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a b s t r a c t

Motion planning is a fundamental problem of robotics with applications in many areas
of computer science and beyond. Its restriction to graphs has been investigated in the
literature, for it allows one to concentrate on the combinatorial problem abstracting from
geometric considerations. In this paper, we considermotion planning over directed graphs,
which are of interest for asymmetric communication networks. Directed graphs generalize
undirected graphs, while introducing a new source of complexity to the motion planning
problem: moves are not reversible. We first consider the class of acyclic directed graphs
and show that the feasibility can be solved in time linear in the product of the number of
vertices and the number of arcs. We then turn to strongly connected directed graphs. We
first prove a structural theorem for decomposing strongly connected directed graphs into
strongly biconnected components. Based on the structural decomposition, we show that
the feasibility of motion planning on strongly connected directed graphs can be decided in
linear time.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Motion planning is a fundamental problem of robotics. It has been extensively studied [10], and has numerous practical
applications beyond robotics, such as in manufacturing, animation, games [12] as well as in computational biology [15,5].
The complexity of motion planning, which is intrinsically PSPACE-hard [9,10], has received a lot of attention. The study of
motion planning on graphs was proposed by Papadimitriou et al. [14] to strip away the geometric considerations of the
general motion planning problem and concentrate on the combinatorial problem.
In this paper, we consider the feasibility of motion planning over directed graphs. Our results generalize results on

undirected graphs, which can be shown as a subclass of directed graphs. Directed graphs are of great importance in several
fields such as communication networks, which are frequently asymmetric [7]. But technically, directed graphs differ from
undirected graphs, for movements in the graph are not reversible.
Papadimitriou et al. [14] first introduced the problem of motion planning on graphs. They defined the Graph Motion

Planning with 1 Robot problem (GMP1R) as follows: Suppose we are given a graph G = (V , E) with n vertices, there is one
robot in a vertex s and some of the other vertices contain a movable obstacle. The objective of GMP1R is to move the robot
from the source vertex s to a destination vertex t with the smallest number of moves, where a move consists in moving
a robot or an obstacle from one vertex to an adjacent vertex that does not contain an object (robot or obstacle). It may be
impossible tomove the robot from s to t , for instance, if all the vertices other than s are occupied by obstacles. The feasibility
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problem of GMP1R is to decide whether it is possible or not to move the robot from the source vertex to the destination
vertex.
In [14], it was shown that the feasibility of GMP1R can be decided in polynomial time, and the optimization of GMP1R is

NP-complete (even on planar graphs). They also gave a O(n6) exact algorithm as well as a fast 7-approximation algorithm
for GMP1R on trees, a O(

√
n)-approximation algorithm for GMP1R on general graphs. Auletta et al. proposed more efficient

algorithms for the feasibility and optimization of GMP1R on trees in [1,2].
Motion planning on graphs has wide practical applications. Track transportation system [13] constitutes a typical

example: Vehicles move on a system of tracks such that each track connects two distinct stations. There is a distinguished
vehicle which moves from a source station to a destination station. There are other vehicles (obstacles) on the non-source
stations. The vehicles are only able to stop at the stations and not able to stop in the middle of tracks. They coordinate with
each other to let the distinguished vehicle move from the source station to the destination station. A variant of the previous
example is packet transfer in communication buffers. Graphs are regarded as (bidirectional) communication networks and
objects as indivisible packets of data. If there is a distinguished packet which moves from a source node to a destination
node, and there are already some other packets stored in the communication buffers of nodes in the network, the objective
is to move the distinguished packet from the source node to the destination node without exceeding the capacities of the
communication buffers of each node.
In practice, in the two previous examples, the tracks (links) between the stations (nodes) might be asymmetric. This

motivates the study of motion planning on directed versus undirected graphs.
Let us consider first the track transportation system. Some of the tracks may be unidirectional. For instance, if the two

stations are not at the same altitude, the track connecting them might be too steep, and the vehicles not strong enough to
climb up the track. Theremay also be unidirectional tracks as a result of security considerations. The vehiclemovement from
a source station to a destination station, on a track-transportation system containing unidirectional tracks, leads to motion
planning on directed graphs.
Now consider the packet transfer in communication networks. There might be unidirectional links in communication

networks. For instance, in wireless ad hoc networks, unidirectional links can result from factors such as heterogeneity of
receiver and transmitter hardware, power control algorithms, or topology control algorithms. Unidirectional links may also
result from interference around a node that prevents it from receiving packets even though the other nodes are able to
receive packets from it [11,7]. Networks with unidirectional links can be modeled as directed graphs. The problem of trans-
ferring a distinguished packet in networks with unidirectional links without exceeding the capacities of the communication
buffers amounts to solving motion planning on directed graphs.
Directed graphs generalize undirected graphs, while introducing a new source of complexity to the motion planning

problem: moves are not reversible, and motion planning might become infeasible after inappropriate moves.
In this paper, we first give a motivating example to illustrate that motion planning on directed graphs is much more

intricate thanmotion planning on graphs. Then, we consider the class of acyclic directed graphs.We show that the feasibility
of motion planning on acyclic directed graphs can be decided in time linear in the product of the number of vertices and
the number of arcs (Theorem 3). We then turn to strongly connected directed graphs. We first consider their structure. We
start with a subclass of them, strongly biconnected directed graphs. We obtain an interesting characterization of strongly
biconnected directed graphs by showing that a directed graph is strongly biconnected iff it has an open ear decomposition
(Theorem 8). This characterization can be seen as a generalization of the classical open-ear-decomposition characterization
of biconnected graphs. We then prove a structural theorem for decomposing strongly connected directed graphs into
strongly biconnected components (Theorem 9). Based on the open-ear-decomposition characterization, we show that
motion planning on strongly biconnected directed graphs is feasible iff there is at least one vertex occupied neither by
robot nor by obstacle (Theorem 14). With the structural decomposition, we show that the feasibility of motion planning on
strongly connected directed graphs can be decided in linear time (Theorem 21).
The paper is organized as follows. A motivating example is presented in the next section. In Section 3, we recall classical

definitions fromgraph theory.We consider acyclic directed graphs in Section 4, and give an algorithm todecide the feasibility
of motion planning on such a class of directed graphs. In Section 5, we consider strongly biconnected directed graphs,
and prove a structural theorem on their decomposition into strongly biconnected components. The feasibility for strongly
connected directed graphs is considered in Section 6.

2. A motivating example

In the sequel, for brevity, we use ‘‘digraph’’ to denote ‘‘directed graph’’.
Let us consider a simple example to illustrate the motion planning on digraphs. Vertices can contain either an object

(obstacle or the robot) or nothing. If there is no object on a vertex, we say that there is a hole in that vertex. For an arc (v, w)
from v to w, with an object on v, and a hole on w, the object can be moved from v to w, and we say equivalently that the
hole can be moved (backwards) fromw to v.
Consider the strongly connected component C in the graph of Fig. 1 which contains vertices v1, . . . , v5, s and t . The initial

positions of the robot and obstacles are shown in Fig. 1(a).
We can move the robot from s to t as follows: Move the hole in v1 to v2, move the robot from s to v2, then move the two

holes in v7, v8 into C through s, without moving the robot in v2 (Fig. 1(b)). Nowmove the obstacle in v4 to v5, and move the
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Fig. 1. Motion planning on digraphs.
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Fig. 2. Object moves that do not preserve feasibility.

robot to v4 (see Fig. 1(c)). Move the two obstacles in v5 and t to v3 and s (Fig. 1(d)), then move the robot from v4 to v5, and
finally to t . The main idea of these moves is to move the robot to v4 in order to free the way for the moves of the holes from
s and v3 to v5 and t .
If the robot is in s and we move the hole in v7 to v2 (Fig. 2(a)), then the problem becomes infeasible. We can move the

robot from s to v2 and the hole in v8 to s (Fig. 2(b)), but it is then impossible to move the robot from v2 to v4.
As illustrated in the above example, the intricacy of motion planning on digraphs follows from the non-reversibility of

moves in the digraphs.
In the sequel, we propose algorithms which take as input, a digraph D = (V , E) encoded by its adjacency lists, a source

and destination vertex s, t ∈ V , a function f mapping each vertex to an element of the set {‘‘robot’’,‘‘obstacle’’, ‘‘hole’’}, and
produces a Boolean value (true or false) indicating whether it is feasible to move the robot from s to t in D.

3. Preliminaries

A digraph D is a binary tuple (V , E) such that E ⊆ V 2. Elements of V and E are called respectively vertices and arcs of D.
We assume that (v, v) 6∈ E for all v ∈ V (there are no self-loops).
For a vertex v of a digraph D = (V , E), the indegree of v, denoted in(v), is defined as |{w ∈ V |(w, v) ∈ E}|, and the

outdegree of v, denoted out(v), is defined as |{w ∈ V |(v, w) ∈ E}|.
A graph G is a binary tuple (V , E) such that E ⊆ V [2], where V [2] contains exactly all two-element subsets of V , namely

V [2] = {{v, w}|v, w ∈ V , v 6= w}. Elements of E are called edges of G.
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For a vertex v of a graph G = (V , E), the degree of v, denoted deg(v), is defined as |{w ∈ V |{v, w} ∈ E}|.
If D = (V , E) (resp. G = (V , E)), and e = (v, w) ∈ E (resp. e = {v, w} ∈ E), then e is said to be incident to v and w in D

(resp. G).
A digraph (resp. graph) containing exactly one vertex is said to be trivial, otherwise it is said to be nontrivial.
Given a digraph D = (V , E) (resp. graph G = (V , E)), the digraph (resp. graph) H = (VH , EH) such that VH ⊆ V and

EH ⊆ E is called a sub-digraph of D (resp. subgraph of G). Let X ⊆ V , the sub-digraph (resp. subgraph) induced by X , denoted
D[X] (resp. G[X]), is the sub-digraph (resp. subgraph) (X, E ∩ X × X) (resp. (X, E ∩ X [2])).
Suppose D = (V , E) (resp. G = (V , E)) is a digraph (resp. graph) and X ⊆ V , let D− X (resp. G− X) denote the digraph

(resp. graph) obtained from D (resp. G) by deleting all the vertices in X and all the arcs (resp. edges) incident to at least one
element of X . If X = {v}, then D− {v} (resp. G− {v}) is written as D− v (resp. G− v) for simplicity.
Given a digraph D = (V , E), the underlying graph of D, denoted by G(D), is the graph obtained from D by omitting the

directions of arcs, namely G(D) = (V , {{v, w}|(v, w) ∈ E}).
A path of a digraph D = (V , E) (resp. graph G = (V , E)) is an alternating sequence of vertices and arcs (resp. edges)

v0e1v1 . . . vk−1ekvk (k ≥ 1) such that for all 1 ≤ i ≤ k, ei = (vi−1, vi) ∈ E (resp. ei = {vi−1, vi} ∈ E), and for all 0 ≤ i < j ≤ k,
vi 6= vj. v0 and vk are called the tail and head endpoint of the path respectively, and the other vertices are called the internal
vertices of the path. In particular, an arc or an edge is a path without internal vertices.
A cycle of a digraph D = (V , E) is a sequence of vertices v0v1 . . . vk such that for all 0 ≤ i ≤ k, (vi, vi+1) ∈ E (vk+1

interpreted as v0), and for all 0 ≤ i < j ≤ k, vi 6= vj. Cycles of graphs can be defined similarly, but we have the additional
restriction that k ≥ 2. So cycles of graphs contain at least three vertices.
A digraph D is acyclic if there are no cycles in D.
Suppose H = (VH , EH) is a sub-digraph of D = (V , E) (resp. subgraph of G = (V , E)). A path P of D (resp. G) is an H-path

if the two endpoints of P are in H , no internal vertices of P are in H , and no arcs (resp. edges) of P are in H . In particular, an
arc (v, w) ∈ E \ EH (resp. an edge {v, w} ∈ E \ EH ) with v, w ∈ VH is an H-path. A cycle C is an H-cycle if there is exactly
one vertex of C in H .
Let H1 = (V1, E1) and H2 = (V2, E2) be two sub-digraphs of a digraph D = (V , E), then the union of H1 and H2, H1 ∪ H2,

is defined as (V1 ∪ V2, E1 ∪ E2). The union of subgraphs can be defined similarly.
A digraph D = (V , E) is strongly connected if for any two distinct vertices v andw, there are both a path from v tow and

a path fromw to v in D. The digraph containing exactly one vertex and no arcs is the minimal strongly connected digraph.
Let D = (V , E) be a digraph. The strongly connected components of D are the maximal strongly connected sub-digraphs

of D.
A graph G = (V , E) is connected if, for any two distinct vertices v andw of G, there is a path of Gwith endpoint v andw.

The connected components of a graph G are the maximal connected subgraphs of G.
If G = (V , E) is a graph, v ∈ V , and the number of connected components of G− v is more than that of G, then v is said

to be a cut vertex of G.
A graph G is biconnected if G is connected and there are no cut vertices in G. In particular, the graph containing exactly one

vertex is the minimal biconnected graph. The biconnected components of a graph G are the maximal biconnected subgraphs
of G.
Without loss of generality, we assume that for each digraph D, (i) the underlying graph of D, G(D), is connected, (ii) the

source vertex s and the destination vertex t are distinct (thus all the digraphs considered from now on are nontrivial), (iii)
there is at least one path from s to t in D.

4. Motion planning on acyclic digraphs

In this section we assume that D = (V , E) is an acyclic digraph.
We first recall a result about topological orderings of acyclic digraphs.
A topological ordering of an acyclic digraph D = (V , E) is an ordering of all vertices of D, say v1, . . . , vk, such that

(vi, vj) ∈ E implies i < j. From [3], we know that a topological ordering of a given acyclic digraph can be computed in
linear time by a depth-first-search.1

Theorem 1 ([3]). Given an acyclic digraph D = (V , E), a topological ordering of D can be computed in time O(n+m), where n
is the number of vertices and m is the number of arcs of D.

We introduce some notations in the following.
Let V ′ denote the set of vertices fromwhich there is a path to t , and to which there is a path from s. In particular, s, t ∈ V ′.
For each v ∈ V ′, let h(v) denote the number of holes that can be moved to v.
For each v ∈ V ′, define ht(v) as follows: Suppose that the robot is in v.

- If the robot can be moved from v to t in D, then there may be different paths (from v to t) along which the robot can be
moved from v to t , let ht(v) be the minimal length (number of arcs) of such paths.

1 In [3], topological orderings are called acyclic orderings.
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a b

Fig. 3. Computation of h(v) and ht (v).

- If it is impossible to move the robot from v to t , let ht(v) = ∞.

The h(v)’s can be computed by solving the reachability problems. The ht(v)’s can be computed as follows:

(i) Compute a topological ordering of D[V ′], say v1, . . . , vk, such that v1 = s, vk = t;
(ii) Compute ht(v)’s by a backward induction,
- ht(vk) := 0,
- For i < k: If ∃j : i < j ≤ k such that (vi, vj) ∈ E and h(vj) ≥ ht(vj) + 1, then ht(vi) := min{ht(vj) + 1|i < j ≤
k, (vi, vj) ∈ E, h(vj) ≥ ht(vj)+ 1}. Otherwise, ht(vi) := ∞.

The problem is feasible iff ht(s) <∞, which is justified by the argument in the following two paragraphs.
If the problem is feasible, the robot can bemoved from s to t . Let P be the trace of the robot during thismovement (namely

the sequence of nodes and arcs reached by the robot). As a result of acyclicity ofD, P is a path ofD. Let P = v0e1v1 · · · vk−1ekvk
be such that v0 = s and vk = t . During the movement, when the robot is moved to vi−1(1 ≤ i ≤ k), in order to move the
robot from vi−1 to vi, a hole should be moved to vi. Since D is acyclic, the hole moved to vi cannot be moved to vj for any j
such that i < j ≤ k (holes are moved along the reverse direction of arcs). So these holes moved to the vi’s are distinct from
each other, and can be moved to occupy all the vertices on P except s. By induction, we can show that for all vertices v on P ,
the inductively computed ht(v) satisfies that ht(v) <∞.
On the other hand, if ht(s) < ∞, by induction, we can show that there is a path P from s to t such that for each vertex

v 6= s on P , we have ht(v) <∞ and h(v) ≥ ht(v)+ 1, and for each arc (v, w) on P , ht(v) = ht(w)+ 1. By induction again,
we can show that the holes in D can be moved to occupy all the vertices on P except s. Then the robot can be moved to t
along P , and the problem is feasible.

Example 2. The computation of h(v) and ht(v) on an acyclic digraph is illustrated in Fig. 3. For instance, ht(t) = 0,
ht(v5) = ht(t) + 1 = 1, since (v5, t) ∈ E and h(t) = 1 ≥ ht(t) + 1 = 1; on the other hand, ht(v1) = ∞, since v5 is
the only successor of v1, but h(v5) = 1 < ht(v5)+ 1 = 2.

Theorem 3. Feasibility of motion planning on acyclic digraphs can be decided in O(nm) time, where n is the number of vertices,
and m is the number of arcs.

Proof. Let D be an acyclic digraph, n andm be the number of vertices and number of arcs of D respectively.
The computation of V ′ takes O(m) time since it can be done by solving the reachability problem twice.
The computation of h(v)’s takes O(nm) time because the computation of each h(v) takes O(m) time and there are at most

O(n) such computations.
The computation of a topological ordering of D[V ′] takes O(n+m) time from Theorem 1.
The computation of ht(v)’s takes O

(∑
v∈V ′ out(v)

)
= O(m) time.

Since n ≤ m, we conclude that the overall time complexity is O(m+ nm+ n+m+m) = O(nm). �

5. Structure of strongly connected digraphs

In this section, we consider the structure of strongly connected digraphs. We first recall some definitions and theorems.
An open ear decomposition of a digraph D = (V , E) (resp. graph G = (V , E)) is a sequence of sub-digraphs of D (resp.

subgraphs of G), say P0, . . . , Pr , such that

- P0 is a cycle;
- Pi+1 is a Di-path (resp. Gi-path), where Di (resp. Gi) is

⋃
0≤j≤i Pj for all 0 ≤ i < r;

- D =
⋃
0≤i≤r Pi (resp. G =

⋃
0≤i≤r Pi).
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A closed ear decomposition of a digraph D = (V , E) (resp. graph G = (V , E)) is a sequence of sub-digraphs of D (resp.
subgraphs of G), say P0, . . . , Pr , such that
- P0 is a cycle;
- Pi+1 is a Di-path or a Di-cycle (resp. a Gi-path or a Gi-cycle), where Di (resp. Gi) is

⋃
0≤j≤i Pj for all 0 ≤ i < r;

- D =
⋃
0≤i≤r Pi (resp. G =

⋃
0≤i≤r Pi).

Theorem 4 ([16]). Let G be a graph containing at least three vertices. G is biconnected iff G has an open ear decomposition.
Moreover, any cycle can be the starting point of an open ear decomposition.

Theorem 5 ([3]). Let D be a nontrivial digraph. D is strongly connected iff D has a closed ear decomposition. Moreover, any cycle
can be the starting point of a closed ear decomposition.

Let G = (V , E) be a graph. The biconnected-component graph of G, denoted Gbc(G), is a bipartite graph (Vbc,Wbc, Ebc)
defined by
- Vbc : biconnected components of G;
- Wbc : vertices of G shared by at least two distinct biconnected components of G;
- Ebc : let B ∈ Vbc andw ∈ Wbc , then (B, w) ∈ Ebc iffw ∈ V (B).

Theorem 6 ([16]). Let G = (V , E) be a connected graph. Then Gbc(G) is a tree.

Now we introduce a class of digraphs, strongly biconnected digraphs.

Definition 7. Let D be a digraph. D is said to be strongly biconnected if D is strongly connected and G(D) is biconnected. The
strongly biconnected components of D are the maximal strongly biconnected sub-digraphs of D.

In particular, the digraph containing exactly one vertex and no arcs is strongly biconnected.
The following result demonstrates that strongly biconnected digraphs also admit a similar characterization.

Theorem 8. Let D be a nontrivial digraph. D is strongly biconnected iff D has an open ear decomposition. Moreover, any cycle
can be the starting point of an open ear decomposition.

Theorem 8 can be proved along the same line as Theorem 7.2.2 and Corollary 7.2.7 in [3].
We can prove the following structural theorem for strongly connected digraphs.

Theorem 9. Let D = (V , E) be a strongly connected digraph. Then the strongly biconnected components of D are those D[V (B)],
namely the sub-digraph of D induced by V (B), where B is a biconnected component of G(D).
Proof. Let D = (V , E) be a strongly connected digraph.
If D is trivial, then the result is obvious.
Otherwise, D is nontrivial, let B be a biconnected component of G(D).
It is sufficient to show that D[V (B)] is strongly connected. If this holds, then D[V (B)] is strongly biconnected. Because all

the vertices of a strongly biconnected sub-digraph of D are in some biconnected component of G(D) and B is a biconnected
component of G(D), D[V (B)] is a maximal strongly biconnected sub-digraph of D, i.e. a strongly biconnected component of
D. Since the union of all biconnected components of G(D) is G(D) itself, the theorem holds.
Now we show that D[V (B)] is strongly connected.
Let v, w ∈ V (B) such that v 6= w. Since D is strongly connected, there must be a path P from v to w in D. Now we show

that P is in D[V (B)] as a matter of fact.
To the contrary, suppose that there is a vertex on P not in D[V (B)].
Let v′ be the first vertex on P (starting from v) not inD[V (B)]. Then there isw′ ∈ V (B) on P such that (w′, v′) ∈ E. Because

B is a biconnected component of G(D), and two distinct biconnected components contain at most one vertex in common
according to Theorem 6, it follows that v′ is in a biconnected component B′ 6= B of G(D), andw′ is the unique vertex shared
by B′ and B. Since P is a path, we have that w′ 6= w, otherwise we have reached w before v′ on P , a contradiction. Because
w ∈ V (B) and w 6= w′, we have that w ∈ V (B) \ V (B′). Since w′ is the unique vertex shared by B and B′, any path from v′

tow ∈ V (B) \ V (B′) has to visitw′, so P must visitw′ again after visiting v′, contradicting the fact that P is a path and there
should be no vertices visited twice on a path.
Consequently for any v, w ∈ V (B), v 6= w, there is a path in D[V (B)] from v tow, D[V (B)] is strongly connected. �

From Theorem 9, we have the following definition for strongly-biconnected-component graph of a strongly connected
digraph.

Definition 10. Let D be a strongly connected digraph, the strongly-biconnected-component graph of D, denoted Gsbc(D) =
(Vsbc,Wsbc, Esbc), is Gbc (G(D)), namely the biconnected-component graph of the underlying graph of D.

From the above definition and Theorem 6, we have the following corollary.

Corollary 11. Let D be a strongly connected digraph. Then Gsbc(D) is a tree.

Example 12 (Strongly-biconnected-component Graph). A strongly connected digraph D (Fig. 4(a)) and its strongly-
biconnected-component graph Gsbc(D) (Fig. 4(b)).
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Fig. 4. Example: strongly-biconnected-component graph.

Fig. 5. Restoration by rotating the objects in a cycle.

6. Motion planning on strongly connected digraphs

At first, we make the following observation about motion planning on strongly connected digraphs.

Proposition 13. Let D = (V , E) be a strongly connected digraph. Then

(i) If the robot and a hole are in the same cycle C of D, then the robot can be moved to any vertex of C.
(ii) The movement of objects (robot or obstacles) in D preserves the feasibility of motion planning on D.

Proof. (i) it is obvious since the hole can bemoved along the reverse direction of the arcs in C and the objects can be rotated
to any vertex in C .

(ii) Supposewemove an object from v tow along the arc (v, w) ∈ E. We prove that themotion planning problem is feasible
before the movement iff it is feasible after the movement.

Since (v, w) ∈ E and D is strongly connected, there is a path P fromw to v in D, let C denote the cycle P ∪ {(v, w)}.
Suppose the motion planning problem is feasible before the movement. Because after the movement, there is a hole in

v, we can move the hole along the reverse direction of C , rotate the objects along C , and restore the situation before the
movement, namely all the objects return to the positions before the movement. An example of this restoration is given in
Fig. 5. So the motion planning problem is also feasible after the movement.
The other direction is obvious. �

From [14], we know that if a graph is biconnected, then one hole is sufficient to move the robot from the source vertex
to the destination vertex, which is also the case for strongly biconnected digraphs.

Theorem 14. Let D be a strongly biconnected digraph. Then the motion planning problem on D is feasible iff there is at least one
hole in D.

Proof. ‘‘Only if’’ part: obvious.
‘‘If’’ part:
Suppose D is strongly biconnected, there is exactly one hole in D (the case that there are more than one hole is similar),

the source vertex is s and the destination vertex is t .
From Theorem 8, we know that there is an open ear decomposition P0, . . . , Pr of D.
Let j0 be the minimal j such that s, t and the hole are all in Dj, where Dj =

⋃
0≤j′≤j Pj′ .

Induction on j0.
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Fig. 6. The case that the hole and t are in Pj0 different from u
′ and v′ , s ∈ Dj0−1 , and s 6= u

′ .

Induction base j0 = 0: s, t and the hole are all in the cycle P0. Then move the hole along the reverse direction of the cycle
and move the robot to t .
Induction step j0 > 0.
Let the tail and head endpoint of Pj0 be u

′ and v′ respectively.
Because of minimality of j0, we have the following three cases.
Case I. s is in Pj0 , s 6= u

′, v′:
Select a path P in Dj0−1 from v′ to u′, then Pj0 ∪ P is a cycle in D.
If the hole is not on Pj0 ∪ P , the hole must be in Dj0−1, we can move it to P in Dj0−1 without moving the robot in s.
If t is on Pj0 ∪ P , then move the hole along the reverse direction of Pj0 ∪ P and move the robot to t .
Otherwise, move the hole along the reverse direction of Pj0 ∪ P andmove the robot to v′. Now the hole is in Pj0 , move the

hole along the reverse direction of Pj0 , until it reaches u
′.

Then the position of the robot, v′, the destination t and the position of the hole, u′, are all in Dj0−1, according to the
induction hypothesis, we can move the robot to t .
Case II. s is in Dj0−1, the hole is in some vertex of Pj0 different from u

′ and v′:
Select a path P in Dj0−1 from v′ to u′, then Pj0 ∪ P is a cycle in D.
If t is in Dj0−1 and s 6= u

′, we can move the hole to u′ along the reverse direction of Pj0 without moving the robot in s,
then according to the induction hypothesis, we can move the robot to t .
If t is in Dj0−1 and s = u

′, then move the hole along the reverse direction of Pj0 ∪ P and move the robot to v′. Now the
hole is in Pj0 , we can move the hole along the reverse direction of Pj0 to u

′. Then by the induction hypothesis, we can move
the robot to t .
If t is not in Dj0−1, then t is on Pj0 .
If s = u′, then we can move the hole along the reverse direction of Pj0 ∪ P and move the robot to t .
Now we consider the case s 6= u′.
We canmove the hole along the reverse direction of Pj0 to u

′withoutmoving the robot. Then by the induction hypothesis,
we can move the robot from s to v′ in Dj0−1.
By the induction hypothesis again, we can move the robot from v′ to u′ in Dj0−1. Let the trace of the robot during the

movement from v′ to u′ be P ′. Note that P ′ may contain cycles. Suppose the last arc of P ′ is (w, u′) for some w. Then the
hole is in w after the movement. Without loss of generality, we assume that during the movement, the robot visits u′ only
once since u′ is the destination. Consequently, the hole can be moved fromw to v′ along the reverse direction of P ′ without
moving the robot in u′ (see Fig. 6).
Since Pj0 ∪ P is a cycle and t is on Pj0 , nowwe canmove the hole along the reverse direction of Pj0 ∪ P andmove the robot

to t .
Case III. s and the hole are both in Dj0−1, t is in Pj0 , t 6= u

′, v′:
We canmove the hole inDj0−1 to v′ with possiblemovements of the robot inDj0−1. Suppose the new position of the robot

is s′.
Now move the hole to some vertex in Pj0 different from u

′ and v′, which is possible since Pj0 contains at least three
vertices. Then we have reduced Case III to Case II. �

We introduce the following notation before giving the algorithm.

Definition 15. LetD = (V , E) be a strongly connected digraph, u, v, w ∈ V such that v 6= w, andGsbc(D) = (Vsbc,Wsbc, Esbc)
be the strongly-biconnected-component graph of D. Then u is said to be on thew-side of v, if u 6= v and one of the following
two conditions holds:
(i) v ∈ Wsbc , and u, w are in the same connected component of G(D)− v.
(ii) v 6∈ Wsbc , and either u, w are in the same connected component of G(D − V (B)), or u ∈ V (B), where B is the unique
strongly biconnected component of D to which v belongs.

u is said to be on the non-w-side of v if u 6= v, and u is not on thew-side of v.
A hole (resp. obstacle) is said to be on the t-side of the robot if the position (vertex) of the hole (resp. obstacle) is on the

t-side of the position of the robot, and a hole (resp. obstacle) is said to be on the non-t-side of the robot if the position of the
hole is on the non-t-side of the position of the robot.
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a b

Fig. 7. Example: t-side of the robot.

Note that if u, v, w ∈ V , v 6∈ Wsbc , v 6= w, v, w ∈ V (B), where B is the unique strongly biconnected component of D to
which v belongs, then u is on thew-side of v iff u 6= v and u ∈ V (B) according to Definition 15.

Example 16 (t-side of the Robot). In Fig. 7(a), the robot is in s ∈ Wsbc , two holes in v3 and v4 are on the t-side of the robot,
and the hole in v1 is on the non-t-side of the robot. In Fig. 7(b), the robot is in v3 6∈ Wsbc , the hole in v2 belongs to the same
strongly biconnected component as v3, so v2 is on the t-side of the robot, and two holes in v1 and s are on the non-t-side of
the robot.

Since strongly biconnected components of strongly connected digraphs are similar to biconnected components of
connected graphs, the feasibility of motion planning on strongly connected digraphs can be decided similar to the motion
planning on graphs.

Definition 17 (Chains). Let D = (V , E) be a strongly connected digraph, and Gsbc(D) = (Vsbc,Wsbc, Esbc) be the strongly-
biconnected-component graph of D. Let v ∈ V , v is called a branching vertex if v ∈ Wsbc and the degree of v is greater
than 2 in Gsbc(D), i.e. v is shared by at least three distinct strongly biconnected components. A chain of Gsbc(D) is a path
B0v1B1 · · · Bk−1vkBk (k ≥ 1) in Gsbc(D) such that

(i) for all 1 ≤ i ≤ k− 1, |V (Bi)| = 2;
(ii) for all 1 < i < k, vi is not a branching vertex.

The length of a chain is the number of vertices inWsbc on the chain.

Example 18. In Fig. 4, B1v2B2v3B3 is a chain in Gsbc(D) since |V (B2)| = 2. The length of this chain is 2.

In the following, to decide the feasibility, we first consider the restricted situation that all the holes are on the t-side of
the robot, then we consider the more general case.
Let P := B0v1B1 . . . Bp−1vpBp be the path inGsbc(D) = (Vsbc,Wsbc, Esbc), such that s ∈ V (B0), t ∈ V (Bp), s 6= v1 and t 6= vp.
Let l be the maximum length of the chains contained in P .

Case I. All the holes are on the t-side of the robot.
The problem is feasible iff the number of holes is no less than l + 1, because l + 1 holes are necessary and sufficient to

let the robot go through the chains of length l. For instance, suppose Bivi+1Bi+1 · · · vi+lBi+l is a chain of length l contained in
P , |V (Bi)| ≥ 3 and |V (Bi+l)| ≥ 3. In order to move the robot from some vertexw1 ∈ V (Bi) such thatw1 6= vi+1 to the other
vertex w2 ∈ V (Bi+l) such that w2 6= vi+l, at first l holes are needed to occupy vi+1, . . . , vi+l so that the robot can be moved
fromw1 to vi+l, then another hole on the t-side of vi+l is needed to move the robot from vi+l tow2.

Example 19. The strongly connected digraph is given in Fig. 8(a). All the holes are on the t-side of the robot. P =
B0v2B1v3B2v4B3v5B4v6B5v7B6. The l, i.e. themaximum length of the chains contained in P , is 3. There are l+1 = 4holes, so the
problem is feasible. Nowwe showhow tomove the robot from s to t with the four holes:Move the four holes to v2, v3, v4, v9
respectively (see Fig. 8(b)), then move the robot to v9 (see Fig. 8(c)), move the obstacle on v5 to v4 (see Fig. 8(d)), move the
three holes on s, v2, v3 to v6, v7, t respectively (see Fig. 8(e)), finally move the robot to t (see Fig. 8(f)).

Case II. There are holes not on the t-side of the robot.
If the number of holes on the t-side of the robot is already no less than l+ 1, then the problem is feasible. Otherwise, it

is necessary to utilize the holes not on the t-side of the robot in order to move the robot to t .
There are three subcases,

- |V (B0)| ≥ 3;
- |V (B0)| = 2 and s is a branching vertex;
- |V (B0)| = 2 and s is not a branching vertex.
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Fig. 8. Example: motion planning on a strongly connected digraph: Case I.

In the following, we only consider the third case to illustrate how to decide the feasibility, the considerations of the first
two cases are similar.
Let i0 be the maximal natural number such that B0v1B1 · · · Bi0−1vi0Bi0 is a chain contained in P .
If the number of holes on the t-side of the robot is no less than i0 + 1, then the problem is feasible iff the (total) number

of holes is no less than l+ 1.
Otherwise, let B be the (unique) strongly biconnected component such that s ∈ V (B) and B 6= B0 (Recall that s is not a

branching vertex.).
If |V (B)| ≥ 3, then the robot can be moved to some vertexw ∈ V (B) such that (s, w) ∈ E, and all the holes can be moved

to the t-side of w (by moving the robot within B if necessary), the problem is feasible iff the (total) number of holes is no
less than max(i0 + 2, l+ 1).
Otherwise (|V (B)| = 2), let Q := B′0v

′

1B
′

1 · · · B
′

q−1v
′
qB
′
q (q ≥ 1) be a maximal chain in Gsbc(D) such that B′0 = B and v′1 is

the (unique) vertex in B different from s.
There are several situations for Q : Either v′q is a branching vertex, or |V (B′q)| ≥ 3, or (v

′
q is not a branching vertex,

|V (B′q)| = 2, and B
′
q is a leaf in Gsbc(D)).

If v′q is a branching vertex or |V (B′q)| ≥ 3, then the problem is feasible only if the robot can be moved from s to some
w ∈ V (B′q) such that (v

′
q, w) ∈ E (in order to move all the holes to the t-side of the robot), and the holes are sufficient to

move the robot through the chain B′qv
′
qB
′

q−1 · · · B
′

1v
′

1B
′

0sB0v1 · · · Bi0−1vi0Bi0 . Therefore, the problem is feasible iff the number
of holes not on the t-side of the robot is no less than q+1, and the (total) number of holes is no less thanmax(q+i0+2, l+1).
Otherwise (v′q is not a branching vertex, |V (B′q)| = 2, and B

′
q is a leaf in Gsbc(D)), the problem is infeasible since it is

impossible to move the robot through the chain B0v1 · · · Bi0−1vi0Bi0 .

Example 20. The strongly connected digraph is given in Fig. 9(a). P = B3v4B4v5B5v6B6v7B7v8B8, l = 3. There are holes not
on the t-side of the robot. |V (B3)| = 2 and s is not a branching vertex, so it is the third subcase of Case II. The number of
holes on the t-side of the robot is 2, less than l + 1 = 4. And i0 = 2, the number of holes on the t-side of the robot is less
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Fig. 9. Example: motion planning on a strongly connected digraph: Case II.

than i0 + 1 = 3. B2 is the unique strongly biconnected component such that s ∈ V (B2) and B2 6= B3. Q = B2v3B1, q = 1.
The number of holes not on the t-side of the robot is 3, greater than q+ 1 = 2. Moreover, the total number of holes is 5, no
less than max(q + i0 + 2, l + 1) = max(5, 4) = 5, so the problem is feasible. Now we show how to move the robot from
s to t . Move the hole on v2 to v8 (see Fig. 9(b)), move the robot from s to v8 (see Fig. 9(c)), move the hole on v1 to v4 (see
Fig. 9(d)), move the hole on v7 to v9 (see Fig. 9(e)), move the robot to v9 (see Fig. 9(f)), move the four holes on v3, s, v4, v5 to
v6, v7, v8, t respectively (see Fig. 9(g)), finally move the robot to t .

Theorem 21. Feasibility of motion planning on strongly connected graphs can be decided in O(m) time.

Proof. The construction of Gsbc(D) can be done in time O(m) since the biconnected components of a connected graph ofm
edges can be constructed in O(m) time by a depth-first-search technique [4].
The construction of P,Q takes time O(m).
The total number of holes, the holes on the t-side of the robot and the holes not on the t-side of the robot, can be computed

by solving reachability problems, which takes time O(m) as well.
So the overall time is O(m). �
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7. Conclusion

In this paper, we considered the feasibility of motion planning on digraphs, we showed that the feasibility of motion
planning on acyclic digraphs can be decided in time linear in the product of the number of vertices and the number of arcs,
while the feasibility on strongly connected digraphs can be solved in linear time.
The algorithms for the feasibility of motion planning on acyclic digraphs and strongly connected digraphs can be

adapted to the case where the capacity of each vertex is more than one (namely, vertices are able to hold several objects
simultaneously), the only modification is the computation of the number of holes.
The feasibility of motion planning on digraphs is only partially solved in this paper, since we did not give the algorithm

for deciding the feasibility on general digraphs, which, as well as the optimization of the motion of robot and obstacles, is
much more intricate than that on graphs because of the irreversibility of the movements on digraphs.
The motion planning on graphs with one robot, GMP1R, has a natural generalization, GMPkR, where there are k robots

with their respective destinations. It is also interesting to consider motion planning on digraphs with k robots, since in
practice it is more reasonable that a robot shares its workspace with other robots.
GMPkR in general is a very complex problem. A special case ofGMPkR,where there are no additional obstacles (thus all the

movable objects have their destinations), has been considered.Wilson studied the special case of GMPkR for k = n−1 in [17],
which is a generalization of the ‘‘15-puzzle’’ problem to general graphs. They gave an efficiently checkable characterization
of the solvable instances of the problem. Kornhauser et al. extended this result to k ≤ n − 1 [8]. Goldreich proved that
determining the shortest move sequence for the problem studied by Kornhauser et al. is NP-hard [6]. It seemsmore realistic
to first consider the above special case of GMPkR on digraphs.
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