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ABSTRACT 

Recently the study of completely Positive maps has become important to the 
results of Brown, Douglas, and Fillmore on Ext( @), @a C*-algebra. Attempts to solve 
questions related to Ext have often turned into questions about the matrix algebras 
M,. In this paper we wish to discuss a notion of C*-convexity related to completely 
Positive linear maps, to state some facts about C*-convexity, and to ask some 
questions about C*-convexity. To a large degree, the tone of this paper is expository. 

Recently the study of completely positive maps has become important to 
the results of Brown, Douglas, and Fillmore on Ext(&), & a C*-algebra. 

Attempts to solve questions related to Ext have often turned into questions 
about the matrix algebras M,. In this paper we wish to discuss a notion of 
C*-convexity related to completely positive linear maps, to state some facts 
about C*-convexity, and to ask some questions about C*-convexity. To a 
large degree, the tone of this paper is expository. 

We shall let !2 (X) denote the algebra of bounded linear operators on a 

(separable) Hilbert space X, and let M, denote the algebra of complex n X n 
matrices. Our general references are [8] and [14]. 
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DEFINITION 1. A set XCC(X) is C*-cotzuex if {x~,...,x,}~%, and 

{A I,“‘, A,}CC(X) with Xy_,A:Ai=l implies that Z~_,A~X,A,E’%. 

Let us give some examples of C*-convex sets. Notice that {x} is C*-convex 
if and only if x=hl for some scalar X. 

EXAMPLE 1. Let $?= {T:O< T< l}; then 9 is C*-convex, for clearly 
O<ZA:T,A,,but Ti<l ~AfT,A,<A:A,,so~A:T,A,<~A:A,=1. 

EXAMPLE 2. Let X be the set of TE C( 3c) such that the numerical 
radius w(T) CT, for r>O. Then for zE%, 11 z II= 1, we have I(ZA:T,Ai~, z)l 

<Z~(A:T,A,~,~)~=Z~(T,A,Z,A,Z)~~~~~~A,Z~~~=~. 

EXAMPLE 3. Let C&= {T:I) T (I G R}; the? on C(%$ZM,, we have 

0 , nxn L 0 

XA; T,A, ... 0111 

0 

, nxn 

0' 

=R. 

0, 

Before the next example, we remind the reader that a linear map cp 
between C*-algebras 6? and $8 is said to be cmpbtely positive if for all n, 
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the map q,,=cp@id n : @@M,--+%@M, is positive. A well-known theorem of 
Stinespring characterizes completely positive maps. 

THEOREM 2 1161. The linear map cp : @&?I [CC(X)] is compktely 

positive if and only if there is a *-representation 57 of @ 012 C(X), for some 
Hilbert space x, and a map V: %---+x such that v(A)= V*r(A)V for all 

AE@. 

EXAMPLE 4. In [2,3], Arveson defined the nth matrix range of an 
operator T, denoted wn(T), as ‘?&(T)= {q(T): QJ is a completely positive 
map from C*(T)+M, with ~1(1)=1}. We claim that w”(T) is C*-convex; for 
if qi,.,., q,, are completely positive maps as above, and ZAFA, = 1, then 
o(A) = EA&(A)Ai is another such completely positive map. By 
Stinespring’s theorem it is evident that each summand Atq,Ai is completely 
positive, and it is easy to see that the sum of completely positive maps is 
completely positive. By Stinespring’s theorem each pr = x*rr,y, and q,(l) = 1 
implies x*x = 1; but then a(1) =XAty*FAA, =XA:(l)Ai =l. Thus if 
T l,...,T, E‘&(T), 01 en Ti =g),(T), where vi are as above, and ZATT,A, = 

a(T) @6(T). 

We remark that Examples 1, 2, and 3 are all special cases of Example 4 
[2,131. 

REMARK 1. If X is C*-convex, then x is convex in the usual sense. 

REMARK 2. If x is C*-convex and K EX, then { V*KV: V*V= l} LX 
and { VKV* : VV* = l} c x. In particular, if x is C*-convex, K EX, and L is 
unitarily equivalent to K, then L E%. 

REMMK 3. From Remark 2, it is easy to see that the segment [0, A] = 

{T: 0 < T < A} is not in general C*-convex, although the segment is convex in 
the usual sense [lo]. For example, if 

then 

is unitarily equivalent to A, but B #A (and also A 4 B). 
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REMARK 4. The notion of C*-convexity is unchanged by translation by a 
fixed scalar, that is, X+ al is C*-convex if and only if x is. Thus if al EX, 
then for purposes of C*-convexity we can assume OE%. However, transla- 
tion by scalars is apparently the only allowable translation in the study of 
C*-convexiity, in contrast with the usual study of convexity [lo]. 

DEFINITIONS. If S G !2 ( X ). let MCL( S ) denote the smallest norm-closed 
C*-convex set containing S. 

REMARK 5. It is easy to see that MCL( S) = n X, the intersection taken 
over all norm-closed C*-convex sets x>S. Note also that MCL(S -X) = 
MCL(S)-X, and that MCL(S*)=MCL(S)*. 

LEMMA 4. If X is C*-convex, so is its nom closure. 

Proof. Let T,, . . . , T, E%, and let A,, . . . , A,, be such that DATA, = 1. 
Then for each i, ATA, < 1, so]] Ai I] < 1. Let E>O, and for each i, let S, be an 
element of ‘% with ]I Ti - Si )I < e/n. Then by hypothesis we have ZA:S,A, E 
X, and furthermore llzATT,Ai - ZATS,A, II = llZAT(T, - S,)A, 111 
ZJIA:(T,-S,)A,)I<ZJJA~JJJIT~-S,))I)A,)~~ZE/~=E. Hence ZA:T,A,EX, 
as was to be proved. n 

Let Co S denote the (usual) closed convex hull of S. 

LEMMA 5. MCL(S)=MCL(GS), for SC!?,(X). 

Proof. Clearly S c MCL(S); but MCL(S) is closed by definition, and 
convex by Remark 1 above. Thus G S GMCL( S), and hence MCL(GS) c 
MCL( S). On the other hand, S CG 5; therefore MCL( S) c MCL(GS). n 

The following results are consequences of the deep theory concerning 
Ext [4], but are readily obtainable from first principles. 

LEMMAS. Let S cC( X), where X is infinite dimensional. of S contains 
a compact operator, then 0 E MCL( S ). 

Proof. Let K be a compact operator in S, and let U denote a unilateral 
shift. We have that U”*K U” E MCL( S) for all positive integers n, while 
]JU”*KU”]J~O as n++ co. Thus, OEMCL(S) by closure. n 

We recall that if h Ea,,( T), then there exists an orthonormal sequence of 
vectors (x,} such that J/(T-A)x, )I-+0 as n++ co. 
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LEMMA 7. Zf Tee(X), X infinite dimensional, and AEa,,(T), then 
X E MCL( T). 

Proof. Let {x,,} b e an orthonormal sequence with I[( T-h)x, I( <l/2”, 
let {e,} be an orthonormal basis for ‘X, and let V be an isometry such that 
Ve,,=x,. We have that V*(T-A)VEMCL(T-A), and we claim that V*(T 
- A)V is compact. Indeed, if Pm denotes the projection onto the span of 

{e i,...,e,,,), then V*(T-h)VP, is finite rank and IIV*(T--h)V-V*(T-h) 
VP, I[+0 as m+ + co, since IIV*(T- X)V(l - P,,,)(2~,,aiej)ll < IJ(T-h) 
V(Iz,e”E m+laiei) II = IIxE= m+l”i(‘-‘)xi II ( xEm+lIaiI II (T-X)x, II ’ 
ccn+, lai12)1’2(~~m+l II(T-A)x, 11 2)1/2 < /JXTca=laiei /)/3X4”. Thus, we 
have that MCL(T- A) contains a compact operator. Hence, by Lemma 6, 
0 E MCL( T- X) and so X E MCL( T) by Remark 5. n 

We recall that the essential spectrum of T, u,(T), satisfies u,(T)= 

o,,(T) ub,,(T*) PI. 

LEMMA 8. Zf T E C ( X ), X separable and infinite dimensional, and 
AEu,(T), then AEMCL(T). 

Proof. If hEu,,iT), we are done by Lemma 7. Otherwise, x E uie( T*), 
and so by Lemma 7, A E MCL( T*) = MCL( T)* and we are done. n 

LEMMA 9. Zf TEM, and AEu(T), then hEMCL(T). 

Proof. There exists a unitary U such that the (1,1) entry of U*TU is A. 

If E,, i denote the usual matrix units, then we have that A = Z;_, 

EZtU*TUE,,i EMCL(T). n 

We shall show in Remark 11 that for X separable and infinite dimen- 
sional and TEE(X), it is possible for h~u(T), while ABMCL(T). 

The importance of Lemmas 8 and 9 is that any closed C*-convex set 
necessarily contains a scalar. Note also that in the finite dimensional case any 
C*-convex set contains a scalar. 

DEFINITION 10. For S, TEE(X), the C*-segment connecting S and T, 
denoted S(S, T), is defined to be the set {A*SA+B*ZB: A*A+B*B=l}. 

Examples show that S(S, T) is not, in general, C*-convex. Thus let 

T=O. 
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Then S(S, T) consists entirely of rank-l matrices; yet it contains S and 
0 0 

( 1 0 1’ 
whose midpoint is rank-e; so it is not even convex. However, we 

shall show (Theorems 15 and 16) that, as in ordinary convexity, if a set 
contains the C*-segments joining each pair of elements in the set, then the 
set is C*-convex. 

DEFINITION 11. For S, TEC(X), the C*-convex segment connecting S 

and T, denoted MS(S, T), is defined to be the set {EL, ATSA i 
+~~=,,BfTB,:ZiATA,+ZiBfBi=l}. 

LEMMA 12. For S, TEC(X), MS(S, T) is C*-convex and contains both S 

and T. 

Proof. Clearly S and T belong to MS(S,T). Let xi.... x, EMS(S, T), so 

each xk = ~~“,A(;)*SA’.k’ + Z ;L~B~(~)‘TB~~). If x;,rU,*Uk = 1, then 

x;!r U,“X, U, ==&,* (z$i A’;)’ SAC/) + 21;:;1Bi(k)*TB/k)) U, = &z;la,U,* 

A(~)*SA\kk7k + ZkZ&$JtB/k)*TB,(k)Uk. But looking at the coefficients, we 

have XkZ;la,U,*A\k’*A\ki”) U, + xkx;:lU;Bi(k)Bi(k)Uk = ~kU,*(~&A\k”’ + 

Z;&lB/k)*Bi(k))Uk =Z,U,*(l)U, = 1, completing the proof. n 

LEMMA 13. If T>O, then {S:OfS<T}cS(O,T). 

Proof. It suffices to show that if 0 < S < T, then there is an operator A 

with S=A*TA and A*A < 1, i.e., S=A*TA +mOm 

EMS(0, T). However, since 0 Q S G T, then 0 G fl < fl . By a theorem of 

Douglas [7] there is an operator A with ]I A I( < 1 such that V‘S = fi A. 

Then S=(fi)*fi =(A**)(* A)=A*TA, and ](A]] <l implies 

A*A < 1. n 

REMARK 6. From Remark 3, we see that the inclusion in Lemma 13 is, 
in general, strict. Furthermore, it is easy to see that S(0, 1) = MS(0, 1) = ‘?? as 
given in Example 1. 

COROLLARY 14. Let x be C*-convex, and suppose OE%. Then fm 

O<TEX, wehave {S:O<S<T}c%. 

REMARK 7. If x is C*-convex and 0 EX, then for ah X EX and 

]]A]] < 1, we have A*XAEX, for A*XA=A*XA+ m Om . 
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This means that we can write A*XA = 1 A 1 U*XU ) A 1, where A = U ) A ) is the 
polardecompo.sitionofA, soA*XA=(AIYIA(, where YE%. 

THEOIWM~~. LetXCM,.ThenXisC*-cunvexifandonlyifS(S,T)~ 
Xfbrall S and Tin x. 

Proof. If 3c is C*-convex, then clearly x contains S(S, T) for all S and T 
in X. 

To prove the converse, note that by Lemma 9 x contains a scalar, and 
since all of the above properties are preserved by translation by scalars, we 
may assume that OEX. 

To show that X is C*-convex, we need to show that if {X,, . . . , X,} c’% 
and Z;__AfAi=l, then Z2;_,,AfXiAi is in X. We shall prove by induction 
that if X contains every sum with 12 - 1 terms, then X contains every sum 
with n terms (n > 3). We note that 3c contains every sum with 1 or 2 terms 
by hypothesis. 

Given {X,,..., X,}cXand Zy==lAfAi=l, writeAi=U,Pi in canonical 
polar decomposition, so that Z T= 1 Pi2 = 1. Furthermore, if Yi = vX,U,, then 
by Remark 7, Yi E x. 

Let P= (l- P,2)@, so that C~~~Pi2=P2 and hence for l<i<n, Pi2<P2. 
We recall Douglas’ factorization [7J; for any v EX, 11 ev [I < 11 Pv (1, and so by 
setting I$( Pv) = Piv, we can define a contraction on the range of P which can 
be extended by continuity to the closure of the range. The orthocomplement 
of the range of P is the kernel of P, which is contained in the kernel of Pr, 

and for v in the kernel of P we set Biv = v/6? . Thus Bi P= Pi, and so 
P, = PB,?. For any vector of the form Pv, + v, wherev, is in the kernel of P, 
since P,v2 =0 for l<i<n, we have that 

n-l n-1 

z B:B,(Pv,+v~), Pv,+v, z Bi(Pvlfve),Bi(Pv1+v2) 
i=l i=l 

n-l 

= C( Pivi+ --J-v 
i=l VFi 

2, p,vi+ --J-v 
GT2 ) 
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Since the vectors of the form Pv, + v2 are dense in x, we have that 
Z;:h-,‘BfBi= 1. 

Finally, we may write Cy= 1 A;XiAi =C;_‘,,PiYiPi = P[CT:‘,-,‘B:Y,BJ 
P+ P,Y,P,, where the term in brackets belongs to x by the inductive 
hypothesis. Thus, since P2+ P,” = 1, we have written a sum with n terms as 
something which lies on the matricial segment connecting two members of 
X, and thus it is in X. This completes the proof. n 

We remark that the above proof works for closed subsets of C(X), since 
by Lemma 9 they also contain scalars. However, the hypothesis of closure is 
unnecessary. This fact was pointed out to us by the referee, to whom the 
following is due: 

THEOREM 16. Let xse( x), infinite dimensional. Then x is C*-convex 
if and only if S(S, T) cx fbr all S and T in x. 

Proof. It will be sufficient to show that if S(S, T) C% for all S, TEX, 
then X is C*-convex, since the other implication is clear. 

We begin by observing that if U: %-+%Bx is unitary, then X = U*( S G3 
T)U is in S(S,T). For if A,=(l@O)U, A,=(O@l)U, then A,, A,EC(X), 
A;A,+A*,A,= 1, and X=ATSA,+A*,TA,. 

Thus, if S(S, T)cX for all S and T in x, then by induction for any 

{X I,‘.‘, X,} C% and unitary U: %-+x@ * . * @x, we have U*(X1 
@... @X,)UEX. Thus, given {Al,..., A,}c!Z(x) with Zy_,,A:A,=l, 
and {X1,..., X,} CX, let U: ‘K-+XG3~~ * WIG be unitary, and set X- 
u*(x,@** . @X,)UE% and A=U*(A1@*.. @A,)Ee(x). We have 
C;_lA:X,Ai=A*XAEX, since A*A=l. This completes the proof of the 
Theorem. n 

We have been unable to find one proof which works in both the infinite- 
and the finite-dimensional case. 

REMARK 8. If x is C*-convex with OEX, and T=A:X,A,+A$X,A, 
where X,,X,EX and ATA,+AzA,=l, we can write T=(A,IY,IA,(+ 
(A,(Y,IA,I where Y1,YzEX. But since IA1~2+IA2~2=1, it follows that 
(A, I commutes with 1 A,I. That is to say, T can be written using commuting 
positive coefficients. 

The next lemma shows that for C*-convex sets, two coefficients usually 
suffice. 

LEMMA 17. Let X be a closed V-convex set. Let {Xi}T_I be a bounded 

subset of X, and let ZFAfAi=l (in nom). Suppose ZyAfXiAi=T~X. 
Then T=A*X,A+B*YB, where YEX~~~A*A+B*B=~. 
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Proof. I&Z=~A~A,;thenl-Z>~,sol--Zispositiveandinvertible; 

hence m is also positive and invertible. Now let B, = i A i(m ) - ‘, 

and for j>2 let Bi=Ai(m)-‘. Then ZZ~B~&=(~)-‘($A~A,+ 

xgAfA&fl )-’ = (m ) -‘(; A;A,+l-ATA,)(‘= 

(Vi?Z)-‘(l-Z)(m)-‘=I Then if Y=ErBFX,Bi, a simple norm 

estimate shows that YE%. Thus, we have that T=(i A1)*X1(i A,) + 

m Y fl, as desired. n 

We remark that the closure of X is not needed for finite sums, and if 
Zr_ iAfAi = 1 in the strong operator topology, we can take x to be strongly 

closed. 

REMARK 9. In view of the above results it is somewhat surprising that 

the sets {Ez*,,AfTAi:CAfA,= l} where the infinite sums are taken to 

converge either in norm, strongly, or weakly, while C*-convex, are not 

necessarily equal to MCL(T). To see this one need only consider a positive 

operator T with trivial kernel and 0 ~a,( T). By Lemma 8, OEMCL( T), 
while all of the elements of the above sets necessarily have trivial kernels. 

However, this problem does not occur in finite dimensions, as the 
following shows: 

LEMMA 18. Let X = {X,, . . . , X,} z M,. Then MCL(X) = 
{~~=XLIAfXjiAi:C~_,,AfAi=l (in norm), XiiEx}. 

Proof. Let @=M,@-** @M, (n times); then 6? is a C*-algebra with 
])X,@*** @X,])=max]]Xj]). Hence for X=X,@.*- @X,E@, the set 

Wk( X) is compact and C*-convex, and xCw,J X). Thus, MCL( X) cW& X). 
It is easy to see that any representation 7T of 6! is of the form V = si G3 . - * @rn, 
with each ri( Xi) = Xi@ l,, [ 141. Since every completely positive map from 

C*(X) to Mk can be extended to one from &? to Mk, by Stinespring’s theorem 
we conclude that %JX)= {AfXjiAj: ZAIA, = 1, strongly and Xii E’%}. 
Thus, ak(X) is contained in the strongly closed C*-convex set generated by 

X. But by the finite-dimensionality of M,, all closures coincide, so ‘?l$( X) = 
MCL(X), which concludes the proof. 

REMARK 10. This argument really shows that for bounded sets X, 
{E~AtX,Aj:ZA:Ai=l strongly, XiEX for all i} lies in every weakly 
(strongly) closed C*-convex set containing X. 
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LEMMA 19. Let x be a closed C*-convex set contained in M,, and let 
TEX. If W,,(T) denotes Aroewn’s nth matrix range of T (as in Example 4), 
then w”(T) cx. 

Proof. Let ‘p: M, +M, be a completely positive map with cp(l,)= 1,. 
Then by Stinespring’s theorem, cp = V*ITV, where r is a *-representation of 
M, and V*V=l. But this forces r(T)=T@l,: and V.$=(V,&...,V,t,...), 
where V,EM, and ZV:V,= 1, ( in norm) [14]. Then cp(T)=V*n(T)V 
=xy*TKYC. n 

COROLLARY 20. F0r TEM,, GWJT)=~~CL(T)={~~*TV~:~~*~=~>. 

Proof. We have that TE‘?&(T), since id: M,+M, is completely posi- 
tive, and by Lemma 19, ‘I&,(T) cMCL(T). However, W”(T) is compact [2], 
hence closed and C*-convex (Example 3), so MCL(T)C%“(T). The last 
inclusion was shown in the proof of Lemma 19. n 

By a result of [3] it follows that if S, Tare in M, and are irreducible, then 
S is unitarily equivalent to T if and only if MCL( S) = MCL( T). 

REMARK 11. In view of Corollary 20 and Remark 9, it is perhaps 
reasonable to conjecture that for X separable and infinite dimensional, 
MCL(T)_>{Z~“,,A~TA,:~~A:A,=l strongly}. This however is false, as the 
following example shows. 

Let T be the compact diagonal operator T= ( ti, /) with t,,, =h, t,, i =0 
otherwise. Then, if Ei, i denote the usual matrix units, we have Z;*, i EF, jE, i 
= 1 strongly, and Zp I E:, ,TE,, i =A strongly. However, since T is compact, 
every element of MCL(T) will be compact. This example shows that one can 
have A ~a( T), but X @MCL(T), and also X Ebb (the closed numerical 
range), while x@MCL(T). 

We now introduce a notion of extreme points in C*-convex sets. 

DEFINITION 21. Z is a proper matrix combination of {Xi,. . ., X,} if 
Z=Z;A:X, Ai where Z;A:A,= 1 and each A, is invertible. 

DEFINITION 22. Suppose X is a C*-convex set. Then ZEX is a C*- 
extreme point of X if whenever Z is a proper matricial combination of 

{X I,“‘, X,} LX, then each Xi is unitarily equivalent to Z. 

It is easy to see that for Ai scalars, Definition 22 reduces to the usual 
definition of an extreme point of a convex set, up to unitary equivalence. 
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Notice that by Lemma 17, we need only check sums with two terms for 

C*-extremeness. Furthermore, since each Ai is invertible, this means that in 
the polar decomposition A i = Vi Pi, Vi will be unitary. Thus, Z is a C*-extreme 

point of x if and only if whenever Z is a proper matricial combination of 

{.X1, X,} LX with positive, invertible coefficients, then each Xi is unitarily 
equivalent to Z. Note also that necessarily the positive coefficients commute. 

REMARK 12. If Z is an element in the C*-convex set X, then for any 

unitary U, W=U*ZUEX; so we can write Z=($U)W($)*+($ U)W(i U)*, 
that is Z is a proper matrix combination of W. This phenomenon explains the 
unitary equivalence statement in the definition of C*-extreme point. Only in 
the trivial case X= {X,1} is th e unitary equivalence unnecessary. 

FbfARK 13. Further, it follows that if Z is a C*-extreme point of the 

C*-convex set %, then for any W unitarily equivalent to Z, we have that W 

is also a C*-extreme point of x. Similarly, -Z and Z* will also be 
C*-extreme, in - X and X*, respectively. 

PROPOSITION 23. Zf T is a C*-extreme point of a C*-convex subset X of 

M,, then T is a linear extreme point of %. 

Proof. Suppose not; then T= tX + (1 - t)Y, where 0 < t < 1, X# T, and 

YZT. By the C*-extremity of T, X and Y are unitarily equivalent to T. 

Thus, T is written as a proper linear combination of points in its unitary 

orbit. By [9], every operator in M, is linearly extreme in its unitary orbit. 

This contradiction completes the proof. n 

PROPOSITION 24. Let ?B3, = {T: 11 T I( < l} cl?(x); then the unitaries are 

C*-extreme points of ?_Gw,. 

Proof. Let U be unitary and suppose 

< 1, Pi>0 for i=1,2 and Pf+PE=l. Note that 

that 

( U 
= 

-P,X,P, +Plx,P, 

-P,X,P, +p,x,p, 
* 

1. 
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Since U is unitary and the norm of the product is not greater than 1, we have 
that O= -P,x,P,+P,x,P,= - I’s X, P, + Pr X, Pa. From the first expression 
we see that X,=P;‘P,X,P,PL’, and from the second that X,=PT’P,X, 
P,P; ‘. Thus, we obtain X,PfPF2 =Pc2PfX2. Since P, and P2 commute, we 
see that X2 commutes with PfP;2=Pf(1-Pp12)-1= -l+(l-P,2)-‘= 
- 1 + PT2. Hence X2 commutes with Pi ‘, and so by the spectral theorem 
with P2 and P,. 

This shows that X, = P;‘P,X,P,P;‘=X,, and hence that U=P,X,P,+ 
P,X,P,=X,=X,. Thus Uis C*-extreme. n 

COROLLARY 25. If a3, GM,,, then the C*-extreme points of B3, are the 
unitaries. 

Proof. Since the linear extreme points of B3, are the unitaries, we are 
done by Propositions 23 and 24. n 

PROPOSITION 26. Let C?= {T:O< T< l}Cc(x), x separable; then the 
projections are C*-extreme in 9. 

Proof. Let P be a projection, and suppose P=P,X,P,+P,X,P,, with 
P,>O, O<Xi<l, and Pf+Pl= 1. If zEPX, then (X,P,z, P,z) + 
(X,P,z, P2z) =((P,X,P,+P2X2P2)z, 2) =(Pz. 2) =(z,z) =((P;+P;) 
z, z) =(PIx, P,x) +(Pzz, P2z), and since 09X,< 1, (XiPix, P,z) = 
(Piz,Piz) for i=l,2. Thus, Xi=1 on P,PX. A similar calculation shows 
that X,=0 on Pi(P and so P,PXnP,(PX)‘=(O). 

Since each Pi is invertible, P,Px and Pi( PX) L are closed subspaces with 
dim(PX)=dim(P,(PX)) and dim((PX)L)=dim(Pi(PX)L); further X= 
P,(Px)+P,(Px)‘. Thus for each i, %=‘!JKi+9Zi, where %, is a closed 
subspace with Xi = 1, %, is a closed subspace with X, = 0, and 9ki n ‘Xi = (0). 
Since each Xi > 0, it follows that each Xi is an orthogonal projection, and the 
dimensions then imply that each X, is unitarily equivalent to P. n 

PROPOSITION 27. Let S={T: -1 <T< l} be. Then s is C*-conuex, 
and the C*-extreme points of 5 belong to {2E- 1: E>O is a projection}. 

Proof. Since matrix combinations are scalar-order preserving, it is easy 
to see that s is C*-convex. For any T E s , we can write T= TI 8 T, where 
Ti > 0; let %=x,03%, be the corresponding decomposition of x and P,, P2 
the corresponding projections. Let Y = 2T, - 2T2 + P2 - P,; then YE $5. Fur- 



SOME REMARKS ON C*-CONVEXITY 75 

ther, T=& $- f Y 5 + 5 (PI -Pz) 5 . If T is C*-extreme in & then T is fl 

unitarily equivalent to PI-P,=2P,-1, so T=2E-1 where E>O is a 
projection. n 

PROPOSITION 28. Let $?‘y= {T:O< T< l}cE(x). Zf Q is a C*-extreme 
point of 9, then Q is a proiection. 

Proof. We claim that if Q is C*-extreme in ??, then T=2Q- 1 is 

C*-extreme in S. For suppose we write T= PIX, P, + Pz X, Pz as a proper 

matrix combination of {X,, X,} cS, where some Xi0 is not unitarily equiva- 

lent to T; let Yi = (1 + Xi )/2. Then Q = P,Y, P, + PzYz Pz is a representation of 
Q as a proper matrix combination of elements of 9, but since Xi0 is not 
unitarily equivalent to T, Yi, is not unitarily equivalent to Q. This con- 
tradicts the C*-extremity of Q, and hence T is indeed C*-extreme in $!I. But 

then by Proposition 27, ZQ- 1 = T= 2 E - 1, where E > 0 is a projection, and 
hence Q is a projection. n 

COROLLARY 29. Q is C*-extreme in 9 if and only if Q is a projection. 

REMARK 14. Corollary 29 shows that the C*-extreme points of 9 are 

identical with the usual extreme points [14]. Because of the unitary equiva- 
lence built into the definition of C*-extreme points, the C*-extreme points of 

?? are completely specified by giving the dimension and codimension of the 
projection; for finite dimensions, only the dimension is needed, so in M, 

there are basically only n+ 1 C*-extreme points. Notice also that in M,, 
every element of ?T is a matricial combination of at most two C*-extreme 

points, namely 0 and 1, for if 0 < T< 1, then T= fi lfi + \/i-T 

Om ; as a linearly convex combination of extreme points, such an 
element T will generally require many more than two extreme points. 

QUESTION 1. When are X and Y C*-extreme points of MS(X, Y)? The 

case {X, Y} = (0, l} shows that there may be many others. The same 
difficulty occurs when {X, Y} = { - 1, l}. 

REMARK 15. Since a C*-convex set is linearly convex, and since being 
linearly extreme is a unitary invariant, one expects that every C*-extreme 
point is linearly extreme (see Proposition 23). 
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REMARK 16. In a3, = {x: 1) x )I G l}, a C*-extreme point must have norm 
1, for ifO<]]r]J<l, we can write 

Hence x will be extreme only if I( x I( = 1. Proposition 24 establishes much 
more. 

We now wish to make some comments about the matrix ranges w,,(T). 
We have previously observed that w,,(T) is a compact C*-convex subset of 

M,. Let I’,, be the linear map from @“-+Cn+ given by P,([x,,...,x,]) 
Z [x 1’. . * > xn,Ol. 

PROPOSITION 30. l?w matrix ranges of an operator T satisfy wn(T) 

=P?%+ ,(T)P,. 

Proof. Let ‘p: C*(T)+M,+, be a completely positive map with q(l) = 

1 n+l* By Stinespring’s theorem, ‘p = V*TV, where 7~ is a *-representation of 

C*(T) on C(X) and V:C”+i-+YC with V*V=Z,+i. Then +=P,*(pP,,= 

P,*(V*pV)P,=(VP,)*a(VP,) is a completely positive map from C*(T)+ 
M,,and @J(~)=P,*(P(~)P,=P,*Z,+, n P =I,. This shows that P,*‘?&+,(T)P,,C 

(w%(T). 
Conversely, let ‘p: C*(T)+M, be completely positive with q(l) = 1. Then 

@ = P,,(pP,* is a completely positive map from C*(T)-+M,+ 1 with e(1) = P,P,“, 

which is a projection of rank n. Let u be a state on C*(T); then 6: x-+ 

e(x)(Z,+, - P,P,* ) is a positive linear map of C*(T) to an abelian C*-algebra, 
and hence completely positive [ 11. Then * = @ + 6 is a completely positive 

map from C*(T)-+M,+, with \E(1)=+~(1)+6(1)=P,P,* +(I,+,-P,P,*) 

=I .I+,* Then it is easy to see that P,*\kP, = P,*(+ + 6)P, =P,*(P,(pP,*)P, 

+i,*‘[&Z,+, -P,P,*)]Pi=cp and so “w;, cP,*~~+,P,,. n 

to us by Norberto The proof of the following result was pointed out 
Salinas. 

PROPOSITION 31. A set XC M, satisfies x= “us,(T) 

acting T if and only if X is compact and C*-convex. 

for some separably 

Proof. If x= WC,(T), then % is compact and C*-convex [3]. Conversely, 
if XC M, is compact and C*-convex, then x is hypoconvex in the sense of 
Salinas [15]. Hence, there is a separably acting operator T with R”(T) =x, 

and ‘j?&(T)=%. n 
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COMMENTS. Recently, Hopenwasser, Moore, and the author have shown 
that the C*-extreme points of B, cC( X) coincide with the linear extreme 
points. 

In several papers, Salinas has introduced sets of n X n matrices associated 
with an operator, for example the essential matricial spectrum. Furthermore, 
these sets are, in general, C*-convex. One of the useful results of Arveson is 
[l, 3.1.21, which states that for an operator T, a point in the spectrum of T 
which lies on the boundary of the numerical range corresponds to a 
character (complex homomorphism) of C*(T). There is reason to believe that 
a similar result holds for C*-extreme points, which would be extremely 
useful. We refer the reader to the work of Salinas for elaboration on this 
subject. Notice also that it is the finite-dimensional case which is of greatest 
interest. 

Also, suppose A, BEM, are irreducible, i.e., C*(A)= C*(B)= M,. Then 
Arveson has shown that A is unitarily equivalent to B if and only if 
wn(~)=wn(~) [2,3]. ~urth ermore, since by Proposition 31 any C*-convex 
subset of M, is the matrix range of some operator, we feel that the study of 
C*-convex sets would sharpen and/or make computationally feasible the 
results of Arveson on unitary equivalence of irreducible compact operators 

[31* 
Let O(X)={U*XU: U IS unitary}. It is not known if X is a proper 

matricial combination of points of 0(X). We have heard that A. M. Davie 
has done some work on this question. See [9] for some results on the linear 
extreme points of 0 (X). 

We should also remark that Davis [6] mentions C*-convexity, without the 
name and in another context; see p. 195. 

It is our feeling that for compact C*-convex sets a form of Krein-Milman- 
type theorem should hold. At present we do not know how to establish this 
result. If T is normal, then the linear structure of ‘?&(T) provides sufficient 
information to recapture much important information about T, but if T is not 
normal complications arise. It is to resolve these complications that our 
interest in C*-convexity arose. Furthermore, it is hoped that the set MCL( T) 
will serve as a useful notion of an “operator-valued spectrum” in the spirit of 
the papers of Hadwin [ 171. In a forthcoming paper we study MCL( T) in this 
context. 

Finally, we would like to remark that most of this work carries over when 
C(X) is replaced by a more general C*-algebra. For example, the set {X} 
would be C*-convex in the C*-algebra &? if and only if X is an element of the 
center of &. 

We wish to thank the referee and Norberto Salinus for their many 
contributions to this paper. In particular, Remark 9 and Theorem 16 are due 
to the referee, and Norbetio Salinus suggested Propositions 24 and 31. 
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