holds. Finally, \(I \cong 2^7.S_8\) and \(I \cong 2^6.S_8\), so the proof is complete.

Proposition. 2.2.7. (i) There is a unique class of \(I_{\pm2}\)-groups in \(G_0\) for each \(\varepsilon\).

(ii) \(\varepsilon \neq \{(2, +), (3, +)\}\) then \(I_{\pm2}\) extends to \(A\).

(iii) There is a unique class of \(I_{+4}\)-groups in \(G_0\) and \(I_{+4}\) extends to \(A\).

(iv) \(\varepsilon \neq \{(2, +, 2), (3, +, 2), (2, +, 4)\}\), then \(M_0\) is not contained in an \(I_{\pm\varepsilon}\)-group. This includes the case \(G \cap \mathcal{F} \neq \varnothing\).

Proof. Evidently \(G_0\) is transitive on \(\varepsilon2\)-decompositions for each \(\varepsilon\), hence (i) holds. Moreover (ii) and (iii) follow from 15.1.9–15.1.10 and 15.1.7 of [2], respectively.

(iv) Assume for a contradiction that \(M_0 \leq I_{\varepsilon\varepsilon}\). Note that \(M_0 \neq 1\) by 1.3.1(i). If \((q, \varepsilon, m) = (2, +, 4)\), then \(M_0 \leq I_{+4} \cong 3^2:2^5\). Thus \(M_0\) is either a 2-group or has a nontrivial normal Sylow 3-subgroup, contrary to 1.3.1(iv). If \((q, \varepsilon, m) = (2, +, 2)\), then \(M_0 \leq I_{+2} \leq R_{\varepsilon1}\). Now \(I_{+2} \cong 2^3.S_4\), and as \(M_0\) is not a 2-group nor does it have a nontrivial normal Sylow 3-subgroup (by 1.3.1(iv)), we have \(1 < |O_2(M_0)| \leq 2^5\). But \(R_{\varepsilon1} \cong 2^6.A_8\), and this contradicts 1.3.1(v). If \((q, \varepsilon, m) = (3, +, 2)\), then \(M_0 \leq I_{+2} \leq I_{+4}\) (see the proof of 15.1.9 of [2]). We have \(I_{+2} \cong [2^7].S_3\), so as before \(1 < |O_2(M_0)| \leq 2^7\). However, \(I_{+4} \cong [2^9]:[3^4]:[2^3]\) and we appeal to 1.3.1(v) again.

In this next proposition we compress three tables into one; the notation is self-explanatory.

Proposition 2.2.8. There is a unique class of \(R_{+2}\), \(R_{-2}\) and \(I_{-4}\)-groups in \(G_0\) and just two classes of \(I_{\pm4}\), \(F_{\pm2}\), and \(F_{-1}\)-groups. We have

\[
\begin{array}{ccc}
(12) & (13)(24) & (123) \\
R_{+2} & R_{-2} & I_{-4} & \times & \times \\
I_{+4}^1 & F_{+2}^1 & F_{-2}^1 & \times \\
& F_{+2}^1 & \bullet & \bullet \\
F_{-4}^1 & F_{+2}^1 & F_{-2}^1 & \times
\end{array}
\]
Proof. Evidently G_0 is transitive on -2-spaces and $P\Gamma$ acts on the -2-spaces. Therefore R_{-2} extends to $P\Gamma$ and $|\text{Tr}(R_{-2})| = 3$. By the proof of 15.1.5 of [2], R_{-2} is an F_2-group for each $\tau \in \mathcal{S}$, and thus $\text{Tr}(R_{-2}) = \{R_{-2}, [F_1], [F_2]\}$. Thus $P\Delta$ acts on $[F_1] \cup [F_2]$, and as $P\Delta$ is transitive on F_2-groups [2, Theorem B.4.3], the groups in $[F_1] \cup [F_2]$ exhaust the F_2-groups in G_0. Similar arguments apply to the R_{+2}-, I_{s4}-, I_{-4}- and F_1-groups (see [2, 15.1.4, 15.1.8]).

Proposition 2.2.9. Assume that $q = q_0^2$, with α prime. If $(\alpha, d) = 1$, then G_0 has a unique class of S_2-groups and $S_2 \cong P\Omega_8^+(q_0)$ is self-normalizing in G_0. If $\alpha = d = 2$, then there are 4 classes of S_2-groups and $S_2 = S_2 \cong P\Omega_8^+(q_0).2^2$; the group $A/G_1 \cong S_4$ acts naturally on these 4 classes.

Proof. Since $F_0 = GF(q_0)$ is a splitting field for $D_4(q_0)$ (the full covering group of $P\Omega_8^+(q_0)$), it follows from [2, Sect. 8] that every $P\Omega_8^+(q_0)$ in G_0 is the socle of an S_2-group. Thus by Theorem B.4.5(a) of [2], $P\Delta$ has a unique class of $P\Omega_8^+(q_0)$. Let H be a natural copy of $\Omega_8^+(q_0)$ in Ω acting on V_0, the F_0-span of a standard basis (e_1, \ldots, f_4) (Sect. 2). Then $H = \Omega(V_0, Q_0, F_0)$, where Q_0 is the restriction of Q to V_0, and by 8.2 of [2]

$$N_\Delta(H) = A(V_0, Q_0, F_0) \mathbb{Z}.$$

Let λ generate F_0^*, and put $v = e_1 + f_1$, $w = e_2 + \lambda f_2$. Then

$$A(V_0, Q_0, F_0) \subset \langle H, r_v, r_w, d_\lambda \rangle,$$

where d_λ is as in (1a).

If $\alpha = d = 2$ (so that q is odd), then λ is a square in F, hence $\langle d_\lambda, r_v, r_w \rangle \leq \Omega Z$. Obviously $r_v \in O/\Omega$, hence $N_{G_0}(\bar{H}) = \langle \bar{H}, \bar{d}_\lambda, \bar{r}_v, \bar{r}_w \rangle \cong \bar{H}.2^2$. Further $N_{P\Delta}(\bar{H}) G_0 = G_0 \langle \bar{r}_v \rangle \cong G_0.2$, thus G_0 has $|P\Delta: G_0 \langle \bar{r}_v \rangle| = 4$ classes of $P\Omega_8^+(q_0)$ permuted transitively by θ. Hence by 1.4.3, A/G_1 acts naturally on these classes.

If q and α are odd, then λ is a nonsquare in F, whence the spinor norm of r_v, r_w is a nonsquare in F. Therefore $r_v, r_w \in SO/\Omega$ and $d_\lambda \in A/\Omega Z$, showing that $N_{G_0}(\bar{H}) = \bar{H}$ and that \bar{H} extends to $P\Delta$. Thus G_0 has a unique class of $P\Omega_8^+(q_0)$ and such groups are self-normalizing in G_0.

Finally, if q is even, then $r_v \in O/G_0$, and again H extends to $O = P\Delta$. Similar remarks apply.

Proposition 2.2.10. If $q = q_0^2$ then G_0 has just $2d$ classes of C_σ-groups with socle $\Omega_8^-(q_0)$. Let K_i, $1 \leq i \leq 2d$, be representatives of these classes. There are just d classes of S_γ-groups in G_0. We have $K_i \cong S_\gamma \cong \Omega_8^-(q_0)$, and
Proof. Let H be a fixed copy of $\Omega_8^-(q_0)$. It is convenient to adopt the notation of [27, pp. 428ff]. Let $\lambda_1, \lambda_2, \lambda_3, \lambda_4$ be the fundamental dominant weights of H which are obtained from the fundamental roots r_1, r_2, r_3, r_4. By Theorem 1.1 of [27], each 8-dimensional absolutely irreducible FH-module is quasiequivalent to one of $M(\lambda_1), M(\lambda_2), M(\lambda_4)$, as described on pp. 428 of [27]. And by the remarks preceding Theorem 2.2 of [27], $M(\lambda_3)^{(a)} \cong M(\lambda_4)$, where $q_0 = p^a$. Thus $M(\lambda_3)$ and $M(\lambda_4)$ are quasiequivalent FH-modules. Hence there are at most 2 quasiequivalence classes of FH-modules. Therefore by 1.7.1(ii), 1.7.2 and the fact that any $\Omega_8^-(q_0)$ in G_0 is absolutely irreducible, we conclude

$$PA \text{ has at most two classes of } \Omega_8^-(q_0).$$

(2a)

By [7, Theorem 14.5.2], there exists a graph-field involution $\gamma \in A$ which satisfies $[\gamma, \Phi] = 1$ and $C_{G_0}(\gamma) \cong \Omega_8^-(q_0)$. Assume now that $H = C_{G_0}(\gamma)$. Since H is absolutely irreducible, $C_A(H) = Z = Z(GL(V))$, and thus by 1.2.3, $C_{A(H)} = 1$. Hence by 1.4.2(i),

$$N_{G_0}(H) = H,$$

(2b)

and as $[\gamma, \Phi] = 1$ we deduce that H extends to $G_1 = G_0 \Phi$. Therefore Σ acts transitively on $[H]^A$. Replacing H by an A-conjugate if necessary, we can write $\pi(\gamma) = (12) \in \Sigma$, so that

$$(12) \in N_{\Sigma}(H).$$

(2c)

Observe that $[N_\Sigma(H), \gamma] \leq C_\Sigma(H) = 1$, whence $N_\Sigma(H) = C_\Sigma(\gamma)$. By 9.1.2(e) of [14], $C_\Sigma(\gamma) = \text{Indiag}(H) = H.d$. Thus when q is odd, (2b) implies that $|N_\Sigma(H) \cap V_4| = 2$. Thus by (2c),

$$|N_\Sigma(H) \cap D_8| = 4 \quad (q \text{ odd}).$$

(2d)
We now argue that if \(\tau \in \mathcal{T} \), then

\[
[H]_{PA} \neq [H']_{PA}.
\]

(2c)

Otherwise, there exists \(x \in PA \) such that \(H^x = H' \), and thus \(H \leq C_{G_0}(\langle \gamma, \delta \rangle) \), where \(\delta = \gamma^{\tau x^{-1}}. \) Since \(\pi(\tau) \) is a 3-cycle, \(\pi(\delta) \) is a 2-cycle distinct from (12) or (34). Hence \(w = [\gamma, \delta] \in C_A(H) \) and \(\pi(w) \) is a 3-cycle. Since \(A' \cong G_0 \cdot 3 \) or \(G_0 \cdot A_4 \) (see (1d)) it follows that \(w^3 \in G_0 \). Therefore \(w^3 \in C_{G_0}(H) = 1 \), which means \(H \) is a subgroup of one of the groups occurring in 1.4.1. But none of these groups contains an \(\Omega_8^- \) (as seen) and so (2e) holds. Thus by (2a), \(PA \) has precisely 2 classes of \(\Omega_8^- \) with representatives \(H \) and \(H' \). Consequently \(A \) is transitive on subgroups \(\Omega_8^- \) of \(G_0 \) and \(N_\Sigma([H]) \) does not contain a 3-cycle. Thus (2c) and (2d) yield \(|N_\Sigma([H])| = 2d \). Therefore \(A \) has exactly \(|\Sigma|/2d = 3d \) classes of \(\Omega_8^- \) (as seen).

Finally suppose that \(H \) is an \(S^- \) group in \(G_0 \). Since \(PA \) is transitive on \(S^- \)-groups by [2, Theorem B.4.5.b], (2c) implies that \(H' \) is not an \(S^- \)-group, and it follows easily that \(H' \) is a \(C_\sigma \)-group. Similarly \(H'^2 \) is a \(C_\sigma \)-group, and so just \(d \) of the classes in \([H]^4 \) are \(S^- \)-groups, while the remaining \(2d \) classes are \(C_\sigma \)-groups. The diagram in the Proposition now follows.

We make use of this next result in Section 4, below.

Lemma 2.2.11. The \(R_{e_1}^- \), \(K_1^- \), \(R_{e_3}^- \), \(T^- \), \(K_2^- \) and \(S \)-groups are the centralizers in \(G_0 \) of elements in \(A \setminus G_0 \).

Proof. The \(R_{e_1}^- \) -groups are centralizers of reflections in \(PO \setminus G_0 \), hence the \(K_1^- \) -groups are also involution centralizers by 2.2.4. Similarly, an \(R_{e_3}^- \) -group is the centralizer of involution \(x \in PO \) where \(x = -1_{W'} \) for some n.d. 3-space or 5-space \(W \). Thus \(T^- \) -groups are involution centralizers by 2.2.5. The \(S^- \) and \(K_2^- \) -groups are involution centralizers in view of the proof of 2.2.10. Finally, the \(S_x^- \) -groups are centralizers in \(G_0 \) of field automorphisms of \(G_0 \) (see 9.1.1 of [14]).

2.3. The \(C_\sigma \)-Groups

In this section we drop the assumption \(G \leq \Pi \); thus \(G \) is any group satisfying \(G_0 \leq G \leq A \). We suppose that \(M_0 = M \cap G_0 \) is a \(C_\sigma \)-group, so that the socle \(S = \text{soc}(M_0) \) is a non-abelian simple group which satisfies

\[
\hat{S} \text{ is absolutely irreducible on } V; \quad (2f)
\]

the representation of \(\hat{S} \) on \(V \) is defined over no proper subfield of \(F \). \((2g) \)

Remark. If \(\rho \) is an absolutely irreducible \(p \)-modular representation of a
group \(H \) and \(\chi \) is the character corresponding to \(\rho \), then \(\rho \) is defined over \(F_p(\chi) = F_p[\chi(h): h \in H] \), where \(F_p = GF(p) \) (see Theorem 2.7B of [11]).

This fact has two consequences, which we record in

Lemma 2.3.1.

(i) \(F = F_p[\text{trace}(s): s \in \hat{S}] \).

(ii) If \(F_1 \) is a splitting field for \(\hat{S} \), then \(F \leq F_1 \).

Also by Schur's Lemma, \(C_{GL(n,q)}(\hat{S}) = Z \). Hence by 1.2.3,

\[
C_{P_{d}}(S) = 1. \quad (2h)
\]

As a convenience, we call a \(p \)-modular representation of a group \(p \)-relevant if it is an absolutely irreducible representation of degree 8.

Using the classification of finite simple groups, we consider the various possibilities for \(S \).

S of Lie Type in Characteristic \(p \)

Let \(q_1 \) be an arbitrary power of \(p \), and set \(F_1 = GF(q_1) \).

Proposition 2.3.3. If \(S \cong L_3(q_1) \), then

(i) \(2 < q = q_1 \equiv 1 \mod 3 \);

(ii) \(M_0 = S.3 \cong PGL_3(q) \);

(iii) there are just \(d \) classes of \(PGL_3(q) \) in \(G_0 \) permuted transitively by \(A/S \).

Proof: First assume that \(\varepsilon = + \). By Theorem 2.1 of [27], \(F_1 \leq F \). But \(F_1 \) is a splitting field for \(SL_3(q_1) \), so by 2.3.1(ii), \(F = F_1 \). Further, by Theorem 2.2 of [28], \(S \) acts on \(V \) via the adjoint representation. Namely,

\[
V = \{ P \in M_3(q): \text{Tr}(P) = 0 \}, \quad (2i)
\]

where \(M_3(q) \) is the set of \(3 \times 3 \) matrices over \(F \), and \(S \) acts on \(V \) by conjugation. This representation is reducible when 3 divides \(q \), so \((3, q) = 1 \). Note that \(S \) preserves the quadratic form

\[
Q \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = a^2 + i^2 + ai + bd + cg + fh. \quad (2j)
\]

We leave it to the reader to verify that \(Q \) has defect 0 only if \(q \equiv 1 \mod 3 \). Thus (i) holds. The absolutely irreducible representations of \(SL_3(q) \) of degree \(\leq 8 \) are given in Theorem 2.2 of [28], and only the adjoint representations have \(Z(SL_3(q)) \cong Z_3 \) in their kernels. Therefore all groups
$L_3(q)$ in $GL(V)$ are absolutely irreducible. And since the adjoint representations of $L_3(q)$ are quasiequivalent, $GL(V)$ has a unique class of $L_3(q)$ by 1.7.2. Thus by 1.7.1(ii), A has a unique class of $L_3(q)$, hence so does $P A$. It now follows from 1.4.1 that $S < C_{G_0}(T)$ for some triality automorphism T of order 3. Thus by 1.4.2(i), $M_0 = C_{G_0}(T) = S.3 \cong PGL_3(q)$, proving (ii). Also 1.4.2(ii) yields

$$|N_{PA}(S):M_0| \leq 2. \quad (2k)$$

However, the transpose map $x: P \mapsto P'$ defined on the module V given in (2i) induces a graph automorphism on S and $\bar{x} \in PO \setminus G_0$. Thus equality holds in (2k) and so G_0 has just $|P A:G_0(\bar{x})| = d^2$ classes of $L_3(q)$, permuted transitively by $P A$. Thus by 1.4.3, A/G_1 acts on these classes and (iii) holds.

Now take $\varepsilon = -$, so that $S \cong U_3(q_1)$. By Theorem 2.2 of [27], $q_1 \leq q$, and since $GF(q_1^2)$ is a splitting field for $SU_3(q_1)$, we have $q \leq q_1^2$. Let W be an 8-dimensional irreducible module for $SU_3(q_1)$ over $GF(q_1^2)$. By Theorems 13.1 and 13.3 of [36], the corresponding representation extends to one of $SL_3(q_1^2)$, so as before,

$$W = \{P \in M_3(q_1^2): \text{Tr}(P) = 0\},$$

and $(3, q_1) = 1$. However, $SU_3(q_1)$ acts on the F_1-space

$$U = \{P \in W: P = P'\},$$

where "-' is the involutory field automorphism of $GF(q_1^2)$ (see [28. Sect. 2b, case 1]). Thus the representation in $GL(W)$ is writable over F_1 with module U, hence $q - q_1$. (Also note that $q > 2$, for $U_3(2)$ is solvable.) Clearly S stabilizes Q_U, where Q is the quadratic form on W given in (2j). It is straightforward to verify that Q_U has defect 0 if and only if $q \equiv -1 \mod 3$. We now reason as for $L_3^+(q)$.

Proposition 2.3.4. (i) If $S \cong \Omega_7(q_1)$, then $M_0 = S$ is a K_1-group.

(ii) If $S \cong \Omega^-_8(q_1)$, then $M_0 = S$ is a K_2-group.

(iii) If $S \cong ^3D_4(q_1)$, then

(a) $q = q_1^3$;

(b) $M_0 = S$;

(c) there are just $2d^3$ classes of $^3D_4(q_1)$ in G_0 permuted transitively by A/G_1.

Proof. (i) By Theorem 2.1 in [27], $F_1 \leq F$. And as F_1 is a splitting field for $\Omega_7(q_1)$, we have $F = F_1$ by 2.3.1(ii). Thus $M_0 = S$ is a K_1-group by 2.2.4.
(ii) By Theorem 2.2(i) of [27], \(F_1 \leq F \). Since \(GF(q_1^3) \) is a splitting field for \(\Omega_8(q_1) \), \(F \leq GF(q_1^3) \) (again by 2.3.1(ii)). Order considerations show that \(q = q_1^3 \), hence \(M_0 = S \) is a \(K_z \)-group by 2.2.10.

(iii) By [27, Theorem 2.2(i)-(ii)] and the fact that \(GF(q_1^3) \) is a splitting field for \(3D_4(q_1) \), we deduce that \(q = q_1^3 \). As in the proof of 2.2.10, each 8-dimensional irreducible FS-module is quasiequivalent to one of the modules \(M(\lambda_1), M(\lambda_3), M(\lambda_4) \). And if \(q_1 = p^a \), then as FS-modules, \(M(\lambda_1)^{(2a)} \cong M(\lambda_3)^{(a)} \cong M(\lambda_4) \). Thus all irreducible representations of \(S \) in \(GL(V) \) are quasiequivalent. So by 1.7.1(ii), 1.7.2 and the fact that every \(3D_4(q_1) \) in \(G_0 \) is absolutely irreducible, \(PA \) has a unique class of \(3D_4(q_1) \). So as in the proof of 2.2.10, we conclude that every \(3D_4(q_1) \) is the centralizer in \(G_0 \) of a graph-field automorphism and hence extends to \(G_1 \). Therefore \(A/G_1 \) acts on the classes of \(3D_4(q_1) \) in \(G_0 \). Moreover, 1.4.1 and 1.4.2(i) imply that \(N_{G_0}(S) = S \) and \(|N_{P_A}(S):S| \leq 2 \). Suppose for the moment that \(|N_{P_A}(S):S| = 2 \). By (2h), \(N_{P_A}(S) \) embeds in \(Aut(S) \), and it is well known that \(Aut(S) \cong S:Z_n \) (a split extension). Thus there is an involution \(x \in N_{P_A}(S) \setminus S \), and by 9.1.1 of [14], \(C_S(x) \cong 3D_4(\sqrt{q_1}) \). But this is impossible, for any \(3D_4(\sqrt{q_1}) \) in \(G_0 \) must be absolutely irreducible, hence has trivial centralizer in \(PA \). Thus \(N_{P_A}(S) = S \) and \(G_0 \) has precisely \(|PA:G_0| = 2d^2 \) classes of groups \(3D_4(q_1) \) upon which \(PA/G_0 \) acts regularly. The assertions in the Proposition now follow.

Definition. A \(K_z \)-group (resp. \(K_4 \)-group) is a subgroup \(PGL_3^z(q) \) (resp. \(3D_4(q_1) \)) as given in 2.3.3 (resp. 2.3.4(iii)).

The following result is useful for eliminating some of the smaller simple groups, such as \(L_2(q_1) \).

Lemma 2.3.5.

(i) If \(S \leq K_i \) for some \(i \leq 4 \), then \(M_0 = K_i \).

(ii) \(S \) is not contained in a \(T \)-group.

(iii) Suppose that the following hold:

- (a) \(PA \) has a unique class of absolutely irreducible copies of \(S \);
- (b) \(S \) embeds in \(\Omega_7(q) \);
- (c) \(S \) does not embed in \(R_m \) \((1 \leq m \leq 4, R_{\pm 2}, R_{\pm 3}, I_{\pm 4}, F_1 \) or \(F_2 \));
- (d) \(S \) does not embed in \(G_2(q) \).

Then \(M_0 = S \) is a \(K_1 \)-group.

Proof. Suppose that \(S \leq H \leq G_0 \), where \(H \) is either a \(T \)-group or a \(K_i \)-group for some \(i \leq 4 \). By (2h), we can appeal to 1.4.2(ii). If 1.4.2(ii)(a) holds, then \(M_0 \) is a \(K_3 \)- or \(K_4 \)-group because the subgroups \(G_2(q) \) of \(G_0 \) are reducible (see 3.1.1). Assume first that \(M_0 \) is a \(K_3 \)-group, so that \(S \cong L^z_5(q) \).
MAXIMAL SUBGROUPS OF $\Omega_8^+(q)$

We remarked in the proof of 2.3.3 that $L_2^+(q)$ has no faithful representation of degree ≤ 7, hence $H \cong \Omega_7(q)$. Also, any faithful representation of $L_2^+(q)$ of degree 8 cannot be written over a proper subfield of \mathbb{F} (see [27, Theorem 2.1]). Therefore $H \cong \Omega_8^+(q)$, whence H is neither a K_1- nor a K_2-group. Lagrange's Theorem ensures that M_0 is not contained in a T- or K_3-group, hence H is a K_1-group. That is, $M_0 = H$, as desired. A similar argument handles the case in which M_0 is a K_4-group, so we can assume that 1.4.2(ii)(b) holds. Now 1.4.1, 2.3.3(iii), 2.3.4(iii)(c) and 2.2.11 ensure that $H = C_9(x)$ for some $x \in A$, hence $M_0 = H$. Consequently (i) holds, and as $\text{soc}(T)$ is not simple, it follows that H is not a T-group and so (ii) also holds.

(iii) Let K be a K_1-group and let L satisfy $S \cong L \leq K$. We claim that L is irreducible. Otherwise, (γ) ensures that L is contained in an R-group R say, and by 2.2.4, $R = K^\tau$ for some $\tau \in \mathcal{T}$. But then by 3.1.1(vi), $L \leq K \cap K^\tau \cong G_3^+$, contrary to (δ). Therefore L is irreducible, and as L is not contained in an F_1- or F_2-group (by (γ)), L is absolutely irreducible. Therefore by (x), S is $P\Delta$-conjugate to L and hence S is contained in a K_1-group. Thus M_0 is a K_1-group by (i).

Proposition 2.3.6. We have $S \cong L_2(q_1)$.

Proof. Suppose otherwise. Since F_1 is a splitting field for $SL_2(q_1)$, we have $F \leq F_1$. Thus the proof of Theorem 2.1 of [27] yields $q_1 \in \{q, q^3\}$. The absolutely irreducible p-modular representations of $SL_2(q_1)$ are well known (see [5], for example), and one of the following holds (we use the notation of [27] as in the proofs of 2.2.10 and 2.3.4(iii)):

(a) $q_1 = q$ is even and $V \cong M(\lambda_1)^{(i)} \otimes M(\lambda_1)^{(j)} \otimes M(\lambda_1)^{(k)}$ as FS-modules for some i, j, k;

(b) $q_1 = q, \ p \geq 5, \ \tilde{S} \cong L_2(q)$ and $V \cong M(3\lambda_1)^{(i)} \otimes M(\lambda_1)^{(j)}$ as FS-modules for some i, j;

(c) $q_1 = q^3$ is even and $V \otimes F_1 \cong W_i$ as F_1S-modules, where $W_i = M(\lambda_1)^{(i)} \otimes M(\lambda_1)^{(i+n)} \otimes M(\lambda_1)^{(i+2n)}$ (recall $n = \log_p(q)$).

Evidently (b) cannot hold because of 2.3.5(ii). If (a) occurs, then by the proof of 15.1.14 of [2], S is contained in a K_1-group, contrary to 2.3.5(i). Thus (c) holds. As the modules W_i are quasiequivalent, $GL(V)$ has a unique class of absolutely irreducible $L_2(q^3)$. Thus there is just one class of absolutely irreducible $L_2(q^3)$ in $P\Delta$, hence 2.3.5(iii)(x) holds. It is easy to verify that $(\beta), (\gamma)$ and (δ) also hold, and thus we have contradicted 2.3.5(iii).

Proposition 2.3.7. If S is of Lie type in characteristic p, then M_0 is a K_3-group for some $i \leq 4$.
The possibility that S is $L_m(q_1)$ or $U_m(q_1)$ for $m \geq 4$ can be eliminated by Theorem 2.2 of [28]. When q is even, the absolutely irreducible modules for $B_2(q_1)$ and $Sz(q_1)$ have dimension 4^m for some m (see Theorem 3.2 of [8]), and hence these groups are also eliminated. The remaining groups can be discarded using Theorem 1.1 in [27] and Theorems 2.2, 2.6, and 2.10 in [28].

S Alternating or of Lie Type in Characteristic Prime to p.

By results in [26, 38, 39, 40], S is one of the following groups:

- A_n, $5 \leq n \leq 11$,
- $L_2(r)$, $r \in \{4, 5, 7, 8, 9, 11, 13, 17\}$,
- $I_3(2)$, $I_3(3)$, $I_3(4)$, $U_3(3)$,
- $L_4(2)$, $U_4(2)$, $U_4(3)$,
- $Sp_6(2)$, $\Omega^+_8(2)$, $Sz(8)$.

To study these groups, we rely on results appearing in [9], which supply their ordinary character tables, along with the unpublished work of Parker [34], which provides most of the appropriate modular character tables.

Proposition 2.3.8. If $S \cong \Omega^+_8(2)$, then

(i) $q = p \geq 3$;

(ii) $M_0 = S$ and $N_A(S) \cong \text{Aut}(S) \cong S.S_3$;

(iii) G_0 has just 4 classes of $\Omega^+_8(2)$, permuted naturally by $A/G_0 \cong S_4$.

Proof. It follows from [9, 21, 22] that the double cover $2^*\Omega^+_8(2)$ has a unique p-relevant representation (namely, the reduction mod p of the ordinary 8-dimensional representation). The character of this representation takes values in F_p, hence (i) holds by 2.3.1(i). The inclusion $\Omega^+_8(2) \leq P\Omega^+_8(p)$ is well known for all primes p, thus by 1.7.1(ii), 1.7.2 and the fact that every $\Omega^+_8(2)$ in G_0 is absolutely irreducible, $P\Delta$ has a unique class of $\Omega^+_8(2)$. According to [9], the p-relevant representation of $2^*\Omega^+_8(2)$ extends to representations of a double cover $2^*\Omega^+_8(2)$ of $O^+_8(2) = \Omega^+_8(2)$.2. (Note that the pair $(O^+_8(2), GO^+_8(2))$ in the notation of [9] corresponds to our pair $(\Omega^+_8(2), O^+_8(2))$.) The character value on an involution in $2^*\Omega^+_8(2) \backslash 2^*\Omega^+_8(2)$ is ±2, hence $2^*\Omega^+_8(2)$ does not embed in $SL_8(p)$. Therefore $P\Delta \not\supset O^+_8(2) \subsetneq G_0$. A triality automorphism of the full cover $2^*\Omega^+_8(2)$ of $\Omega^+_8(2)$ acts nontrivially on the normal 4-group, hence this representation of $2^2\Omega^+_8(2)$ does not extend to $2^2\Omega^+_8(2)$.3. Thus $\Omega^+_8(2) \not\leq G_0$, $M_0 = S$, $N_{pr}(S) = N_{pr}(S) = S.2 \cong O^+_8(2)$, and there are $|P\Delta : N_{pr}(S) G_0| = |P\Delta : G_0.2| = 4$ classes of $\Omega^+_8(2)$ in G_0, permuted...
naturally by $A/G_0 \cong S_4$. Therefore $N_A(S) \cong S.S_3$, and as S is not centralized by a triality automorphism (see 1.4.1), $N_A(S) \cong \text{Aut}(S)$.

Proposition 2.3.9. If $S \cong Sz(8)$, then

(i) $q = 5$;

(ii) $M_0 = S$ and $N_A(S) \cong \text{Aut}(S) = S.3$;

(iii) G_0 has just 8 classes of $Sz(8)$, permuted transitively by $A/G_0 \cong S_4$.

Proof. By [9, 34], the double cover $2' Sz(8)$ has a p-relevant representation only when $p = 5$. There is only one such representation, and it is writable over F_5. By [9, p. 281], this representation is orthogonal and is a faithful representation of $2' Sz(8)$. Obviously the central involution is sent to the scalar $-1 \in GL(V)$, hence $2' Sz(8) \not\leq \Omega^-_8(5)$ as $Z(\Omega^-_8(5)) = 1$. Therefore $Sz(8)$ embeds in G_0. Thus by 1.7.1(ii), 1.7.2 and the fact that any $Sz(8)$ in G_0 is absolutely irreducible, PA has a unique class of $Sz(8)$. As in the proof of 2.3.8, $\text{Aut}(Sz(8)) = Sz(8).3 \leq PA$, hence $N_A(S) = S.3$, and as in 2.3.8, we have $C_A(S) = 1$ and so $N_A(S) \cong \text{Aut}(S)$.

Proposition 2.3.10. If $S \cong A_9$, then

(i) $q = 2$;

(ii) $M_0 = S$ and $N_A(S) \cong S_9$;

(iii) G_0 has just 3 classes of A_9, permuted naturally by $A/G_0 \cong S_3$.

Proof. Case $p = 2$. All 2-relevant representations of A_9 are writable over F_2, so $q = 2$ by 2.3.1. Assertions (ii) and (iii) now follow from [12].

Case $p = 3$. By [34], $2' A_9$ has a unique 3-relevant representation, and it is writable over F_3. Therefore $q = 3$ and PA has a unique class of absolutely irreducible A_9 by 1.7.1(ii). Thus 2.3.5(iii)(a) holds, and as A_9 embeds in $\Omega^-_7(3)$, 2.3.5(iii)(b) also holds. It is easy to see that A_9 satisfies conditions (β) and (δ) of 2.3.5(iii), hence 2.3.5(iii) eliminates the case $p = 3$.

Case $p > 5$. By [9, 34], $2' A_9$ has just two quasiequivalence classes of p-relevant representations, and these are writable over F_p. Thus $q = p$, and because every A_9 in $PGL(V)$ is absolutely irreducible, there are at most two classes of A_9 in $PGL(V)$. Thus by 1.7.1(ii), there are at most two classes of A_9 in PA. Suppose for the moment that A fixes a PA-class. This PA-class splits into 1, 2, 4, or 8 classes in G_0, one of which must be fixed by a triality automorphism. It follows that an A_9 in G_0 is normalized by a triality automorphism and as $3 \nmid |\text{Out}(A_9)|$, this A_9 is centralized by a triality automorphism, contrary to 1.4.1. It follows that PA has two classes of A_9 which are fused into a single class in A. We now argue that $C_A(S) = 1$. For
take \(g \in C_A(S) \) and note that \(\pi(g) \) is not a 3-cycle, again by 1.4.1. Thus for a suitable \(a \in A \), we have \(\pi(g^a) \in D_8 \), and so \(g^a \in G_{D_8} = PT = PA \). However \(S^a \) is absolutely irreducible, whence \(C_{PA}(S^a) = 1 \), as required. Thus \(N_A(S) \leq \text{Aut}(S) \cong S_9 \). However, \(S_9 < O_2^+(2) < A \) and it follows that \(M \) normalizes a \(K_5 \)-group, hence is nonmaximal.

Proposition 2.3.11. If \(S \cong A_{10} \), then

(i) \(q = p = 5 \);

(ii) \(M_0 = S \) and \(N_A(S) \cong S_{10} \);

(iii) \(G_0 \) has just 12 classes of \(A_{10} \) permuted transitively by \(A/G_0 \cong S_4 \);

(iv) \(N_A(S) G_0 \) is \(A \)-conjugate to \(G_{(12)} = G_{0.2} \).

Proof. According to [9, 34], \(2A_{10} \) has no \(p \)-relevant representation, except when \(p = 5 \). Further, it has just three \(5 \)-relevant representations, all writable over \(F_5 \). Thus (i) holds by 2.3.1.

Let \(A_{10} \) act naturally on 10 basis vectors \(w_1, \ldots, w_{10} \) of a 10-dimensional space \(W \) over \(F_5 \). Then \(A_{10} \) preserves the nondegenerate quadratic form \(Q_2(\sum_{i=1}^{10} x_i w_i) = \sum_{i=1}^{10} x_i^2 \) on \(W \), which has defect 0. Now \(A_{10} \) fixes \(w = w_1 + \cdots + w_{10} \) and acts on the 8-space \(w^\perp/\langle w \rangle \). Evidently \(w^\perp/\langle w \rangle \) inherits a nondegenerate quadratic form \(Q_0 \) from \(Q_1 \), and \(Q_0 \) also has defect 0. Therefore \(A_{10} \leq G_0 \).

The argument in the proof of 2.3.10 (Case \(p \leq 5 \)) also applies here to show that there is a unique \(A \)-class of \(A_{10} \) and \(C_A(A_{10}) = 1 \). Clearly the representation of \(A_{10} \) in \(GL(w^\perp/\langle w \rangle) \) described above extends to \(S_{10} \), hence by 1.7.1(i), \(N_A(S) \cong S_{10} \). Let \(x \) be an involution in \(N_A(S) \). Note that an involution in \(S_{10}\backslash A_{10} \) has determinant \(-1\) on \(w^\perp/\langle w \rangle \), hence \(S_{10} \leq SL_4(5) \). Therefore \(x \in PO\backslash PSO \). Hence without loss, \(\pi(x) = (12) \in \Sigma \) and \(G_0 \) has \(|A:N_A(S)G_0| = |A:G_{(12)}| = 12 \) classes of \(A_{10} \). Assertions (iii) and (iv) have thus been proved.

Definition. The \(K_5 \)-, \(K_6 \)-, \(K_7 \)-, and \(K_8 \)-groups are the subgroups described in 2.3.8, 2.3.9, 2.3.10, and 2.3.11, respectively.

Proposition 2.3.12. If \(S \) is alternating or of Lie type in characteristic prime to \(p \), then \(S \) is a \(K_i \)-group where \(5 \leq i \leq 8 \).

Proof. Results in [9, 34] and Brauer’s Theorem on blocks of defect one [11, Theorem 4.6B] ensure that the only groups in (21) (apart from \(O_8^+(2) \), \(S_2(8) \), \(A_9 \), \(A_{10} \)) whose covers have a \(p \)-relevant representation are \(A_6 \cong L_3(9) \) (\(p \neq 3 \)), \(A_7 \), \(A_8 \cong L_4(2) \) (\(p \neq 2 \)), \(L_5(7) \cong L_3(2) \) (\(p \neq 2, 7 \)), \(L_5(8) \) (\(p \neq 2 \)), \(L_2(17) \) (\(p \neq 17 \)), \(L_3(4) \) (\(p \neq 2 \)), and \(Sp_6(2) \) (\(p \neq 2 \)). (The restrictions on \(p \) occur because it is assumed that \(S \) is not of Lie type in characteristic \(p \).)
Observe that the projective representation of S in G_0 corresponds to a representation of a double cover of S in Ω. Although the full cover of $L_3(4)$ does have a p-relevant representation, the double cover $2L_3(4)$ does not, and so $S \cong L_3(4)$. Further $S \cong L_3(17)$ because the indicator of each p-relevant representation of $SL_3(17)$ is -1, and this means that any absolutely irreducible $SL_3(17)$ in $GV(V)$ stabilizes a symplectic form but not a quadratic form.

Now assume that $S \cong L_3(2)$ or $Sp_6(2)$ ($p \neq 2$). Then S has an irreducible representation in $\Omega_2(q)$, so S satisfies 2.3.5(iii)(β). The group $G_2(q)$ has 2-rank 3 while S has 2-rank at least 4, hence 2.3.5(iii)(δ) holds, and it is easy to check that (γ) holds. Further [9, 34] imply that S has a unique p-relevant representation, whence (α) holds, and we have contradicted 2.3.5(iii).

Now take $S \cong L_2(7) \cong L_3(2)$ ($p \neq 2, 7$). By [34], $SL_2(7)$ has no 3-relevant representation, so $p \nmid |S|$. By [9, p. 3], $SL_2(7)$ has a unique p-relevant representation with indicator $+1$, and the character is χ_6. Thus there is at most one class of absolutely irreducible $L_2(7)$ in $P\Delta$. Also $F = F_p(\chi_6) = F_p$ which means $q = p$. Now $L_2(7)$ has characters χ_2, χ_3 of degree 3 and $F_p[\chi_2] = F_p[\chi_3] = F_p[\chi_2 \chi_3]$. Thus there is a copy C of $L_2(7)$ in $L = GL_2^+(p)$, where $e^1 = (p/7)$. If ρ is a faithful 3-dimensional representation of L over $F_p[\chi_2 \chi_3]$, then $\sigma = \rho \otimes \rho^* - 1$ gives a representation of $L/Z(L)$ in $GL(V)$, where ρ^* is the dual of ρ. Moreover the restriction of σ to C affords the character $\chi_2 \otimes \chi_3 - 1 = \chi_6$. Thus we may write $C^\sigma \leq L^\sigma \leq GL(V)$, with C^σ absolutely irreducible. By the remarks in the proof of 2.3.3, σ realizes an adjoint representation of L, and thus we can assume that $L^\sigma \leq A$. Consequently $\overline{L^\sigma}$ is a K_3-group, and as there is just one class of absolutely irreducible $L_2(7)$ in $P\Delta$, we conclude that S is $P\Delta$-conjugate to $\overline{C^\sigma}$. But then S is contained in a K_3-group, against 2.3.5(i).

The case $S \cong A_5$ is treated in the same way as $L_2(7)$, using the characters χ_{14} and its dual χ_{14}^* given in [9, p. 5]. We omit further details. The double cover of A_7 has a p-relevant representation only when $p = 5$, and the representation is writable over $GF(5)$. As for A_6 and $L_2(7)$, it can be shown that any C_9-group in G_0 with socle A_7 is contained in a K_3-group $PGU_3(5)$.

Finally, assume that $S \cong L_2(8)$ ($p \neq 2$). By [34], $L_2(8)$ has no 3-relevant representation, hence $p \geq 5$. Also [9, 34] ensure that $P\Delta$ has a unique p-relevant representation and it is writable over F_p. Therefore $q = p$ and $P\Delta$ contains a unique class of absolutely irreducible $L_2(8)$, (see 1.7.1(ii) and 1.7.2). Now the p-relevant representation of $L_2(8)$ extends to $Aut(L_2(8)) \cong L_2(8).3$, hence $M_0 = S.3$ by 1.7.1(i). Further, this p-relevant representation of $L_2(8).3$ extends to a p-relevant representation of A_9. Thus if $C_A(S) = 1$, then $M = M_0 = S.3 < A_9 < G_0$. Hence $C_A(S) \neq 1$. If S centralizes a triality automorphism, then so does M_0 by 1.4.2(i). But $L_2(8).3$ does not embed in any of the groups in 1.4.1, so there is an involution $j \in C_A(S)$. For suitable
212 PETER B. KLEIDMAN

\[a \in A, j^n \in PA \] and thus \(C_{P, A}(S^a) \neq 1. \) Since the smallest degree of a non-trivial representation of \(L_2(8) \) is 7, \(S^a \) is contained in an \(R_{a1} \)-group. Therefore \(S \) is contained in a \(K_1 \)-group, against 2.3.5(i). □

\(S \) Sporadic

Results in [16, 17, 18, 19, 28 (Sect. 5), 34] show that none of the double covers of the sporadic simple groups have \(p \)-relevant representations, except possibly \(2J_2 \). However, it is not difficult to show that \(2J_2 \) has no \(p \)-relevant representation by restricting a character of degree 8 of \(2J_2 \) to the subgroup \(U_3(3) \). Thus \(S \) cannot be a sporadic simple group. We summarize the results of Section 2.3 in

Proposition 2.3.13. Let \(G \) be any group satisfying \(G_0 \leq G \leq A \). Assume that \(M \) is a maximal subgroup of \(G \) not containing \(G_0 \) and that \(M_0 = M \cap G_0 \) is a \(C_0 \)-group. Then \(M_0 \) is a \(K_i \)-group for some \(i \leq 8 \).

2.4. Maximality Amongst the Groups in \(\mathcal{C}_1 \).

Recall \(G_0 \leq G \leq P \Gamma \), \(M \) is maximal in \(G \) and \(G_0 \leq M \). If \(M \) is a classical subgroup of \(G \), then apart from a few exceptions, \(M_0 = M \cap G_0 \) appears in Section 2.2. The classical subgroups of \(G \) which do not appear in Section 2.2 are (i) members of \(C_4 \) with \(q \) even; (ii) members of \(C_4 \) which stabilize a tensor product decomposition \(V = V_1 \otimes V_2 \) with \(V_1 \) an orthogonal space; (iii) members of \(C_7 \); (iv) members of \(C_2 \) which stabilize an \(e_1 \)-decomposition with \(q > p \). However by 15.1.11, 15.1.12, and 15.1.14 of [2], these exceptions do not give rise to maximal subgroups of \(G \). Thus Section 2.2 describes all the classical subgroups of \(G_0 \) whose normalizer in \(G \) can be maximal in \(G \). Also Section 2.2 and 2.3 describe all the \(C_0 \)-groups whose normalizer in \(G \) can be maximal, hence when we have proved

Proposition 2.4.1. If \(G_0 \leq G \leq P \Gamma \) and \(M \) is a maximal subgroup of \(G \) not containing \(G_0 \), then \(M_0 \) is \(G_0 \)-conjugate to some member of \(\mathcal{C}_1 \), where \(\mathcal{C}_1 \) consists of the groups in Table II.

(Two groups in Table II are separated by a horizontal line if and only if they are not \(A \)-conjugate.)

For each group \(H \in \mathcal{C}_1 \), we will find those groups \(G \leq P \Gamma \) for which \(N_G(H) \) is maximal in \(G \). In doing so, we prove that certain rows in the results matrix (see Table I after Section 1.5) are correct. Recall (Section 1.4) that \(P \Gamma = G_{D_8} \) when \(q \) is odd and \(P \Gamma = G_{(12)} \) when \(q \) is even. Thus it suffices to consider the case

\[
\pi(G) \in \{ 1, \langle (12) \rangle, \langle (13)(24) \rangle, \\
\langle (1423) \rangle, \langle (12), (34) \rangle, V_4, D_8 \}.
\]

(2m)
<table>
<thead>
<tr>
<th>Name</th>
<th>Order</th>
<th>Non-abelian composition factors</th>
<th>Restrictions on q</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{s_1}</td>
<td>$\frac{1}{d^2} q^{12}(q^4 - 1)(q^3 - 1)(q^2 - 1)(q - 1)$</td>
<td>$L_4(q)$</td>
<td></td>
</tr>
<tr>
<td>R_{s_1}', $i \leq 2$</td>
<td>$\frac{1}{d^2} q^{12}(q^3 - 1)^3(q - 1)$</td>
<td>$L_3(q)^*$</td>
<td></td>
</tr>
<tr>
<td>R_{s_2}</td>
<td>$\frac{1}{d^2} q^{12}(q^2 - 1)^3(q - 1)$</td>
<td>$L_3(q)^*$</td>
<td></td>
</tr>
<tr>
<td>R_{s_3}</td>
<td>$\frac{1}{d^2} q^{12}(q - 1)(q^4 - 1)(q^3 - 1)^2$</td>
<td>$L_3(q)$</td>
<td></td>
</tr>
<tr>
<td>R_{s_4}</td>
<td>$\frac{1}{d} q^9(q^6 - 1)(q^4 - 1)(q^2 - 1)$</td>
<td>$\Omega_3(q)$</td>
<td></td>
</tr>
<tr>
<td>K_{s_1}, $i \leq 2d$</td>
<td>$\frac{2}{d^2} q^6(q^4 - 1)(q^3 - 1)(q^2 - 1)(q - 1)$</td>
<td>$L_4(q)$</td>
<td></td>
</tr>
<tr>
<td>R_1, $i \leq 2$</td>
<td>$\frac{2}{d^2} q^6(q^4 - 1)(q^3 - 1)(q^2 - 1)(q - 1)$</td>
<td>$L_4(q)$</td>
<td></td>
</tr>
<tr>
<td>P_3, $i \leq 2$</td>
<td>$\frac{2}{d^2} q^6(q^4 - 1)(q^3 + 1)(q^2 - 1)(q + 1)$</td>
<td>$U_4(q)$</td>
<td></td>
</tr>
<tr>
<td>R_{s_3}, R_{s_4}</td>
<td>$\frac{1}{2} q^3(q^4 - 1)(q^3 - 1)^2$</td>
<td>$L_2(q)^*$</td>
<td>q odd</td>
</tr>
<tr>
<td>T_1, $i \leq 4$</td>
<td>$j2^{11,12,13,5,7,2j = 3 + \left(\frac{3}{p}\right)}$</td>
<td>A_8</td>
<td>$q = p > 2$</td>
</tr>
<tr>
<td>E_1, $i \leq 4$</td>
<td>$\frac{192}{d^2} (q - 1)^4$</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>E_3</td>
<td>$\frac{192}{d^2} (q + 1)^4$</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>I_{s_2}</td>
<td>$\frac{4}{d^2} q^6(q^2 - 1)^4$</td>
<td>$L_3(q)^*$</td>
<td></td>
</tr>
<tr>
<td>I_{s_4}</td>
<td>$\frac{4}{d^2} q^6(q^4 - 1)^2$</td>
<td>$L_2(q)$</td>
<td></td>
</tr>
<tr>
<td>F_1, $i \leq 2$</td>
<td>$\frac{1}{d^2} q^6(q^6 - 1)(q^5 - 1)^2(q^3 - 1)^2$</td>
<td>$P\Omega_5^+(q_0)$</td>
<td>$q = q_0^+$ prime $(a, d) = 1$</td>
</tr>
<tr>
<td>S_1, $i \leq 4$</td>
<td>$q^6(q^3 - 1)^2(q^2 - 1)^2(q - 1)$</td>
<td>$P\Omega_7^+(q_0)$</td>
<td>$q = q_0^+$ q odd</td>
</tr>
<tr>
<td>S_1^*, $i \leq d$</td>
<td>$\frac{1}{d} q^6(q^4 - 1)(q^3 - 1)(q - 1)$</td>
<td>$\Omega_8^-(q_0)$</td>
<td>$q = q_0^+$</td>
</tr>
<tr>
<td>K_{s_1}, $i \leq d^2$</td>
<td>$q^6(q^2 - 1)(q^2 - 1)$</td>
<td>$L_3(q)$</td>
<td>$2 < q = \equiv 1(3)$</td>
</tr>
<tr>
<td>K_{s_2}, $i \leq 2d^2$</td>
<td>$q^{12}(q^3 + q^2 + 1)(q^3 - 1)(q^2 - 1)$</td>
<td>$3D_4(q_4)$</td>
<td>$q = q_2^3$</td>
</tr>
<tr>
<td>K_{s_3}, $i \leq 4$</td>
<td>$2^{12}3^25^27$</td>
<td>$\Omega_5^+(2)$</td>
<td>$q = p > 2$</td>
</tr>
<tr>
<td>K_{s_4}, $i \leq 8$</td>
<td>$2^65^2.713$</td>
<td>$Sz(8)$</td>
<td>$q = 5$</td>
</tr>
<tr>
<td>K_{s_5}, $i \leq 3$</td>
<td>$2^83^45^27$</td>
<td>A_4</td>
<td>$q = 2$</td>
</tr>
<tr>
<td>K_{s_6}, $i \leq 12$</td>
<td>$2^{10}3^45^27$</td>
<td>A_10</td>
<td>$q = 5$</td>
</tr>
</tbody>
</table>

* $L_2(q)$ is not simple when $q \leq 3$.
Since the maximal parabolic subgroups of \(G_0 \) are maximal subgroups of \(G_0 \), 2.2.1 and 2.2.2 imply

Proposition 2.4.2. Rows 1, 2, 3 and 5 of the results matrix hold.

Proposition 2.4.3. Rows 6–8 in the results matrix hold.

Proof. By Section 1.6, the group \(R_3 \) is contained in precisely two overgroups in \(G_0 \), namely, an \(R_{s^1} \)-group and an \(R_{s^2} \)-group (see (1c)). So as \(R_3 \)-extends to \(PT \), \(N_G(R_3) \) is maximal in \(G \) if and only if \(G \) interchanges the classes \([R_{s^1}]\) and \([R_{s^2}]\). This occurs if and only if \(\pi(G) \notin V_q \), and so by (2m), \(N_G(R_3) \) is maximal if and only if \(\pi(G) \in \{\langle(12)\rangle, \langle(1423)\rangle, \langle(12), (34)\rangle, D_8\} \).

Proposition 2.4.4. The \(R_1^+ \) and \(K_1^+ \)-groups are maximal in \(G_0 \). Hence rows 9–14 in the results matrix hold.

Proof. By Lagrange’s Theorem, \(R_1^+ \) and \(K_1^+ \)-groups are not contained in any of the other groups in \(\mathcal{C}_1 \). Thus they are maximal in \(G_0 \). The result now follows from 2.2.4.

Proposition 2.4.5. Rows 19–21 of the results matrix hold.

Proof. Write \(R = R_{s^2} = N_G(W) \), where \(W \) is a +2-space. Thus \(N_G(R) = N_G(W) \). First, Lagrange’s Theorem ensures that \(R \) is not contained in any other group in \(\mathcal{C}_1 \) except \(R_{s^1}, R_{s^4}, R_{s^1} \) or \(K_1 \). If \(R \leq K_1 \), then choosing \(\tau \in \mathcal{F} \) suitably yields \(I_{s^1} = R^\tau \leq K_{s^1} = R_{s^1} \), which is impossible as \(I_{s^1} \) is irreducible. Therefore \(R \notin K_1 \) and similarly \(R \) is not contained in \(R_{s^1} \) or \(R_{s^4} \). When \(q \geq 4 \), \(R \notin R_{s^1} \) by Lagrange’s Theorem, and when \(q = 2 \), \(N_P(R) = N_G(R) = N_G(W) < N_G(Y) \), where \(Y \) is the unique +1-space in \(W \).

Thus it remains to consider the case \(q = 3 \). In this case, our remarks so far show that \(R \) has precisely two overgroups in \(G_0 \), namely, the stabilizers of the unique +1-space and the unique –1-space contained in \(W \). Thus as in the proof of 2.4.3, \(N_G(W) \) is maximal in \(G \) if and only if \(G \) interchanges the classes \([R_{s^1}]\) and \([R_{s^2}]\). This occurs if and only if \(G \leq PO \), and hence if and only if

\[
\pi(G) \notin \pi(PO) = \langle(12), (34)\rangle \quad \text{(see (11))}.
\]

Therefore (2m) ensures that \(N_G(R) \) is maximal in \(G \) if and only if \(\pi(G) \in \{\langle(13)(24)\rangle, \langle(1423)\rangle, V_q, D_8\} \), hence row 19 of the results matrix holds. Now take \(\tau \in \mathcal{F} \) with \(\pi(\tau) = (123) \). By 2.2.8 we have \(R^\tau = I_{s^2} \) for some \(i \in \{1, 2\} \), and without loss, \(i = 1 \). Thus (2n) ensures that \(N_G(I_{s^2}) \) is maximal in \(G \) if and only if \(\pi(G) \notin \pi(PO)^\tau = \langle(23), (14)\rangle \). Hence by (2m), \(N_G(I_{s^2}) \) is maximal in \(G \) if and only if \(\pi(G) \in \{\langle(13)(24)\rangle, V_q\} \), which
means row 20 holds. Similarly I_{24}^2 is maximal in G if and only if
\(\pi(G) \leq \pi(PO)^{132} = \langle (13), (24) \rangle\). Thus by (2m), $N_G(I_{24}^2)$ is maximal in G if and only if $\pi(G) = V_4$.

Proposition 2.4.6. The R_{-2}- and F_2-groups are maximal in G_0, hence rows 23–25 in the results matrix hold.

Proof. Use Lagrange’s Theorem and 2.2.8.

In some of the arguments below, we need to show that certain subgroups of G_0 are not contained in $K_5 \cong \Omega_8^+(2)$. So it is useful to have a list of the maximal subgroups of $\Omega_8^+(2)$. Applying 2.4.1 and 2.2.7 to $\Omega_8^+(2)$ yields

Lemma 2.4.7. Any maximal subgroup of $\Omega_8^+(2)$ has one of the following orders:

- $|R_{s1}| = 2^{12}.3^2.5.7$,
- $|R_{s2}| = 2^{12}.3^3$,
- $|R_{s3}| = 2^9.3^4.5.7$,
- $|R_{s4}| = 2^6.3^2.5^2$,
- $|R_{s5}| = 2^6.3^5$,
- $|A_9| = 2^6.3^4.5.7$.

Proposition 2.4.8. The R_{+3}- and T-groups are maximal in G_0. Hence rows 27–32 of the results matrix hold.

Proof. Write $R = R_{+3} = N_{G_0}(W)$, where W is a $+3$-space. By Lagrange’s Theorem, R is not contained in any other member of \mathfrak{G}_1 except possibly R_{s1}, R_{-2}, F_2, K_1, or K_5. Since R is irreducible on W and W^\perp, we eliminate R_{s1} and R_{-2} as possible overgroups of R in G_0. Suppose that $R \leq F_2$. Then choosing $\tau \in \mathcal{T}$ suitably gives $T = R^\tau \leq F_2 = R_{-2}$. But T (a tensor product group) is irreducible, hence this inclusion is impossible. An identical argument shows that $R \leq K_5$. Finally, $|R|$ divides $|K_5|$ only when $q = 3$, and in this case $|R| = 3^5.2^9.5$ divides none of the orders of the groups in 2.4.7. The result now follows from 2.2.5.

Lemma 2.4.9. Every L-group is irreducible, except for I_{+2} when $q \leq 3$.

Proof. Let I be the stabilizer in G_0 of the $+2$-decomposition $V = V_1 \perp \cdots \perp V_4$. The exceptional cases are pointed out in 2.2.7(iv), so take $q > 3$. Let $U \neq 0$ be an I-invariant subspace of V, and fix $u = v_1 + v_2 + v_3 + v_4 \in U \setminus \{0\}$, with $v_i \in V_i$. With no loss $v_1 \neq 0$, and it is clear that $\Omega(V_1) \times \cdots \times \Omega(V_4) \leq I$. Since $q > 3$ there exists $g \in \Omega(V_1)$ with $v_1^g \neq v_1$. Thus $0 \neq u^g - u \in U \cap V_1$. But $N_I(V_1)$ acts irreducibly as $O(V_1)$ on V_1, hence $V_1 \leq U$. Since I is transitive on the spaces V_i, $U = V$ as required. The arguments for the remaining I-groups I_{s1}, I_{-2}, I_{s4}, I_{s4}, are similar and are left to the reader.
PROPOSITION 2.4.10. Rows 33–50 of the results matrix hold.

Proof. Let \(I = I_{+1} \) be the normalizer in \(G_0 \) of a \(+1\)-decomposition of \(V \). By 2.4.9, \(I \) is not contained in an \(R \)-group, and since \(I_{+2} \) is solvable for \(\varepsilon = \pm \), these groups cannot contain \(I \). The fact that \(A_8 \) has no nontrivial projective \(p \)-modular representation of degree \(<7\) in odd characteristic implies that \(I \) is not contained in any \(F_{17}, K_5^-, I_{54}^-, \) or \(I_{64}^- \) group. Since \(E \) is irreducible, it follows (conjugating by a suitable \(\tau \in \mathcal{F} \) as in the proofs of 2.4.5 and 2.4.8) that \(I \) is not contained in any \(K_6^-, F_{2^-}, \) or \(T \)-group. Order considerations show that \(I \) is not contained in \(K_6, K_7, \) or \(K_8 \), so it remains to consider \(K_5 \) as a possible overgroup of \(I \). When \(q = p \equiv \pm 1(8) \), \(|I| \mid |K_5| \), hence rows 39–50 hold by 2.2.6(i).

Thus assume that \(q = p \equiv 3(8) \), so \(I \cong 2^6: A_8 \). By 2.3.8, there is a \(K_5 \)-group \(K \cong \Omega_8^+ (2) \) which extends to \(G_{(12)} \cong G_{0,2} \). Thus \(N_{G_{(12)}}(K) = K_2 \cong \Omega_8^+(2) \). Let \(L \) be the stabilizer in \(N_{G_{(12)}}(K) \) of a singular vector in the \(O_8^+(2) \)-geometry associated with \(K \). Thus \(L \cong 2^6:S_8 \) and we put \(C = O_5(L) \), so that \(2^6 \cong C \leq G_0 \). Since \(L \) acts irreducibly on \(C \), \(\hat{C} \) is either elementary abelian or extraspecial. The group \(Q_8 \circ D_8 : D_8 \) has no faithful orthogonal representation of degree \(8 \) (see the proof of \([2, 11.8]\)), and so if \(\hat{C} \) is extraspecial then \(\hat{C} \cong 2_1^{+6} \). But then \(L \cap G_0 \) is an \(E \)-group, which is impossible because \(E \)-groups do not extend to \(G_{(12)} \) (see 2.2.6). Therefore \(\hat{C} \cong 2^7 \), hence \(\hat{C} \) can be diagonalized with respect to a basis \(\beta = (w_1, ..., w_8) \).

If \(F \) is the matrix of the bilinear form with respect to \(\beta \), then \(F \) centralizes \(\hat{C} \) whence \(F \) is a diagonal matrix. Further, \(r_i, r_j \in \hat{C} \leq \Omega \) for all \(i, j \), hence the \(1 \)-spaces \(\langle w_i \rangle \) are all isometric. Thus \(\langle w_1 \rangle \perp \cdots \perp \langle w_8 \rangle \) is an \(\varepsilon \)-decomposition of \(V \) and \(N_{G_0}(C) \) is an \(E_{17} \)-group. Therefore \(L \cap G_0 \cong 2^6: A_8 \) is \(PM \)-conjugate to \(I \) and so column IV of rows 45–50 holds. Suppose that \(I \) is the stabilizer of the \(+1\)-decomposition \(\langle v_1 \rangle \perp \cdots \perp \langle v_8 \rangle \). Here \((v_1, v_1)\) is a square in \(F^* \), hence \(\tilde{r}_{v_1} \in G_{(12)} \) (see (1i)). Thus \(N_{G_{(12)}}(I) = I \langle \tilde{r}_{v_1} \rangle \cong 2^1: A_8 \) and observe that \(O_8^+(2) \) has no subgroup with this structure. Therefore \(I \) extends to a novelty in \(G_{(12)} \) as shown in row 33, column V of the results matrix. It follows that \(L \cap G_0 \) is an \(I_{-1} \)-group, and so \(N_{G_{(12)}}(I_{-1}) \) is nonmaximal in \(G_{(12)} \). Thus column V of rows 33–38 of the results matrix are correct. Since \(K_5 \)-groups do not extend to \(G_{(12)(34)} \), the groups \(I_{+1} \) and \(I_{-1} \) extend to novelties in \(G_{(12)(34)} \) and in \(G_{(12)(34)} = PO \). Conjugating by a suitable \(\tau \in \mathcal{F} \) with \(\pi (\tau) = (132) \), we conclude that \(E^2 = I_{+1} \) and \(E^4 = I_{-1} \) extend to novelties in \((G_{(12)(34)}, \tau) = G_{(13)(24)} \), hence column VIII of rows 33–38 hold. The remaining columns are now accounted for and the proof is complete.

PROPOSITION 2.4.11. Row 55 of the results matrix holds.

Proof. Let \(I \) be the normalizer in \(G_0 \) of the \(+2\)-decomposition \(V = V_1 \perp \cdots \perp V_4 \). By 2.2.7(iv) we can take \(q \geq 4 \).
Assume in this paragraph that $q = 4$. Let $S \leq G_0$ be an S_2-group, so that $S \cong \Omega_8^+(2)$, and let I^* be an I_{-2}-subgroup of S (thus I^* normalizes a -2-decomposition over $GF(2)$). Then $I^* \cong \frac{1}{2}(O_2^+(2) \wr S_4) \cong \frac{1}{2}(O_2^+(4) \wr S_4) \cong I$, and it follows that I^* is actually the stabilizer of a $+2$-decomposition over F. Thus I is G_0-conjugate to I^* and we may assume that $I = I^*$. By 2.2.9, S extends to A and by 2.2.7(ii), I extends from S to $N_A(S) \cong \operatorname{Aut}(S) \cong S \cdot S_3$. Thus by 1.3.3(i), $N_A(I) \leq N_A(S)$, hence the restriction $q \geq 5$ in row 55.

Now assume that $q \geq 5$. By 2.4.9, I is not contained in an R-group, thus by a previous argument, (applying triality) I is not contained in a K_1, F_2^*, I_4^*, or T-group. Lagrange's Theorem eliminates all other members of \mathcal{Q} as possible overgroups of I, as possible overgroups of I, save I_{+4}, I, E, K_5, and S_2. With respect to a standard basis, $O(V_i) = \langle (\lambda, 0), (0, \lambda) \rangle$, where $\langle \lambda \rangle = F^*$. As $q \geq 5$, $\text{tr}(\frac{1}{2}(\lambda, 0)) = \lambda + \lambda^{-1}$ generates F over the ground field F, and it follows that I is not contained in an S-group. We also claim that

$$I \leq I_{+4}. \tag{20}$$

For it is not hard to see that \hat{I} contains $O(V_1) \times \cdots \times O(V_4)$, that \hat{I} is transitive on the spaces V_i, and that $N_{\hat{I}}(V_i)$ acts as $O(V_i)$ on each V_i. I thus the proof of 2.4.9 shows that \hat{I} is irreducible on V, and as I_{+4} fixes a $+4$-space, we deduce that (20) holds. When $q \geq 7$, $|I| \leq |E|$ and $I \leq K_5$ by 2.4.7.

Thus it remains to consider the case $q = 5$. Note that the only possible overgroups of I are I_{+4}, E, and K_5, and because none of these extend to $G_{(1423)}$ or $G_{(5)}$, G_{D_8}, G_{A_5}, or G_{S_4}, the corresponding columns IX, XI, XII, XIII, XIV of row 55 hold. The group $O(V_i) \cong O_2^+(5) \cong D_8$ is generated by $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ and $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \tag{2p}$

with respect to an orthonormal basis, and so $N_G(\hat{I})$ is monomial. Therefore $N_PG(I) < N_PG(I_{+1})$ and as $PO = G_{(12), (34)}$, $N_G(I)$ is nonmaximal in G when $\pi(G) \leq \langle (12), (34) \rangle$. Thus columns IV, V, and X hold. Choosing $a \in N_A(I)$ with $\pi(a) = (23)$ yields $N_G_{(12), (34)}(I) < N_G_{(12), (34)}(I_{+1})$, hence column VIII holds. Now by the proof of 2.4.10, $I < I_{+1} < K_5 \cong \Omega_8^+(2)$. Further $I \cong [2^{1+}]S_3$, whence I is a parabolic subgroup of K_5 corresponding to the central node of the Dynkin diagram. Therefore I extends from K_5 to $N_A(K_5)$. Thus by 1.3.1(i), $N_G(I) < N_G(K_5)$ when $G \leq N_A(K_5) G_0$. Conjugating K_5 by a suitable element in $N_A(I)$, we can assume that $N_A(K_5) G_{S_3}$, hence columns VI and VII hold.

Proposition 2.4.12. Row 56 of the results matrix holds.
218 PETER B. KLEIDMAN

Proof. An argument similar to yet easier than the one in 2.4.11 shows that $I_{-2} = I$ is contained in no other group in G, save possibly I_{-1}, E, or K_5 when $q = 3$. So take $q = 3$. Observe that $O_2(3)$ is generated by the matrices given in (2p) with respect to an orthonormal basis, and so as in 2.4.11, $N_{I_0}(I) \leq N_{I_0}(I+1)$. Thus as above columns IV, V, VIII-XIV hold. Further $I_{-1} < I_1 < K_5$ and as before I is a parabolic subgroup of K_4 corresponding to the central node of the Dynkin diagram. Thus the remarks in the proof of 2.4.11 may be applied here to show that columns VI and VII hold.

Proposition 2.4.13. Row 57 of the results matrix holds.

Proof. By 2.2.7(iv) we can take $q > 2$. The irreducibility of I_{+4} and Lagrange's Theorem eliminate all other members of G as possible overgroups of I_{+4}, save K_5 when $q = 3$. However, $I_{+4} \not\leq K_5$ by 2.4.7.

Proposition 2.4.14. The I_{-} and F_{-}-groups are maximal in G_0, hence rows 58-60 of the results matrix hold.

Proof. Use Lagrange's Theorem, 2.4.7, and 2.2.8.

Proposition 2.4.15. The S-groups S_{a}, S_-, and the C_i-groups K_i, $3 \leq i \leq 8$, are maximal in G_0. Hence rows 62-75 of the results matrix hold.

Proof. It is straightforward to show that these groups are maximal, simply by running through the list given in 2.4.1. Perhaps the only subtlety arises when showing that K_i is not contained in K_1 or K_2. However, this was established in the proof of 2.3.5.

Part 3. Some Subgroups of G_0 Which Are Normalized by a Triality Automorphism

In Section 2.2 we saw that most of the maximal subgroups of G_0 are not normalized by a triality automorphism. For this reason, if $G \cap T \neq \phi$ then most of the maximal subgroups of G are novelties. In this part we describe what these novelties are. That is, we introduce some subgroups which are nonmaximal in G_0, yet whose normalizers in G are maximal in G for certain groups $G \leq A$ with $G \cap T \neq \phi$.

3.1. The G_2-groups

Definition. A G_2-group is a subgroup of G_0 isomorphic to $G_2(q)$.

Proposition 3.1.1. Let N be a G_2-group.
(i) N fixes a unique 1-space X, and X is nonsingular.

(ii) PA is transitive on G_2-groups.

(iii) $N_{G_0}(N) = N$.

(iv) $\pi(C_A(N)) = \pi(N_A(N)) \cong S_3$.

(v) There are just d^2 classes of $G_2(q)$ in G_0, permuted transitively by A/G_1.

(vi) If K is a K_1-group and $\gamma \in \mathcal{F}$, then $K \cap K' \cong G_2(q)$ and $K \cap K' = N_K(X)$ for some nonsingular 1-space X.

Proof. (i) The smallest degree of a nontrivial p-modular representation of N is $5 + d$, hence N does not fix a nonzero t.s. space or a n.d. 2-, 3-, or 4-space. Thus (i) holds because N has no irreducible p-modular 8-dimensional representation.

(ii) This follows from the facts that PA is transitive on nonsingular 1-spaces and that $O_2(q)$ contains a unique class of $G_2(q)$. (The latter fact is proved in [24] for example).

(iii) By 1.4.1 and (ii), $N = C_{G_0}(\tau)$ for some $\tau \in \mathcal{F}$. If X is the 1-space provided by (i), then $N_D(N) \leq N_D(X) \cong SO_7(q) \cong \Omega_7(q)$, d. However any $G_2(q)$ in $SO_7(q)$ has no centralizer in $SO_7(q)$, hence

$$C_\ell(N) = 1.$$ \hfill (3a)

Thus (iii) follows from 1.4.2(i).

(iv) Since $N \leq N_{G_0}(X)$ where X is as in (i), there is a reflection $r \in O$ such that $\bar{r} \in C_{PO}(N)$. Therefore $\pi(C_A(N))$ contains the 2-cycle $\pi(\bar{r})$ and the 3-cycle $\pi(\tau)$, whence $\pi(C_A(N)) \cong S_3$ or S_4. If $\pi(N_A(N)) \cong S_4$, then there exists $g \in N_A(N)$ such that $\pi(g)$ does not normalize $\pi(\tau)$. But then as in the proof of 1.4.2(i), $[\tau, g, \tau] \in C_D(N) \setminus 1$, contrary to (3a). Thus $\pi(N_A(N)) \cong S_3$ and (iv) now follows.

(v) By 1.4.2(i), $|N_{PA}(N) : N| \leq 2$, and since $\bar{r} \in C_{PO}(N) \setminus G_0$, we have $N_{PA}(N) = N \times \langle \bar{r} \rangle$. Thus by 1.3.2(iv) and (ii), G_0 has precisely $|PA : G_0 \langle \bar{r} \rangle | = d^2$ classes of groups $G_2(q)$, permuted transitively by PA. Thus A/G_1 acts on these classes by 1.4.3.

(vi) Assume here that $G_2(q) \cong N < K$, and let $X \leq V$ be as in (i). The space X is an ℓ-1-space where ℓ is + or −, and we define $N_1 = N_K(X)$, an overgroup of N. By 2.2.4, there exists $v \in \mathcal{F}$ such that $N_{G_0}(X)^v = K$, hence $K = C_{G_0}(\bar{r}^v)$, where r is as in (iv). Now $\bar{r} \in PO \leq A$, hence $\tilde{\bar{r}} \in \theta$ (recall from Sect. 1.4 that $\theta = A'PA \cong G_0 \cdot S_3$ or $G_0 \cdot S_4$). Thus N_1 centralizes $\tau_1 = \bar{r}^v \in \theta$, and since $\pi(\bar{r})$ is a 2-cycle and $\pi(v)$ is a 3-cycle, $\pi(\tau_1)$ is a 3-cycle. Therefore $\tau_1^3 \in \ker(\pi) \cap \theta = G_\circ$, and so $\tau_1^3 \in C_{G_\circ}(N_{1}) = 1$, by (3a). Thus N_1 is a subgroup of one of the groups appearing in 1.4.1. Since N_1
contains \(N \cong G_2(q) \), it follows that \(N_1 \cong G_2(q) \), hence \(N = N_1 \). Thus it suffices to show that \(K \cap K' \cong G_2(q) \). Now \(|K: N| = (1/d) q^2 (q^4 - 1) = |G_0: N_{G_0}(X)| \), whence \(K \) is transitive on \(\varepsilon \)-spaces in \(V \). Replacing \(y \) by \(y^{-1} \) if necessary, we can assume that \(K' \) is an \(R_{\varepsilon_1} \)-group, where \(\varepsilon = + \) or \(- \) (see 2.2.4). If \(\delta = \varepsilon \), then by the transitivity of \(K \) there exists \(k \in K \) such that \(K' = N_{G_0}(X)^k \). Hence \(K \cap K' = N^k \), as required. Now suppose that \(\delta = -\varepsilon \).

By 2.2.4, \(K \) extends to either \(G_{(13)(24)} \) or \(G_{(14)(23)} \). Since \(G_{(13)(24)} \) and \(G_{(14)(23)} \) interchange the classes \([R_{+1}]\) and \([R_{-1}]\), there exists \(j \in N_{G_0}(K) \) such that \(X' \) is a \(\varepsilon_1 \)-space. Thus the same argument as before shows \(K \cap K' \) is \(K \)-conjugate to \(N' = N_K(X') \), as desired.

3.2. The \(N_{+1} \) and \(N_{-2} \) groups

Write \(R = R_{+2} = N_{G_0}(W) \), where \(W \) is an \(\varepsilon_2 \)-space. Then \(R \) has a normal cyclic subgroup \(\bar{\Omega}(W) \cong \Omega_2(q) \cong (1/d) \mathbb{Z}_{q - \varepsilon_1} \). The group \(\bar{\Omega}(W) \) and its subgroups are in fact the only normal cyclic subgroups of \(R \), and when \((q, \varepsilon) \notin \{(2, +), (3, +)\} \) we define \(\eta(R) \) as the group of order \(r \) in \(\bar{\Omega}(W) \), where \(r \) is the largest prime divisor of \((1/d)(q - \varepsilon_1)\). When \((q, \varepsilon) = (3, +) \) then \(\bar{\Omega}(W) = 1 \), however, \(\bar{SO}(W) = \langle j \rangle \) for some involution \(j \in D \setminus G_0 \). In this case we define \(\eta(R) = \langle j \rangle \), and it is easily seen that \(\eta(R) = C_{\delta}(R) \). We do not define \(\eta(R) \) when \((q, \varepsilon) = (2, +) \). If \(g \in P \Gamma \) then \(R^\varepsilon \) is another \(R_{+2} \)-group and it is clear from the definition that \(\eta(R^\varepsilon) = \eta(R)^\varepsilon \). Thus we may extend the function \(\eta \) to all \(I_{+a} \) and \(F_2 \)-groups by putting \(\eta(R^a) = \eta(R)^a \) for all \(a \in A \).

Evidently \(H = C_{G_0}^\varepsilon(\eta(H)) \) where \(H \) is any \(R_{+2} \), \(I_{+a} \), or \(F_2 \)-group. The following lemma serves to collect some useful facts about these groups \(\eta(H) \).

Lemma 3.2.1. Let \(r \) and \(s \) be the largest prime divisors of \(q - 1 \) and \(q + 1 \), respectively. Also let \(\omega_m \) be a primitive \(m \)th root of unity in an algebraic closure of \(\mathbb{F} \). Then there exists generators \(w, x, y, z \) of \(\eta(R_{+2}), \eta(R_{-2}), \eta(F_2) \), and \(\eta(I_{+4}) \), respectively, which satisfy the following.

(i) \(|w| = |z| = r \) and \(|x| = |y| = s|.

(ii) \(\hat{w} \) acts on a \(+2 \)-space \(U \) with eigenvalues \(\omega_r, \omega_r^{-1} \) and \([\hat{w}, U^\perp] = 1 \).

(iii) \(\hat{x} \in \Omega \) acts on a \(-2 \)-space \(W \) with eigenvalues \(\omega_s, \omega_s^{-1} \) and \([\hat{x}, W^\perp] = 1 \).

(iv) \(K = C_{\Omega}(\hat{y}) \) acts irreducibly but not absolutely irreducibly as \(GU_4(q) \) on \(V \); moreover \(E = \text{Hom}_K(V) = \mathbb{F} \langle \hat{y} \rangle \) is a quadratic field extension of \(\mathbb{F} \) and there is a nondegenerate Hermitian \(E \)-form \(f \) on \(V \) such that \(f(v, v) = Q(v) \) for all \(v \in V \).

(v) There exists \(\lambda_1, \lambda_2 \in \mathbb{F} \) and t.s. 4-spaces \(V_1, V_2 \subseteq V \) such that
V = V₁ ⊕ V₂ and \(\hat{z} \) acts as the scalar \(\lambda \), on \(V_i \) (i = 1, 2). If \(r \) is odd then \(\hat{z} \in \Omega \) and \((\lambda_1, \lambda_2) = (\omega_r, \omega_r^{-1}) \). If \(r = 2 \) and \(q \equiv 1(4) \), then \(\hat{z} \in \Omega \) and \((\lambda_1, \lambda_2) = (i, -i) \) (i = \(\sqrt{-1} \)). If \(r = 2 \) and \(q \equiv 3(4) \), then \(q = 3, \hat{z} \in \Delta \setminus O \) and \((\lambda_1, \lambda_2) = (-1, 1) \).

Proof. These assertions are clear, except possibly those in (iv). For information about the embedding of \(GU_4(q) \) in \(O \) we refer to Section 1.F of [20] or 7.6.2 of [2].

DEFINITION. The group \(N \leq G_0 \) is an \(N_1 \)-group if \(N = R \cap F \), with \(R \) an \(R_{-2} \)-group, \(F \) an \(F_2 \)-group, and \([\eta(R), \eta(F)] = 1\).

PROPOSITION 3.2.2. Let \(N \leq G_0 \) be an \(N_1 \)-group. Then

(i) \(\hat{N} \cong ((1/d)(Z_{q+1}) \times (1/d) GU_3(q)).2^d \),

(ii) \(G_0 \) is transitive on \(N_1 \)-groups;

(iii) \(N \) extends to \(A \).

Proof. (i) Write \(N = R \cap F \) as in the definition, and put \(\eta(R) = \langle x \rangle \) and \(\eta(F) = \langle y \rangle \) as in 3.2.1. Also let \(W, f, E, K \) be as in 3.2.1. Since \(y \in C_{G_0}(x) \), \(W \) is \(\hat{y} \)-invariant and hence \(W \) is a 1-space over \(E \). And because \(Q(w) \neq 0 \) for all \(w \in W \setminus \{0\} \), \(W \) is nondegenerate in the unitary geometry \((V, E, f)\). Therefore \(C_\alpha(\hat{x}) \cap C_\alpha(\hat{y}) = \bigcap_{Q(w)}(W) \cong GU_3(q) \times GU_3(q) \cong Z_{q+1} \times GU_3(q) \). The details concerning the various factors of 2 are left to the reader.

(ii) Let \(N^* \) be another \(N_1 \)-group. The proof of (i) shows that \(\hat{N}^* = N_0(E^*, f^*, W^*) \), where \((V, E^*, f^*)\) is a unitary geometry over the quadratic field extension \(E^* \) of \(F \) and the \(-2\)-space \(W^* \) is \(E^* \)-invariant and n.d. with respect to \(f^* \). Since \(G_0 \) is transitive on \(-2\)-spaces, we can suppose that \(W = W^* \). Now \(N_0(W) \) acts as \(O(W^\perp) \) on the \(-6\)-space \(W^\perp \), and by Theorems B4.3 and B8 of [2], \(O(W^\perp) \cong O_{6^-}(q) \) has a unique class of groups \(GU_3(q) \) acting irreducibly but not absolutely irreducibly on \(W^\perp \). Assertion (ii) now follows.

(iii) Fix \(a \in A \). Replacing \(a \) by \(a^{-1} \) if necessary, we can assume that \(F^a \) is an \(R_{-2} \)-group (see 2.2.8). Since \(R^a \) is an \(F_2 \)-group, it follows from the definition that \(N^a = R^a \cap F^a \) is an \(N_1 \)-group. Thus by (ii), \(a \) fixes \([N]\) whence (iii) holds.

DEFINITION. For \(q \geq 3 \), \(N \leq G_0 \) is an \(N_2 \)-group if \(N = R \cap I \), with \(R \) an \(R_{-2} \)-group, \(I \) an \(I_{4-} \)-group, and \([\eta(R), \eta(I)] = 1\).

PROPOSITION 3.2.3. Let \(N \leq G_0 \) be an \(N_2 \)-group. Then

(i) \(\hat{N} \cong ((1/d)(Z_{q-1}) \times (1/d) GL_3(q)).2^d \).
(ii) G_0 is transitive on N_2-groups;

(iii) N extends to A.

Proof. Write $N = R \cap I$ as in the definition and put $\eta(R) = \langle w \rangle$ and $\eta(I) = \langle z \rangle$ as in 3.2.1.

(i) Let r, U, V_1, V_2 be as in 3.2.1.

Case $r = 2$ and $q \equiv 1(4)$. Then $\hat{w} = -1_U$, and as $[w, z] = 1$, we have $\hat{w}^2 = \pm \hat{w}$. But \hat{w} and $-\hat{w}$ have different eigenvalues, hence $[\hat{w}, \hat{z}] = 1$. Now $\hat{z} \in \Omega$ and \hat{z} acts as $i = \sqrt{-1} e_F$ on V_1 and $-i$ on V_2. Thus $\langle \hat{w}, \hat{z} \rangle$ may be diagonalized with respect to a basis $\beta = (v_1, \ldots, v_8)$. Since $z \in C_G(w) = NG_0(U)$, it follows that \hat{w} and \hat{z} act on U and U^\perp. Thus we can take $U = \langle v_1, v_2 \rangle$ and $U^\perp = \langle v_3, \ldots, v_8 \rangle$. Relabeling v_3, \ldots, v_8 if necessary, we have

\[\hat{w} = \text{diag}_g(-1, -1, 1, 1, 1, 1, 1, 1, 1), \]

\[\hat{z} = \text{diag}_g(i, 1, 1, 1, -1, -1, i, i). \]

Evidently $N = NG_0 \{ U, X, Y \} = NG_0 \{ X, Y \}$, where $X = \langle v_3, v_4, v_5 \rangle$ and $Y = \langle v_6, v_7, v_8 \rangle$. If $\{a, b\} \subseteq \{3, 4, 5\}$, then $(v_a, v_b) = (v_b, v_a) = 0$. Thus X, and similarly Y, is t.s. Therefore $N = (\Omega(U) \times N_{\Omega(U^\perp)}(X, Y))^2$, and $N_{\Omega(U^\perp)}(X, Y) \cong (1/2) GL_5(q)$ by 1.2.2. Thus (i) holds.

Case $r = 2$ and $q \equiv 3(4)$. As in the previous case, $\hat{w} = -1_U$ and $[\hat{w}, \hat{z}] = 1$. Further $\hat{z} \in A \setminus Q$, \hat{z} acts as -1 on V_1 and $+1$ on V_2, and \hat{z} multiplies Q by -1. Reasoning as before we obtain

\[\hat{w} = \text{diag}_g(-1, -1, 1, 1, 1, 1, 1, 1, 1) \]

\[\hat{z} = \text{diag}_g(1, -1, 1, 1, -1, -1, 1, 1, 1) \]

Further $N = NG_0 \{ U, X, Y \} = NG_0 \{ X, Y \}$, with X, Y as above. If $\{a, b\} \subseteq \{3, 4, 5\}$, then $(v_a, v_b) = -(v_b, v_a) = 0$. So again, X and Y are t.s. and the rest is the same.

Case r odd. Here $|\hat{w}| = |\hat{z}| = r$ and $[\hat{w}, \hat{z}] = 1$ by 1.2.3. Since $r | q - 1$, we can diagonalize $\langle \hat{w}, \hat{z} \rangle$ as before, and by 3.2.1 we arrive at

\[\hat{w} = \text{diag}_g(\omega_r, \omega_r^{-1}, 1, 1, 1, 1, 1, 1, 1), \]

\[\hat{z} = \text{diag}_g(\omega_r, \omega_r^{-1}, \omega_r, \omega_r, \omega_r, \omega_r^{-1}, \omega_r^{-1}, \omega_r^{-1}). \]

The previous argument now applies.

(ii) Let $N^* \leq G_0$ be another N_2-group. The proof of (i) yields $N^* = NG_0 \{ X^*, Y^* \}$, where $X^* \oplus Y^*$ is a $+6$-space, and where X^* and Y^* are t.s. planes. Since G_0 is transitive on $+6$-spaces, we can assume that
$X \oplus Y = X^* \oplus Y^* = W$. Now $N_G(W)$ acts as $O(W) \cong O_6^+(q)$ on W, and it is clear that $O(W)$ is transitive on decompositions of W into a direct sum of two t.s. planes. It now follows that $N_{G_0}(X^*,Y^*)$ is G_0-conjugate to $N_{G_0}(X,Y)$, as required.

(iii) Argue as in the proof of 3.2.2(iii).

3.3. The N_3-Groups

Definition. An N_3-group is a Sylow r-normalizer in G_0, where r is an odd prime divisor of $q^2 + 1$.

Proposition 3.3.1. We have

$$N_3 \cong (D_{(2/d)}(q^2 + 1) \times D_{(2/d)}(q^2 + 1)).2^2.$$

Proof. Let W be a -4-space and observe $N_{G_0}(W,W^\perp)$ contains a Sylow r-subgroup R, where r is an odd prime divisor of $q^2 + 1$. Since $r \mid |GL_2(q)|$, \hat{R} is irreducible on W and W^\perp. Further, since \hat{R} does not act faithfully on W, it follows that W and W^\perp are nonisomorphic as \hat{R}-modules. Hence $N_{G_0}(R) \leq N_{G_0}(W,W^\perp) \cong (\Omega_4^+(q) \times \Omega_4^-(q)).2^2 \cong (L_2(q^2) \times L_2(q^2)).2^2$. The result now follows because the Sylow r-normalizer in $L_2(q^2)$ is $D_{(2/d)}(q^3 + 1)$.

3.4. The N_4-Groups

Proposition 3.4.1. Assume that q is odd.

(i) G_0 contains exactly 4 classes of involutions, called $2A$, $2B$, $2C$, $2D$ (following the conventions of [9]).

(ii) $C_{G_0}(2A) = I_{+4}$ (by "$C_{G_0}(2A)$" we mean the centralizer of an element in the class $2A$).

(iii) $(C_{G_0}(2B), C_{G_0}(2C), C_{G_0}(2D)) = (R_{+2}, I_{+4}, I_{+4})$ or (R_{-2}, F_1^1, F_1^2) according as $q \equiv 1$ or $3 \mod 4$.

(iv) If $g \in 2A$ then $\hat{g} \in \Omega$ has order 2 and trace 0.

(v) The class $2A$ is characteristic in G_0.

(vi) The group A acts on $\{2B, 2C, 2D\}$ and a triality automorphism cyclically permutes these three classes.

(vii) The group D has just 6 classes $2E, ..., 2J$ of involutions not contained in G_0 and $(C_{G_0}(2E), C_{G_0}(2F), C_{G_0}(2G)) = (I_{-4}, F_1^1, F_1^2)$, while $(C_{G_0}(2H), C_{G_0}(2I), C_{G_0}(2J))$ is as in (iii) with 1 and 3 interchanged.

Proof. Ten visible classes of involutions in D are defined in assertions (ii), (iii), and (vii), and by [13, Theorem 8] D has precisely 10 involution
classes. (Recall D is the group of inner and diagonal automorphisms of G_0.) Thus (i), (ii), (iii), and (vii) hold. Further (v) and (vi) follow directly from 2.2.7(iii) and 2.2.8. As for (iv), it is clear that g acts as -1 on a $+4$-space and as $+1$ on its orthogonal complement.

Definition. A subgroup of G_0 is 2A-pure if every non-identity element is an involution in the class 2A. A 4-group in G_0 is 2BCD-mixed if it has involutions in each of 2B, 2C, and 2D.

Proposition 3.4.2. Assume that q is odd and let $P \leq G_0$ be 2A-pure. Then $|P| \leq 8$ and if $|P| = 8$ then the following hold.

(i) P centralizes a unique 1-decomposition $\bar{\sigma}$;

(ii) if $\bar{\sigma}$ is an $\epsilon 1$-decomposition, then

(a) $N_{G_0}(P) \cong [2^9] : L_3(2)$;

(b) $P = Z(O_2(N_{G_0}(P)))$;

(c) $N_{G_0}(P)$ is irreducible and $N_{G_0}(P) \not\leq 1 + 4$.

Proof. By 3.4.2(iv), $|\tilde{P}| = 2$ for all $j \in P \setminus 1$, hence \tilde{P} is elementary abelian and \tilde{P} can be diagonalized with respect to a basis $\beta = (v_1, \ldots, v_8)$. Moreover $\text{tr}(\tilde{P}) = 0$ for all $j \in P \setminus 1$, and thus by considering the character table of \tilde{P} we find that $|\tilde{P}| \leq 16$. Thus $|P| \leq 8$ and if $|P| = 8$ then $\tilde{P} = \langle -1, x, y, z \rangle$, where (relabelling the indices if necessary)

\[
\begin{align*}
x &= \text{diag}_\beta(1, 1, 1, 1, -1, -1, -1, -1), \\
y &= \text{diag}_\beta(1, 1, -1, -1, 1, 1, -1, -1), \\
z &= \text{diag}_\beta(1, -1, -1, 1, -1, 1, 1, -1).
\end{align*}
\]

(3b)

It is now straightforward to show that the decomposition $\bar{\sigma}$ given by $V = \bigoplus v_i \oplus \cdots \oplus v_8$ is the only 1-decomposition centralized by P, so (i) holds. Thus putting $N = N_{G_0}(P)$ we have $\tilde{N} \leq N_\sigma(\bar{\sigma})$, which means \tilde{N} acts monomially. To prove (ii), we assume that $\bar{\sigma}$ is an $\epsilon 1$-decomposition (recall, this means $V = \bigoplus v_i \perp \cdots \perp v_8$ and $\langle v_i \rangle$ is isometric to $\langle v_j \rangle$ for all i, j). Define $C = C_{G_0}(\tilde{P})$ and observe $C = C_{G_0}(\sigma) \cong 2^2$. Thus $C_{G_0}(P)^\sigma = C_{G_0}(P)/C$, and it is clear that $C_{G_0}(P)^\sigma$ induces the group of permutations \((15)(26)(37)(48), (13)(24)(57)(68), (12)(34)(56)(78)\) $\cong 2^3$ on the 1-spaces $\langle v_1 \rangle, \ldots, \langle v_8 \rangle$. Thus $|C_{G_0}(P)| = |C| 2^3 = 2^9$. It is not difficult to show that $\text{Aut}_N(P) \cong \text{Aut}(P) \cong L_3(2)$, hence $N \cong [2^9] : L_3(2)$, proving (ii)(a). It is also not hard to see that each element of $\tilde{C} \setminus P$ is moved by a permutation in $C_{G_0}(P)^\sigma$, and conversely, each permutation in $C_{G_0}(P)^\sigma$ moves an element of $\tilde{C} \setminus P$. Thus $P = Z(C_{G_0}(P)) = Z(O_2(N_{G_0}(P)))$, proving (ii)(b).

Since N is transitive on the vectors in β, an argument similar to the one
in 2.4.9 shows that \(N \) is irreducible. Also \(\hat{N} \) contains a subgroup \(L_3(2) \) which consists of permutation matrices acting intransitively on the vectors \(v_i \). This \(L_3(2) \) has an irreducible constituent of degree \(\geq 5 \), hence \(N \leq I_{+4} \).

Definition. A 2A-pure group \(P \leq G_0 \) of order 8 is called *nice* if the 1-decomposition \(\hat{\delta} \) given in 3.4.2(i) is indeed an \(\varepsilon_1 \)-decomposition. An \(N_4 \)-group is the normalizer in \(G_0 \) of a nice group.

Proposition 3.4.3. Assume that \(q = p \) is odd. Then there are just 4 classes of \(N_4 \)-groups in \(G_0 \) permuted naturally by \(A/G_0 \cong S_4 \).

Proof. Let \(P \) be a nice group and let \(N = N_{G_0}(P) \), \(\partial \), \(\beta = (v_1, \ldots, v_8) \) and \(x, y, z \) be as in the proof of 3.4.2. As \(\partial \) is an \(\varepsilon_1 \)-decomposition, we can multiply each \(v_i \) by a suitable scalar to ensure that \((v_i, v_j) = \lambda \delta_{yj} \) for some \(\lambda \) independent of \(i \) and \(j \). Now let \(P^* \leq G_0 \) be an arbitrary 2A-pure group of order 8, and let \(N^* = N_{G_0}(P^*) \), \(\partial^*, \beta^* = (v_{1*}, \ldots, v_{8*}) \), \(x^*, y^*, z^* \) be the objects associated with \(P^* \), analogous to those associated with \(P \). Thus \(\partial^* = \langle -1, x^*, y^*, z^* \rangle \), where \(x^*, y^*, z^* \) are given in (3b) with \(\beta \) replaced by \(\beta^* \), and \(\partial^* \) is the 1-decomposition \(V = \langle v_{1*}^* \rangle \oplus \cdots \oplus \langle v_{8*}^* \rangle \).

Assume in this paragraph that \(P^* \) is nice. Then \(\partial^* \) is an \(\varepsilon_1 \)-decomposition, and so by multiplying each \(v_i^* \) by a suitable scalar we can ensure that \((v_i^*, v_j^*) = \lambda^* \delta_{yj} \) for some fixed \(\lambda^* \). Then the map \(v_i \mapsto v_i^* \) multiplies \(Q \) by \(\lambda^* \lambda^{-1} \) and its image in \(PA \) takes \(P \) to \(P^* \). Therefore

\[
P\partial \text{ is transitive on nice groups.} \tag{3c}
\]

Hence 1.3.2(iv) ensures that \(G_0 \) has \(|PA : N_{PA}(P) G_0| \) classes of nice groups. Since \(\partial \) is the unique 1-decomposition fixed by \(P \), we have \(N_{PA}(P) \leq N_{PA}(\partial) = N_{PO}(\partial) \). Therefore \(|PA : N_{PA}(P) G_0| \geq |PA : PO| = 2 \), and as \(\hat{r}_{v_i} \in C_{PO}(P) \setminus G_0 \), we have \(|PA : N_{PA}(P) G_0| \leq 4 \). Consequently

\[
G_0 \text{ has either 2 or 4 classes of nice groups.} \tag{3d}
\]

Now fix \(a \in A \) and note that \(P^a \) is 2A-pure by 3.4.1(v). Thus we may let \(P^* = P^a \). Let \(F \) be the matrix of the bilinear form \(\langle \cdot, \cdot \rangle \) with respect to \(\beta^* \). Then \([\hat{P}^*, F] = 1 \) which means that \(F \) is a diagonal matrix. Thus \(V = \langle v_{1*}^* \rangle \perp \cdots \perp \langle v_{8*}^* \rangle \). If the spaces \(\langle v_{i*}^* \rangle \) are not all isometric, then \(|C_{N^*}(\partial^*)| \geq 2^5 \). Since \(2^{12} |N^*| \), we have \(2^5 |(N^*)^\varepsilon^* \). But a Sylow 2-subgroup of \(S_8 \) is transitive on 8 points, consequently the spaces \(\langle v_{i*}^* \rangle \) are isometric after all. Therefore \(\partial^* \) is an \(\varepsilon_1 \)-decomposition which means \(P^* \) is nice. Thus \(A \) acts on the nice groups and so by (3c),

\[
A \text{ acts transitively on nice groups in } G_0. \tag{3e}
\]
We return now to statement (3d). If there are just 2 classes of nice groups in \(G_0 \), then (3e) ensures that \(P \) extends to \(\frac{1}{2}A = A' = G_{A_4} \cong G_0.A_4 \). In other words, \(\pi(N_A(P)) = A_4 \). However \(\pi(e_{q_1}) \in N_A(P) \) and \(\pi(e_{q_1}) \notin A_4 \) for it is a 2-cycle. Hence there are exactly 4 classes of nice groups in \(G_0 \), which means
\[
|A : N_A(P) G_0| = 4. \tag{3f}
\]

Evidently (3e) guarantees that \(A \) acts transitively on \(N_4 \)-groups, hence there are \(|A : N_A(N)| \) classes of \(N_4 \)-groups in \(G_0 \). However 3.4.2(ii)(b) yields \(N_A(N) = N_A(P) \), and the result now follows from (3f).

This next result describes normalizers of 2A-pure groups of order 4.

Proposition 3.4.4. Assume that \(q \) is odd and that \(R \) is a 2A-pure 4-group in \(G_0 \). Then \(N_{G_0}(R) \) is an \(I_{22} \)-group for some \(\varepsilon \).

Proof. As in the proof of 3.4.2, we can assume that \(\hat{R} = \langle -1, x, y \rangle \), where \(x \) and \(y \) are given in (3b), with respect to some basis \(\beta' = (w_1, \ldots, w_8) \), possibly distinct from \(\beta \). Let \(F \) be the matrix of the bilinear form \((,) \) with respect to \(\beta' \). Then \([F, \hat{R}] = 1 \) and so \(V = V_1 \perp \cdots \perp V_4 \), where \(V_i = \langle w_{2i}, w_{2i-1} \rangle \). Since \(C_{G_0}(\hat{x}) = N_{G_0}(V_i \perp V_2, V_3 \perp V_4) \), it follows that \(V_1 \perp V_2 \) and \(V_3 \perp V_4 \) are +4-spaces. Therefore \(V_3 \) is isometric to \(V_4 \) and \(V_1 \) is isometric to \(V_2 \). Similarly \(V_2 \) is isometric to \(V_3 \), and hence the spaces \(V_i \) form an \(\varepsilon_2 \)-decomposition of \(V \) for some \(\varepsilon \). Thus \(N_{G_0}(R) = N_{G_0}(V_1, V_2, V_3, V_4) \) is an \(I_{22} \)-group.

Part 4. The Case \(G \cap \mathcal{T} \neq \emptyset \)

Throughout Section 4 we assume that \(G_0 \leq G \leq A \) and that \(G \cap \mathcal{T} \neq \emptyset \). Thus \(\pi(G) \) contains a 3-cycle and replacing \(G \) by a suitable \(A \)-conjugate allows us to assume that \((123) \in G \). Thus
\[
\pi(G) \in \{ \langle 123 \rangle, S_3, A_4, S_4 \}. \tag{4a}
\]
As usual, \(M \) is a maximal subgroup of \(G \) not containing \(G_0 \) and \(M_0 = M \cap G_0 \).

4.1. The Determination of \(\mathcal{C}_2 \)

As advertised in Section 1.5, we obtain a collection \(\mathcal{C}_2 \) of subgroups of \(G_0 \) such that \(M_0 \) is \(G_0 \)-conjugate to some member of \(\mathcal{C}_2 \). As there is no harm in putting the \(N_3 \)-groups and \(I_{22} \)-groups in \(\mathcal{C}_2 \), we can suppose for the rest of Section 4.1 that
\[
M_0 \text{ is not an } N_3 \text{ or an } I_{22} \text{-group.} \tag{4b}
\]
Assumption (4b) will serve as a convenience in several of the arguments below. It is also convenient to define

\[H = O^2(M_0) \quad \text{and} \quad C = C_{G_0}(H), \]

and by (4a) we can fix a triality automorphism \(\tau \in M' \setminus PT \) with \(\langle \pi(\tau) \rangle = \langle (123) \rangle \). Furthermore we let \(L \) satisfy

\[M_0 \leq L < G_0, \]

so that \(M_0 = L_M \) by 1.3.1(i). In the following Proposition we collect a number of useful facts to which we refer in subsequent arguments.

Proposition 4.1.1.

(i) If \(1 \neq O_r(M_0) \in \text{Syl}_r(M_0) \) for some odd prime \(r \), then \(r \mid q(q^4 - 1) \).

(ii) We have \(H \neq 1 \). Thus \(M_0 = N_{G_0}(H) \) and \(C \leq M_0 \).

(iii) \(M_0 \) is not contained in a Borel subgroup of \(G_0 \); hence \(M_0 \) does not stabilize a flag.

(iv) Suppose that \(H \) fixes a n.d. space \(W \) and that \(3 \leq \dim(W) \leq 5 \). Then \(\hat{H}(W) \neq \langle -1 \rangle \).

(v) \(H \) cannot be contained in a group \(N_{G_0}(U, W) \), where \(U \) is a n.d. 2-space, \(W \) is a n.d. 4-space and \(U < W \).

(vi) If \(M \cap PT \leq N_M(L) \), then \(M_0 = L \cap L^1 \cap L^{2^1} \).

(vii) If \(q \) is odd and \(M \) normalizes a 4-group \(K \) in \(G_0 \), then \(K \) is 2BCD-mixed and \(M_0 \) fixes a n.d. 2-space.

Proof.

(i) By 1.3.1(iv), \(O_r(M_0) \in \text{Syl}_r(G_0) \). If \(r \mid q^2 - 1 \), then by 1.3.1(iii) and the proof of 15.1.9–15.1.10 of [2], \(M_0 = N_{G_0}(J(O_r(M_0))) \) is an \(I_{2^2} \)-group, contrary to (4b). If \(r \mid q^2 + 1 \), then \(M_0 \) is an \(N_3 \)-group, also against (4b). If \(r \mid q \), then \(M_0 \) is a Borel subgroup, contrary to 1.6.1.

(ii) Otherwise, \(M_0 \in \text{Syl}_2(G_0) \) by 1.3.1(iv). If \(q \) is even, then either \(q = 2 \), in which case \(M_0 \) is a Borel subgroup, contrary to 1.6.1, or \(q > 2 \), in which case \(N_{G_0}(M_0) \geq M_0 \), against 1.3.1(iii). If \(q \) is odd, then we may assume that \(M_0 \in \text{Syl}_2(I_{+4}) \). Now \(I_{+4} \) extends to \(A \) (see 2.2.7(iii)) and by the Frattini argument, \(M_0 \) extends from \(I_{+4} \) to \(N_A(I_{+4}) \), contrary to 1.3.3(ii). The latter statements in (ii) are a consequence of 1.3.1(iii).

(iii) Otherwise \(M_0 \leq B_0 \) for some Borel subgroup \(B_0 \) of \(G_0 \). If \(O_p(M_0) = 1 \), then \(M_0 \) embeds in a group of shape \((Z_{q-1})^4\), contrary to (i) and (ii). Thus by 1.3.1(v), \(O_p(B_0) \leq O_p(M_0) \). But \(O_p(B_0) \in \text{Syl}_p(G_0) \), and so \(O_p(B_0) = O_p(M_0) \). Therefore \(M_0 = N_{G_0}(O_p(B_0)) = B_0 \), contrary to 1.6.1. The second statement now follows because the Borel subgroups are flag stabilizers (Sect. 1.6).
(v) Assume for a contradiction that $\hat{H}(W) = \langle -1_W \rangle$. Suppose first that $H' \neq 1$, so that $M_0 = N_{G_0}(H')$ by 1.3.1(iii). Hence $\Omega(W) \leq C_{G_0}(H') \leq \hat{M}_0$. Therefore $(O^2(\Omega(W)))' \leq (O^2(\hat{M}_0))' \leq H'$, which means $(O^2(\Omega(W)))'$ acts on W as a subgroup of $\langle -1_W \rangle$. Thus

$$|(O^2(\Omega(W)))'| \leq 2.$$

(4c)

Now $3 \leq \dim(W) \leq 5$, and thus $\Omega(W)$ is isomorphic to $\Omega_5(q)$, $\Omega_6^+(q)$ or $\Omega_6^-(q)$. Thus (4c) holds only when W is a +4-space and $q = 2$. However $\Omega_4^+(2) \cong S_4$ and we deduce that H has a normal Sylow 3-subgroup of order at most 3^4. Thus the same holds of M_0, contrary to (i). Therefore $H' = 1$ and so if r is a prime divisor of $|H|$, then M_0 is a Sylow r-normalizer in G_0 by 1.3.1(iv). Now $|H|$ divides $|I_{+4}|$, $|I_{-4}|$ or $|R_{e3}|$, thus r divides q, $q^2 + 1$ or $q^2 - 1$, contradicting (i) again.

(v) Otherwise $H \leq N_{G_0}(U, Y)$ where $Y = W \cap U^\perp$, hence $\hat{H}(W)$ is contained in $\langle -1_W, \Omega(U) \times \Omega(Y) \rangle$, an abelian group. Thus $\hat{H}(W) = \langle -1_W \rangle$, against (iv).

(vi) By 1.3.1(i), it suffices to show that M normalizes $L \cap L^\perp \cap L^\perp$. Since $M \cap B$ (see (1g)) normalizes L and is normalized by τ, it follows that $M \cap B$ normalizes L^\perp and L^{\perp^2}. Therefore $M/M \cap B$ embeds in S_3, acting naturally or trivially on the set $\{L, L^\perp, L^{\perp^2}\}$. The result follows.

(vii) Clearly $M = N_G(K)$ and so $M_0 = N_{G_0}(K)$. Thus K is not $2A$-pure by 3.4.4 and (4b). Thus K contains an involution in $2B \cup 2C \cup 2D$. However, these three involution classes are permuted cyclically by τ (see 3.4.1(vi)), and thus K has one involution from each class. Thus K is $2BCD$-mixed, and M_0 centralizes the $2B$-involution in K, hence M_0 is contained in an R_{e2}-group.

We now consider the possibilities for the overgroup L of M_0.

Proposition 4.1.2. If L is an R_{-2}- or F_2-group, then M_0 is an N_1-group.

Proof. By 2.2.8, M_0 is contained in an R_{-2}-group R and an F_2-group F. Let $\eta(R) = \langle x \rangle$ and $\eta(F) = \langle y \rangle$ be the cyclic groups of order s as in 3.2.1. Thus $M_0 \leq R \cap F = C_{G_0}^s(x) \cap C_{G_0}^s(y)$.

Case s odd. Obviously $x, y \in C \cap H \leq \Omega(H)$ and so $M_0 = N_{G_0}(J)$, where $J = \Omega_1(\Omega_3(\Omega(H)))$. Since $[x, y] = 1$, $R \cap F$ is an N_1-group hence it suffices to prove

$$J = \langle x, y \rangle.$$

(4d)

We have $\hat{J} = \langle -1 \rangle \times J_0$, where $J_0 \simeq J \geq \langle \hat{x}, \hat{y} \rangle$. Let $W, E = F \langle \hat{y} \rangle$ and f be as in 3.2.1. Since $J_0 \leq C_{G_0}(\hat{y})$, we can diagonalize J_0 over E with respect
to an E-basis (v_1, v_2, v_3, v_4) of V. Because W and W^\perp are J_0-invariant, they are also E-invariant. Hence we can arrange this basis so that $v_1 \in W$ and $v_2, v_3, v_4 \in W^\perp$. Thus $\hat{x} = \text{diag}(\omega, 1, 1, 1)$ where $\omega \in E$ is a primitive sth root of unity, and replacing y by a suitable power of itself, we can take \hat{y} to be the scalar $\text{diag}(\omega, \omega, \omega, \omega)$. Define $W_i = v_i E$, so that W_i is a 2-space (over F), $W = W_1$, and $W^\perp = W_2 \oplus W_3 \oplus W_4$. Now take $g \in J$ and write $\hat{g} = \text{diag}(\omega', \omega', \omega', \omega')$. Multiplying \hat{g} by $\hat{x}^{-1} \hat{y}^{-1}$, we can assume that $i = j = 0$. If $\omega^k \neq 1 \neq \omega'$, then $\hat{H} \leq C_0(\hat{g}) \leq N_0(C_r(\hat{g})) = N_0(W_1 \oplus W_2)$. We have $f(v_3, v_2) = f(v_3^k, v_2^k) = \omega^k f(v_3, v_2)$, hence $f(v_2, v_3) = f(v_3, v_2) = 0$. Consequently $(v_2, v_3) = f(v_2, v_3) + f(v_3, v_2) = 0$. Similarly $(v_2, v_4) = 0$ and therefore $V = (W_1 \oplus W_2) \perp (W_3 \oplus W_4)$. Thus $W_1 \oplus W_2$ is an H-invariant 4-space and $H \leq N_{G_0}(W_1, W_1 \oplus W_2)$, contrary to 4.1.1(v). Similarly, if $\omega^k = 1 \neq \omega'$, then $V = W_1 \perp (W_2 \oplus W_3) \perp W_4$ and $H \leq N_{G_0}(W_1, W_1 \perp W_4)$, contradicting 4.1.1(v) again. The case $\omega \neq 1 = \omega'$ is entirely similar, and we conclude that $g \in \langle x, y \rangle$. Thus (4d) holds, as desired.

Case $s = 2$. Here $q + 1$ is a power of 2 and x, y are involutions in $Z(M_0)$. Hence there is a minimal normal subgroup K of M contained in $Q_1(G_2(Z(M_0)))$, and by 1.3.1(iii) we have $M_0 - N_{G_0}(K)$. Since $q + 1$ is a power of 2, so is $n = \log_2(q)$, and thus $\text{Out}(G_0)/O_2(\text{Out}(G_0)) \cong S_3$. As $O_2(M/M_0)$ acts trivially on K, it follows that $\text{Out}_M(K) \cong 1$, Z_3 or S_3. If $K \leq Z(M)$, then $|K| = 2$ and by 3.4.1, M_0 is an I_4^*-group, which is absurd. Therefore $\text{Aut}_M(K) \cong Z_3$ or S_3 and K is a 4-group. Thus by 4.1.1(vii), K is $2BCD$-mixed. Since $q \equiv 3(4)$ it follows from 3.4.1(iii) and the definition in Section 3.2 that $M_0 = C_{G_0}(K)$ is an N_1-group.

We may assume hereafter that

M_0 is not contained in an R_{-2^r} or an F_2-group. (4e)

Proposition 4.1.3. If L is an R_{+2^r}- or I_{4^s}-group, then $q \geq 3$ and M_0 is an N_{+r}-group. If $q = 3$, then $A_4 \leq \pi(G)$.

Proof: By 2.2.8, M_0 is contained in an R_{+2^r}-group R and an I_{4^s}-group I. Let $\eta(R) = \langle w \rangle$ and $\eta(I) = \langle z \rangle$ be the cyclic groups of order r as in 3.2.1. Thus $M_0 \leq R \cap I = C_{G_0}^*(w) \cap C_{G_0}^*(z)$. Also write $R = N_{G_0}(U)$, $I = N_{G_0} \{V_1, V_2\}$ as in 3.2.1.

Suppose in this paragraph that $q \leq 3$. Then $M_0 \leq S$, where S is the stabilizer in G_0 of the unique 1-space in U. By 3.1.1(vi), $M_0 < S \cap S^r \cong G_2(q)$. Now $S \leq C_{G_0}(\bar{r})$, where $r \in O$ is a reflection in a vector of norm 1, and $\pi(\bar{r}) = (12)$ (see (1i)). Thus $\pi(\langle \bar{r}, \bar{r}^3 \rangle \rangle) = \langle (123), (12) \rangle = S_3$ and by 3.1.1(iv), $N_A(S \cap S^r) = (S \cap S^r) \times \langle \bar{r}, \bar{r}^3 \rangle$. Obviously M_0 extends from $S \cap S^r$ to $(S \cap S^r) \times \langle \bar{r}, \bar{r}^3 \rangle$, and so by 1.3.3(ii), $S \cap S^r$ does not extend from G_0 to G. Consequently $G \not\leq G_{S_3}$, which means $A_4 \leq \pi(G)$ and $q = 3$.
Thus it remains to show that M_0 is an N_2-group.

Case r odd. As in the proof of 4.1.2 (Case s odd), we have $w, z \in J = \Omega_1(Z(H))$, $M_0 = N_{G_0}(J)$, $J = \langle -1 \rangle \times J_0$, and $\langle \hat{w}, \hat{z} \rangle \leq J_0 \cong J$. Hence there is a basis $\beta = (v_1, ..., v_8)$ with respect to which J_0 is a group of diagonal matrices. As in the proof of 3.2.3, we may write

$$\hat{w} = \text{diag}(\omega, \omega^{-1}, 1, 1, 1, 1, 1, 1)$$

and

$$\hat{z} = \text{diag}(\omega, \omega^{-1}, \omega, \omega, \omega^{-1}, \omega^{-1}, \omega^{-1}),$$

where $U = \langle v_1, v_2 \rangle$, $V = \langle v_3, ..., v_8 \rangle$ and $\omega = \omega_r$ is a primitive rth root of unity in F. Also \hat{H} fixes the t.s. planes $X = \langle v_3, v_4, v_5 \rangle$ and $Y = \langle v_6, v_7, v_8 \rangle$, and the representation of \hat{H} on X is dual to its representation on Y (see 1.2.2). We claim

$$J = \langle w, z \rangle. \quad (4f)$$

Take $g \in J$ and write $\hat{g} = \text{diag}(\omega', \omega^{-i}, \omega', \omega, \omega^{-i}, \omega^{-k}, \omega^{-i})$. Now multiply \hat{g} by $\hat{z}^{-r} \hat{w}^{j-t}$ to ensure that $i = j = 0$. Suppose that $\omega^k \neq 1 \neq \omega'$. Then $H \leq C_{G_0}(\hat{g}) \leq N_{G_0}(C_{\hat{H}}(\hat{g})) = \langle v_1, v_2, v_3, v_6 \rangle$. If $a \in \{1, 2, 3, 6\}$ then $(v_a, v_4) = (v_a^2, v_4^6) = \omega^k (v_a, v_4)$, whence $(v_a, v_4) = 0$. Similarly $(v_a, v_5) = (v_a, v_7) = (v_a, v_8) = 0$, and so $V = C_{\hat{H}}(\hat{g}) \perp \langle v_4, v_5, v_7, v_8 \rangle$, which means $C_{\hat{H}}(\hat{g})$ is a +4-space. But then $H \leq N_{G_0}(\{U, C_{\hat{H}}(\hat{g})\})$, contrary to 4.1.1(v). Now suppose that $\omega^k = 1 = \omega'$. Then $V = C_{\hat{H}}(\hat{g}) \perp \langle v_5, v_8 \rangle$, which means H fixes the +4-space $V \perp \langle v_5, v_8 \rangle$, contradicting 4.1.1(v) again. The case $\omega^k \neq 1 = \omega'$ is identical, and so $\omega^k = \omega' = 1$, proving (4f). Hence M_0 is the N_2-group $C_{G_0}(w) \cap C_{G_0}(z)$.

Case $r = 2$. Here $q - 1 = 2^i$ for some $i \geq 1$, hence $n = \log_p(q) \leq 2$. Suppose that $2 \mid |Z(M_0)|$. Then there is a minimal normal subgroup K of M contained in $\Omega_2(O_2(Z(M_0)))$, and $M_0 = N_{G_0}(K)$. As $n \leq 2$, $\text{Out}(G_0)$ is a subgroup of $Z_2 \times S_4$, so the argument used in the proof of 4.1.2 (Case $s = 2$) shows that M_0 is the centralizer of a $2BCD$-mixed 4-group, and hence by (4e), M_0 is an N_2-group. Assume therefore that

$$2 \mid |Z(M_0)|. \quad (4g)$$

Then $N_{G_0}(U)$ does not centralize an involution and so 3.4.1(iii) yields $q = 3(4)$. Therefore $q = 3$ and so $w, z \in D \setminus G_0$. Now w inverts wz, hence w inverts $(wz)^2 \in G_0$. However $w, z \in C_D(M_0)$, hence $(wz)^2 \in C_{G_0}(M_0) \leq M_0 \leq C_{G_0}(\langle w, z \rangle)$, hence w centralizes $(wz)^2$. Therefore $|\langle wz \rangle|^2 \leq 2$, and thus $(wz)^2 = 1$ by (4g). Therefore $[w, z] = 1$, whence $N_{D}(M_0) = M_0 \times \langle w \rangle \times \langle z \rangle$. It follows from (4g) that $\langle w, z \rangle = O_2(Z(N_{D}(M_0)))$ and so
M normalizes $\langle w, z \rangle$. Therefore $M = N_G(\langle w, z \rangle)$ hence M_0 is the N_2-group $C_{g_0}(\langle w, z \rangle)$.

Hereafter we can assume that

\[M_0 \text{ is not contained in an } R_{+2}^- \text{ or } I_{44}^- \text{-group.} \quad (4h) \]

Proposition 4.1.4. If L is an R_{44}^- or an R_{44}-group, then M_0 is a parabolic subgroup of G_0 corresponding to the central node of the Dynkin diagram.

Proof. The arguments in this proof rely on the facts that A acts on the set $\mathcal{S} \cup \mathcal{S}_1 \cup \mathcal{S}_2$ and that A preserves incidence therein (see Sect. 1.6). We may write $M_0 \leq L = N_{G_0}(\langle v \rangle)$, where $v \in V$ and $\langle v \rangle \in \mathcal{P}$, and we put $V_1 = \langle v \rangle^\tau \in \mathcal{S}_1$ and $V_2 = \langle v \rangle \in \mathcal{S}_2$. Thus $M_0 \leq N_{G_0}(V_i)$ for $i = 1, 2$.

Step 1. $v \in V_1 \cup V_2$.

Assume otherwise. As $v \not\in V_1$, $\dim(V_1 \cap V_2) = 1$ (because τ preserves incidence) and we fix $w \in (V_1 \cap V_2) \setminus \{0\}$. Now $(v, w) = 0$ by (4h), hence $v \in w^\perp = V_1 + V_2$. Thus $w = v_1 + v_2$ where $v_i \in V_i$. It follows that M_0 fixes the t.s. lines $\langle v_i, w \rangle$. Observe $v \notin V_1 - V_1^\perp$ and hence $v^\perp \cap V_1$ is an M_0-invariant plane. Furthermore $(v_1, v) = (v_1, v_2) = Q(v) - Q(v_1) = 0$ and so $v_1 \in v^\perp$. Thus M_0 stabilizes the flag $(\langle w \rangle, \langle v_1, w \rangle, v^\perp \cap V_1, V_1)$, against 4.1.1(iii).

Step 2. $v \in V_1 \cap V_2$.

Assume for a contradiction that $v \notin V_1$, and as in Step 1 let $\langle w \rangle = V_1 \cap V_2$. Notice that Step 1 forces $v \in V_2$. So as τ preserves incidence, the t.s. point V_1^τ is contained in V_1. Now $V_1^\tau \not\subseteq V_2$ (since $v \notin V_1$), hence $V_1^\tau \not= \langle w \rangle$. Also $V_2^\tau \subseteq v^\perp$ by (4h) and so M_0 stabilizes the flag $(\langle w \rangle, \langle w \rangle \oplus V_2^\tau, V_1 \cap v^\perp, V_1)$, another contradiction. Therefore $v \in V_1$ and a similar argument (which uses τ^2 instead of τ) shows that $v \in V_2$.

Step 3. $\tau^3 \in N_{Pr}(\langle v \rangle)$.

Write $\langle u \rangle = \langle v \rangle^\tau \in \mathcal{P}$. Since τ preserves incidence, Step 2 guarantees that $u \in V_1 \cap V_2$. Thus if $\langle u \rangle \neq \langle v \rangle$, then M_0 fixes the flag $(\langle v \rangle, \langle u \rangle, V_1 \cap V_2, V_1)$, a contradiction.

Step 4. M_0 fixes a unique t.s. point.

Let $\langle x \rangle$ be a t.s. point fixed by M_0 and set $W_1 = \langle x \rangle^\tau \in \mathcal{S}_1$ and $W_2 = W_1^\tau \in \mathcal{S}_2$. We claim that

$$x \in V_1.$$ \hspace{1cm} (4i)

Otherwise, $x \not\in V_1$ and so $W = V_1 \cap x^\perp$ has dimension 3. Applying Step 2 to x yields $x \in W$, hence $V_1 \cap W_2 \leq W$. And as $(v, x) = 0$ (by (4h)),

\[x \in V_1. \]
\[v \in W. \] However \(\langle x \rangle \) and \(V_1 \) are not incident, hence \(W_2 \) and \(V_1^2 \) are not incident. But \(V_1^2 = \langle v \rangle^2 = \langle v \rangle \) by Step 3, whence \(v \notin W_2 \). Therefore \(v \in W \setminus (V_1 \cap W_2) \) which means \(V_1 \cap W_2 \neq W \). Thus as \(\dim(V_1 \cap W_2) \) is odd, \(V_1 \cap W_2 \in \mathcal{P} \). Therefore \(M_0 \) stabilizes the flag \((V_1 \cap W_2, (V_1 \cap W_2) \oplus \langle v \rangle, W, V_1) \), a contradiction. Therefore (4i) holds, and similarly \(x \in V_2 \). However, because \(M_0 \) stabilizes no flag, \(M_0 \) fixes a unique point in the plane \(V_1 \cap V_2 \), hence \(\langle v \rangle = \langle x \rangle \), as required.

Step 5. Conclusion.

By Step 4, \(M \cap P \Gamma \) fixes \(\langle v \rangle \) and hence normalizes \(L \). Therefore by 4.1.1(vi), \(M_0 = L \cap L^i \cap L^2 = \mathcal{N}_{G_0}(\langle v \rangle, V_1, V_2) \), and the result now follows from Section 1.6. □

Recall that \(R_{s3^*} \)-groups are contained in \(R_{s4^-} \)-groups (see (10)). Thus we can assume hereafter that

\[M_0 \text{ is not contained in an } R_{s1^-}, R_{s3^-}, \text{ or } R_{s4^-} \text{-group.} \] \hspace{1cm} (4j)

Proposition 4.1.5. If \(L \) is an \(R_{s1^-} \)-group, then \(M_0 \) is a \(G_2 \)-group.

Proof. Write \(M_0 \leq L = \mathcal{N}_{G_0}(W) \), where \(W \) is a nonsingular 1-space. By (4e), (4h), and (4j), \(M_0 \) fixes no other nonsingular 1-space. Therefore \(M \cap P \Gamma \) normalizes \(L \), whence \(M_0 = L \cap L^i \cap L^2 \) by 4.1.1(vi). Now \(L^2 \) is a \(K_1 \)-group (2.2.4), hence by 3.1.1(vi), \(G_2(q) \simeq L^i \cap L^2 = \mathcal{N}_{L}(X) \) for some nonsingular 1-space \(X \). Thus \(W = X \) and \(M_0 = L \cap L^i \simeq G_2(q) \). □

Thus we may assume that

\[M_0 \text{ is not contained in an } R_{s1^-} \text{-group.} \] \hspace{1cm} (4k)

Proposition 4.1.6. If \(L \) is an \(R_{s2^-} \)-group, then \(M_0 = L \).

Proof. Write \(M_0 \leq L = \mathcal{N}_{G_0}(W) \), where \(W \) is a t.s. line in \(V \). If \(W \) is the unique t.s. line fixed by \(M_0 \), then \(M \) normalizes \(L \) and the proposition follows. So assume for a contradiction that \(M_0 \) fixes another t.s. line \(U \neq W \). By (4j), \(W \cap U = W \cap U^\perp = 0 \), hence \(W \oplus U \) is a \(+4 \)-space and \(M_0 \) is irreducible on \(W \) and \(U \). Define \(Y = (W \oplus U) \perp \), a \(+4 \)-space. By (4e), (4h), and (4k), \(M_0 \) does not fix a 1-space or a n.d. 2-space in \(Y \). And if \(M_0 \) fixes a t.s. line \(Y_0 \) in \(Y \), then \(M_0 \) fixes the t.s. solid \(W \perp Y_0 \), against (4j). Therefore \(M_0 \) is irreducible on \(Y \), hence \(Y \) is the unique 4-space upon which \(M_0 \) acts irreducibly. Thus \(I = \mathcal{N}_{G_0}(U \oplus W, Y) \) is the unique \(I_{+,4} \)-group containing \(M_0 \), which means \(M \) normalizes \(I \). But then \(M = \mathcal{N}_{G}(I) \) and so \(M_0 = I \), a contradiction. □

We hereafter assume that

\[M_0 \text{ is not contained in an } R_{s2^-} \text{-group.} \] \hspace{1cm} (4l)
Clearly (4j) and (4l) imply that M_0 does not fix a nonzero t.s. space and therefore by [4],
\[O_p(M_0) = 1. \] (4m)

Proposition 4.1.7. If L is an I_{64}-group, then $\varepsilon = +$, and $M_0 = L$.

Proof. First observe that (4e)-(4m) imply

Step 1. Any nonzero irreducible M_0-submodule of V is n.d. of dimension 3, 4, 5, or 8.

Now write $M_0 \leq L = N_{O_3}(U, W)$, where U and $W = U^\perp$ are $\varepsilon 4$-spaces. Define
\[N = N_{M_0}(U), \]
so that $|M_0 : N| \leq 2$.

Step 2. N is irreducible on U and W.

By Step 1 we can assume that $N \neq M_0$. Let $X \neq 0$ be an irreducible \hat{N}-submodule of U and choose $g \in M_0 \setminus N$. Then $X \perp X^g$ is M_0-invariant, hence by Step 1, $X \perp X^g$ is either a n.d. 4-space or is all of V. The former cannot hold by 4.1.1(v), hence $X = U$, as required.

Step 3. H is irreducible on U and W.

Otherwise there exists an irreducible \hat{H}-submodule U_1 of U, with $0 < U_1 < U$. If $\dim(U_1) = 1$, then \hat{H} may be diagonalized on U by Clifford's Theorem. But then $\hat{H}(U) = \langle -1_U \rangle$, contrary to 4.1.1(iv). Also U_1 is not a n.d. 2-space by 4.1.1(v). Therefore U_1 is a t.s. line, which means $\varepsilon = +$. If H is irreducible on W, then W is the unique 4-space upon which H acts irreducibly, hence L is the unique I_{+4}-group containing H. Thus M normalizes L, whence $M_0 = L$. So it may be assumed that H is also reducible on W, and the previous argument shows that \hat{H} acts irreducibly on a t.s. line, $W_1 \leq W$. In particular, all irreducible constituents of \hat{H} on V have dimension 2. But H fixes the t.s. solid $U_1 \perp W_1$ and so (by applying triality) H also fixes a t.s. point, whence \hat{H} has an irreducible constituent of dimension 1. This contradiction completes the proof of Step 3.

Step 4. We can assume that $U \cong W$ as \hat{H}-modules and that \hat{H} is absolutely irreducible on U.

Case $\varepsilon = +$. If $U \cong W$ as \hat{H}-modules, then U and W are the only nonzero irreducible \hat{H}-submodules of V, hence L is the unique I_{+4}-group containing H. Therefore $M_0 = L$, as required. Thus it may be assumed that $U \cong W$ as \hat{H}-modules. Suppose now that \hat{H} fails to be absolutely irreducible on U. Then by 7.6.1 of [2], $\hat{H}(U)$ embeds in a group $\Omega_2^+(q^2)$ or $GU_2(q)$. In
either case, \(\hat{C} \) contains a group \(C_1 \) satisfying \(Z_{q+1} \cong C_1 < \Omega(U) \). Since \(U \cong W \) as \(\hat{H} \)-modules, \(C_{\hat{H}}(W) = 1 \) and so \(C_1 \cap \hat{H} = 1 \). Therefore \(\hat{C} \) embeds in \(M_0/\hat{H} \), which means \(|C_1| = q + 1 \) is a power of 2. Consequently \(q \) is odd and \(n = \log_p(q) \) is also a power of 2. Thus \(M_0 \) centralizes the involution in \(Z(L) \) and reasoning as in the proof of 4.1.2 (Case \(s = 2 \)), we deduce that \(M = N_{\hat{G}}(K) \), where \(K \leqslant \Omega_1(O_2(Z(M_0))) \) and \(|K| \leqslant 4 \). Clearly \(|K| \neq 4 \) by 4.1.1(iv) and Step 1, so we have \(|K| = 2 \). Therefore \(M_0 \) is the centralizer of a 2A-involution, hence \(M_0 \) is an \(I_{+4} \)-group, as desired. Thus it may be assumed that \(\hat{H} \) is absolutely irreducible on \(U \).

Case \(\varepsilon = - \). If \(\hat{H} \) fails to be absolutely irreducible on \(U \), then by 7.6.1 of [2], \(\hat{H}(U) \) embeds in a group \(SO_2^1(q^2) \), which is abelian. Therefore \(\hat{H}(U) = \langle -1_U \rangle \), contrary to 4.1.1(iv). Thus we can suppose that \(\hat{H} \) is absolutely irreducible on \(U \) and similarly on \(W \). As \(M_0 \) is contained in an \(F_{-1} \)-group (see 2.2.8), \(\text{Hom}_{\hat{H}}(V) \) contains a quadratic field extension of \(F \). Therefore \(C_{GL(V)}(\hat{H}) \) contains a group \(Z_{q^2}^{-1} \). If \(U \not\cong W \) as \(\hat{H} \)-modules, then \(C_{GL(V)}(\hat{H}) \) fixes both \(U \) and \(W \) and induces scalars on these spaces. But this means \(C_{GL(V)}(\hat{H}) \cong Z_{q-1} \times Z_{q-1}^{-1} \), a contradiction. Therefore \(U \cong W \), and Step 4 now follows.

Step 5. Conclusion.

Fix a basis \(\beta_1 = (u_1, u_2, u_3, u_4) \) of \(U \). By Step 4, there is a basis \(\beta_2 = (w_1, w_2, w_3, w_4) \) of \(W \) such that that elements \(h \in \hat{H} \) have the form

\[
h = \begin{pmatrix} b & 0 \\ 0 & b \end{pmatrix} \quad (b \in GL_4(q)),
\]

with respect to \(\beta = (\beta_1, \beta_2) = (u_1, ..., u_4, w_1, ..., w_4) \). We write \(h = 1 \otimes b \) and in general we write \(a \otimes b \) for the matrix

\[
\begin{pmatrix} xb & yb \\ zb & wb \end{pmatrix} \in GL(V),
\]

where \(b \in GL_4(q) \) and \(a = (x \ y) \in GL_2(q) \). With this convention, Step 4 yields \(C_{GL(V)}(\hat{H}) = GL_2(q) \otimes 1 \) and

\[
C_{\hat{H}}(\hat{H}) \leqslant \langle -1, z \rangle, \quad \text{where} \quad z = (-1)^{-1}_U 1 = -1_U. \tag{4n}
\]

Notice that 1.2.3 implies \(C_{\hat{H}}(\hat{H}) = \hat{C} = C_{\hat{M}_0}(\hat{H}) \). In particular,

\[
|\hat{C}| = 2|C_{\hat{H}}(\hat{H})|. \tag{4o}
\]

Moreover the proof of 1.7.1(i) shows that there exists \(\lambda \in F^* \) such that

\[
Q(u_i) = \lambda Q(w_i), \quad 1 \leq i \leq 4. \tag{4p}
\]
If $-\lambda^{-1} = \mu^2$ for some $\mu \in F$, then H fixes the t.s. solid $\langle u_i + \mu w_i : 1 \leq i \leq 4 \rangle$. But then H fixes a t.s. point, contrary to Step 3. Therefore $-\lambda$ is a non-residue, and so q is odd.

Case $\varepsilon = +$. Here equality holds in (4n) and it follows from (4o) that $|\hat{C}|$ is 4 or 8. If $|\hat{C}| = 4$, then $\hat{C} = \langle -1, z \rangle$ and $C = \langle \hat{z} \rangle$; hence $M_0 = C_{g_0}(\hat{z}) = L$, as desired. If, however, $|\hat{C}| = 8$, then $C \cong \mathbb{Z}_4$ or $(\mathbb{Z}_2)^2$. In the former case, $M_0 = C_{g_0}(\Omega_1(C)) = C_{g_0}(\hat{z}) = L$, as required. And the latter case is ruled out by Step 1 and 4.1.1(vii).

Case $\varepsilon = -$. Since $-1 \not\in \Omega(U)$, we have $z \not\in \Omega$ and so (4n) yields $C_{g_0}(\hat{H}) = \langle -1 \rangle$. Therefore $|C| \leq 2$ by (4o). If $|C| = 2$, then $M_0 = C_{g_0}(C)$ is an involution centralizer which means M_0 is an I_{+4}-group. But $I_{+4} \not\leq I_{-4}$, hence $C = 1$ and so $\hat{C} = C_{g_0}(\hat{H}) = \langle -1 \rangle$. Consequently

$$|C_{SO}(\hat{H})| \leq 4. \quad (4q)$$

Let F be the matrix of the bilinear form $(\ , \)$ on U with respect to β_1. By (4p), the matrix of $(\ , \)$ on V with respect to β is $f \otimes F$ where $f = (1 \ 0) \in GL_2(q)$. Thus $C_O(\hat{H}) = \{ g \otimes 1 \in GL_2(q) \otimes 1 : g'fg = f \}$. Since $-\lambda$ is a nonresidue, f is the matrix of a nondegenerate symmetric form on a 2-space which gives rise to an O_ε^2-geometry (see 1.2.1). Therefore $C_O(\hat{H}) \cong O_\varepsilon^{-2}(q) \cong D_{2(q+1)}$. And if $g \otimes 1 \in C_O(\hat{H})$, then $\det(g) = \pm 1$ and so $\det(g \otimes 1) = \det(g)^q = 1$. Consequently $|C_{SO}(\hat{H})| = |C_O(\hat{H})| = 2(q+1)$, against (4q). \blacksquare

By 2.2.8, we may assume hereafter that

M_0 is not contained in an I_{+4}, I_{-4} or F_1-group. \hspace{1cm} (4r)

Proposition 4.1.8. If L is an R_{+3}, T, or S-group, then $M_0 = L$ and L is an S_x-group for some prime divisor x of $n = \log_3(q)$.

Proof. We argue that

$$C_D(M_0) = 1. \quad (4s)$$

Take $x \in C_D(M_0)$ of order r, where either $r = 1$ or r is prime. Evidently $r \neq p$ in view of (4m). Thus (4e), (4h), (4r), and 3.4.1(i), (ii), (iii), (vii) ensure that $r \neq 2$. Consequently r is odd and $x \in C_{g_0}(M_0) \leq M_0$ and $\hat{M}_0 \leq C_{g_0}(\hat{x})$ by 1.2.3. Suppose for the moment that M_0 is reducible. By (4e), (4h), (4j), (4k), (4l), and (4r), q is odd and M_0 acts irreducibly on W and W^\perp, where W is a n.d. 5-space. If M_0 fails to be absolutely irreducible on W, then $\hat{M}_0(W)$ embeds in $GL_1(q^5) \cong \mathbb{Z}_{q^5-1}$. But then $\hat{H}(W) = \langle -1, w \rangle$, contrary to 4.1.1(iv). Therefore M_0 is absolutely irreducible on W, and similarly on W^\perp. Thus by Schur's Lemma, \hat{x} induces scalars on both W
and W^\perp and so acts as ± 1 on W and W^\perp. Thus $r \leq 2$ and by a previous remark, $r = 1$. So we assume that M_0 is irreducible. Thus $E = \text{Hom}_{sk_0}(V)$ is a field, and if $E \neq F$ then the proof of 11.5 of [2] shows that M_0 is contained in a member of C_3; that is, M_0 is contained in an F_1- or F_2-group, contrary to (4r) and (4e). Therefore $E = F$, whence $x \in F \cap \Omega = \langle -1 \rangle$, and (4s) has been proved.

Now suppose that L is an $R_{\pm 3^r}$, T_r, or S-group. Then by 2.2.11, $L = C_{G_0}(y)$ for some $y \in A \setminus G_0$. Observe that the groups in 1.4.1(i), (ii), (iv) are not contained in L, hence 1.4.2(ii) ensures that $M_0 = C_{G_0}(y) = L$. By 2.2.5 and 2.2.10, the $R_{\pm 3^r}$, T_r, and S-groups are not normalized by a triality automorphism. Consequently $M_0 = L$ is an S_∞-group, as required.

Hereafter we can assume that

$$M_0 \text{ is not contained in an } R_{\pm 3^r}, T_r, \text{ or } S \text{-group.} \quad (4t)$$

Evidently (4e), (4h), (4j), (4k), (4l), (4r), and (4t) imply that

$$M_0 \text{ is irreducible on } V. \quad (4u)$$

Proposition 4.1.9. L is not an I_{42}-group.

Proof. Otherwise, $M_0 \leq L = N_{G_0}(\partial)$, where ∂ is an $\varepsilon 2$-decomposition $V_1 \perp \cdots \perp V_4$ for some $\varepsilon = \pm$. By (4u) and (4r), M_0 acts primitively on $\{V_1, V_2, V_3, V_4\}$, hence

$$M_0^0 \cong A_4 \text{ or } S_4. \quad (4v)$$

Observe that L is a Sylow r-normalizer in G_0 for all primes $r \geq 5$ dividing $|L|$. Thus M_0 has normal Sylow r-subgroups for all $r \geq 5$, hence 4.1.1(i) ensures that M_0 is a $\{2, 3\}$-group. Observe that $O_3(C_L(\partial))$ is abelian. Thus $O_3(L)$ is the set of 3-elements in $C_L(\partial)$. Similarly (4v) ensures that $O_3(M_0)$ is the set of 3-elements in $C_{M_0}(\partial)$, hence $O_3(M_0) \leq O_3(L)$. Now if $9 | |M_0|$, then $3 | |C_{M_0}(\partial)||$ and so $O_3(M_0) \neq 1$. Thus by 1.3.1(v), $O_3(L) \leq O_3(M_0)$. Therefore $O_3(M_0) = O_3(L)$ and so $M_0 = N_{G_0}(O_3(M_0)) = N_{G_0}(O_3(L)) = L$, against (4b). Therefore $|M_0| = 2^a 3$ for some a. This implies that $J = O_2(M_0) > 1$ and hence q is odd by (4u). Further

$$M_0/J \cong S_3 \text{ or } Z_3, \quad (4w)$$

hence 5.5 of [2], (4u), (4h), and (4r) imply that

J acts homogeneously on V. \quad (4x)

We now argue that

$$\Omega_1(Z(J)) \text{ is } 2A\text{-pure.} \quad (4y)$$
Otherwise, $Z(J)$ contains an involution in $2B \cup 2C \cup 2D$. Since τ normalizes $Z(J)$, J centralizes involutions in each of $2B$, $2C$ and $2D$. Thus

$$|\Omega_1(Z(J))| \geq 4 \quad (4z)$$

and \hat{J} fixes an e_2-space W (see 3.4.1(iii)). By (4x), \hat{J} acts faithfully on W and this means \hat{J} embeds in $O(W) \cong D_{2(q-\varepsilon_1)}$. Hence \hat{J} is either cyclic or dihedral and thus the same holds of J. Therefore (4z) implies that J is a 4-group, contradicting 4.1.1(vii) and (4u). Thus (4y) holds, and by 3.4.2, $|\Omega_1(Z(J))| \leq 8$. Now $|\Omega_1(Z(J))| \neq 4$ by 4.1.1(vii). Thus $|\Omega_1(Z(J))| = 2$ or 8, and so by (4w), M_0 centralizes an involution in $\Omega_1(Z(J))$. But then M_0 is contained in an I_{4+}-group, against (4r). This final contradiction finishes the proof.

Proposition 4.1.10. Assume that $q = p \geq 3$. If L is an I_{4+}- or E-group, then M_0 is an N_4-group.

Proof. By 2.2.6, we may write $M_0 \leq L = N_{G_0}(\partial)$ where ∂ is the e_1-decomposition $V_1 \perp \cdots \perp V_8$, and we put $K = O_2(L) = C_{G_0}(\partial)$. The group L^e acts faithfully on $K \cong 2^6$ as a subgroup of $O(K, Q_0, GF(2)) \cong O^{+}_{6}(2)$, stabilizing a quadratic form Q_0 on K defined as follows: if $k = \text{diag}(\varepsilon_1, \ldots, \varepsilon_8) \in K$, then $Q_0(k)$ is 0 or 1 according as the number of eigenvalues ε_i equal to 1 is congruent to 0 or 2 mod 4. One easily verifies that Q_0 is a nondegenerate quadratic form of defect 0. On the one hand M_0^e embeds in $O(K, Q_0, GF(2))$, and on the other, M_0^e embeds in S_8, acting faithfully on the 1-spaces V_i, $1 \leq i \leq 8$. By (4u), (4r) and 4.1.9, M_0^e is a primitive subgroup of S_8 and hence by [6], one of the following occurs:

1. $2^3:7 \leq M_0^e \leq 2^3:L_3(2) \leq S_8$,
2. $L_2(7) \leq M_0^e \leq \text{PGL}_2(7) \leq S_8$,
3. $A_8 \leq M_0^e \leq S_8$.

Suppose for the moment that $O_2(M_0) = 1$. Then (b) or (c) holds. It now follows from the facts that M_0 is irreducible ((4u)), M_0 is not contained in an F-group ((4e) and (4r)), M_0 is not contained in the stabilizer of a 4-decomposition of V ((4h) and (4r)), and M_0 is not contained in an S-group ((4t)), that $M_0 = M_0^e$ is a C_0-group. However, this contradicts 2.3.13. Therefore $O_2(M_0) \neq 1$, whence 3.1.1(v) ensures that $K \leq O_2(M_0)$. Since $N_{G_0}(O_2(M_0)) = M_0 \neq L = N_{G_0}(K)$, we have $K < O_2(M_0)$. Therefore $O_2(M_0^e) > 1$ and (a) occurs. Thus $|O_2(M_0)| = 2^9$, $M_0 = N_{G_0}(O_2(M_0)) \cong [2^9].L_3(2)$ and $M_0^e \cong 2^3:L_3(2)$. Thus M_0^e fixes a t.s. 3-subspace P of K in the $O(K, Q_0, GF(2))$-geometry associated with K. It follows from the definition of Q_0 and 3.4.1 that P is $2A$-pure. And as the 1-spaces V_i are isometric, P is nice (see Sect. 3.4). It now follows from 3.4.2 and 3.4.3 that $M_0 = N_{G_0}(P)$ is an N_4-group.

TABLE III

<table>
<thead>
<tr>
<th>Name</th>
<th>Order</th>
<th>Non-abelian composition factors</th>
<th>Restrictions on q</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_2</td>
<td>$\frac{1}{d^2}q^{12}(q^2-1)(q-1)^3$</td>
<td>$L_2(q)^*$</td>
<td></td>
</tr>
<tr>
<td>R_{22}</td>
<td>$\frac{1}{d^2}q^{12}(q^2-1)(q-1)$</td>
<td>$L_2(q)^*$</td>
<td></td>
</tr>
<tr>
<td>N_1</td>
<td>$\frac{2}{d^2}q^4(q^3+1)(q^2-1)(q+1)^2$</td>
<td>$U_3(q)^*$</td>
<td></td>
</tr>
<tr>
<td>N_2</td>
<td>$\frac{2}{d^2}q^4(q^3-1)(q^2-1)(q-1)^2$</td>
<td>$L_3(q)$</td>
<td></td>
</tr>
<tr>
<td>G'_2, $1 \leq i \leq d^2$</td>
<td>$q^4(q^6-1)(q^2-1)$</td>
<td>$G_2(q)'$</td>
<td></td>
</tr>
<tr>
<td>I_{+4}</td>
<td>$\frac{4}{d^2}q^4(q^3-1)^4$</td>
<td>$L_2(q)^*$</td>
<td></td>
</tr>
<tr>
<td>N_3</td>
<td>$\frac{16}{d^2}(q^2+1)^2$</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>I_{+2}</td>
<td>$\frac{192}{d^2}(q-1)^4$</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>I_{-2}</td>
<td>$\frac{192}{d^2}(q+1)^4$</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>S_*</td>
<td>$\frac{1}{d^2}q_0^{12}(q_0^6-1)(q_0^4-1)^2(q_0^2-1)$</td>
<td>$PO_{+}^+(q_0)$</td>
<td>α prime, $(\alpha, d) = 1$</td>
</tr>
<tr>
<td>S_2, $1 \leq i \leq 4$</td>
<td>$q^4(q-1)(q^2-1)^3(q^3-1)$</td>
<td>$PO_{+}^+(q_0)$</td>
<td>$q = q_0^2$, q odd</td>
</tr>
<tr>
<td>N_2, $1 \leq i \leq 4$</td>
<td>$2^{12}.3^2.7$</td>
<td>$L_3(2)$</td>
<td>$q = p > 2$</td>
</tr>
<tr>
<td>K_3, $1 \leq i \leq d^2$</td>
<td>$q^4(q^2-1)(q^2-1)$</td>
<td>$L_3(q)$</td>
<td>$2 < q = 1e1(3)$</td>
</tr>
<tr>
<td>K'_2, $1 \leq i < 2d^2$</td>
<td>$q^{12}(q_1^4+1)(q_1^2-1)(q_1^2-1)$</td>
<td>$3D_4(q_1)$</td>
<td>$q = q_1^2$</td>
</tr>
<tr>
<td>K'_3, $1 \leq i < d^4$</td>
<td>$2^{12}.3^2.7.1$</td>
<td>$\Omega^+_8(2)$</td>
<td>$q = p > 2$</td>
</tr>
<tr>
<td>K_6, $1 \leq i \leq 8$</td>
<td>$2^6.5.7.13$</td>
<td>$2_2(8)$</td>
<td>$q = 5$</td>
</tr>
</tbody>
</table>

* $L_2(2), L_3(3)$, and $U_3(2)$ are not simple.

4.2. Maximal amongst the Groups in \mathcal{G}_2

As Section 4.1 deals with the case in which M_0 is contained in a classical subgroup of G_0, and as 2.3.13 handles the case in which M_0 is a C_9-group, we may conclude

PROPOSITION 4.2.1. Suppose that $G_0 \leq G \leq A$, and $G \cap \mathcal{I} \neq \emptyset$. Then M_0 is G_0-conjugate to some member of \mathcal{G}_2, where \mathcal{G}_2 consists of the following groups in Table III.

For each $H \in \mathcal{G}_2$ we determine those G for which $N_G(H)$ is maximal in G. In doing so, we show that the remaining rows of the results matrix (Table I) hold, thereby completing the proof of our theorem.
PROPOSITION 4.2.2. Row 4 of the results matrix holds.

Proof. Since P_2 is a parabolic subgroup of G_0 corresponding to the central node of the Dynkin diagram of G_0, while R_{s2} corresponds to the three outer nodes, we have $P_2 \not< R_{s2}$. None of the other members of \mathcal{C}_2 contain a parabolic subgroup of G_0, hence the result follows.

PROPOSITION 4.2.3. Row 22 of the results matrix holds.

Proof. Order considerations eliminate all the groups in \mathcal{C}_2 as possible overgroups of N_2, save G_2 (when $q \leq 3$) and S_x. It follows easily from 2.4.1 that $L_3(q)$ is not involved in S_x, and hence $N_2 \not< S_x$. Since G_2 does not extend to $G = A'$ or $G_x = A$ when $q = 3$, the result follows from 3.2.3 and 4.1.3.

PROPOSITION 4.2.4. Row 26 of the results matrix holds.

Proof. Lagrange's Theorem ensures that N_1 is contained in no other group in \mathcal{C}_2, except possibly I_{-2} when $q = 2$, or K_5 when $q = 3$.

Suppose for a contradiction that $N_1 \not< I_{-2}$ when $q = 2$, and write $N = N_1$, $I = I_{-2}$. Assume that $I = N G_0 \{ V_1, \ldots, V_4 \}$, where $V_1 \perp \cdots \perp V_4$ is a -2-decomposition. We have $N \leq N(I(W))$ for some -2-space W. Note that $Syl_3(N) \subseteq Syl_3(G_0)$, and that $N(I(V_1)) \cong 3^4.2^3.S_3$ contains a Sylow 3-subgroup P of I. By Sylow's Theorem there exists $g \in I$ such that $P \leq N^g \leq N(I(W^g))$. It follows from 2.4.7 that P does not fix a nonzero t.s. space or a $+1$-space or a n.d. 4-space, hence P fixes a unique -2-space. Therefore $W^g = V_1$ whence

$$(3 \times GU_3(2)).2 \cong N^g = N(I(V_1)) \cong 3^4.2^3.S_3.$$

But this is impossible as $O_3(N) \cong 3 \times 3^{1+2}$ while $O_3(N(I(V_1))) \cong 3^4$. If $N_1 \not< K_5$ when $q = 3$, then order considerations and 2.4.7 force $N_1 \leq Sp_6(2)$. However $Sp_6(2)$ has no subgroup $2^2 \times U_3(3).2 \cong N_1$.

PROPOSITION 4.2.5. Rows 15–18 of the results matrix hold.

Proof. The fact that $G_2(q)$ has no nontrivial p-modular projective representations of degree less than 6, coupled with Lagrange's Theorem, ensures that $G_2(q)$ is contained in no other member of \mathcal{C}_2. Thus the result follows from 3.1.1.

PROPOSITION 4.2.6. Row 61 of the results matrix holds.

Proof. Lagrange's Theorem shows that N_4 is contained in no other member of \mathcal{C}_2, except possibly $K_5 \cong \Omega_5^+(2)$ when $q \in \{3, 7\}$. In these cases
\(N_3\) is a Sylow 5-normalizer of \(G_0\). By 3.3.1, a Sylow 5-normalizer of \(K_5\) has order 400, hence \(N_3 \not\subset K_5\) when \(q = 7\). When \(q = 3\), then \(|N_3| = 400\), so we may regard \(N_3\) as a Sylow 5-normalizer of \(K_5\), hence columns VI and VII of row 61 hold by 1.3.3(ii). Because \(K_5\) does not extend to \(G_{A_4}\) or \(G_{\Sigma}\), columns XIII and XIV also hold.

Proposition 4.2.7. Rows 51–54 of the results matrix hold.

Proof. Clearly \(N_4\) has 2-rank \(\geqslant 6\) and so \(N_4 \not\subset K_3\) (note \(q = p\) is odd). The fact that \(N_4\) is nonsolvable together with 3.4.2(ii)(c) imply that \(N_4\) is contained in none of the other groups in \(G_2\), except possibly \(K_5 \cong G_2(2)\). Suppose for a contradiction that \(N_4 \subset N_4(K_5)\), where \(G \cong G_0,4\) or \(G_0,3\). Then there exists \(\tau \in N_4 \cap G_5\), and by 2.3.8(ii), \(\tau\) induces a triality automorphism on \(K_5\). However, \(N_4\) is a parabolic subgroup of \(K_5\) which corresponds to just two nodes of the Dynkin diagram, and this means that \(N_4\) cannot be normalized by a triality automorphism of \(K_5\). This contradiction finishes the proof.

We have now completed the proof of our theorem.

Acknowledgments

This paper comprises part of the author’s Ph.D. work, which is being supervised by Dr. M. W. Liebeck and supported financially by Trinity College, Cambridge. The author would like to thank Professor J. H. Conway, Dr. S. P. Norton, Dr. R. A. Wilson, and especially Dr. Liebeck for many helpful conversations and invaluable advice. Special thanks are also due to R. A. Parker for helping me to use his modular character tables, and for allowing me to refer to them in this paper.

References

3. M. Aschbacher, Chevalley groups of type \(G_2\) as the groups of a trilinear form, preprint.
23. P. B. Kleidman, The maximal subgroups of the Steinberg triality groups $3D_4(q)$ and of their automorphism groups, *J. Algebra*, to appear.
25. P. B. Kleidman, The maximal subgroups of the Chevalley groups $G_2(q)$ with q odd, the Ree groups $^2G_2(q)$, and of their automorphism groups, *J. Algebra*, to appear.
34. R. A. Parker, “Modular Character Tables,” University of Cambridge, Cambridge.

