
Discrete Mathematics 84 (1990) 39-46 

North-Holland 

39 

TWO FAMILIES OF GRAPHS SATISFYING THE CYCLE 
BASIS INTERPOLATION PROPERTY 

Elzbieta B. JARRETT 
National Research Institute for Mathematical Sciences, Numerical and Applied Mathematics 

Division, CSIR, P. 0. Box 395, Pretoria Oool, South Africa 

Received 11 September 1986 

Revised 27 September 1988 

The length of a cycle basis of a graph G is the sum of the lengths of its cycles. Let C, c+ be 

the lengths of the minimal and maximal cycle basis, respectively. Then G has the cycle basis 

interpolation property (chip) if for all integers c, c- CC CC+, there exists a cycle basis of 

length c. We construct two families of graphs with the chip, namely snake-graphs and 

kite-graphs. 

1. Introduction 

Let G be a simple, undirected and connected graph with p vertices and q edges. 
All cycles, the disjoint unions of cycles in G and an empty set form a vector space 
over the field of integers modulo 2, where the addition corresponds to the 
symmetric difference of edge sets. A basis of this cycle space is called a cycle 
basis. It is well known that when G is connected, the dimension m = m(G) of the 
cycle space of G satisfies m = q -p + 1. 

The length of a cycle C is the number of edges in it and is denoted by Z(C). The 
length of a cycle basis %’ = {C,, CZ, . . . , C,,,} is the sum of the lengths of its 
cycles: 

m 
l(c) = c l(Cj). 

i=l 

Let c- =c-(G) and c+ = c+(G) be the minimum and maximum length, 
respectively, of a cycle basis of G. Then G has the cycle basis interpolation 
property (chip) if for all integers c, c- s c s c+, G has a cycle basis of length c. 

For the symmetric difference of cycles we use the notation C1 @ C1, 1 Cj. 
Terminology not given here can be found in [l]. 

Some elementary properties of cycle bases relevant for studying graphs with the 
chip can be found in [2]. Two families of graphs with the chip are known, namely 
complete graphs K, and wheels W, ([2]). We prove that snake-graphs and 
kite-graphs also satisfy the chip. The proofs are based on the following lemma: 

Lemma 1.1 [2]. Zf m cycles %’ = {CI, Cl, . . . , CL} generate all cycles of some 
cycle basis % = {C,, Cz, . . . , C,,,}, then %” is also a cycle basis. 
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2. Snake-graphs 

It is clear that graphs K, and W, have a triangular cycle basis. Studying the chip 
of these and some other graphs, the authors of [2] conjecture that: 

Conjecture 1. Every biconnected graph which has a triangular cycle basis has the 
chip. 

The snake graphs described in this section form one more family of graphs 
having a triangular cycle basis and satisfying the chip. 

Definition. Snake-graph S,, m 2 2, is a maximal outerplanar graph whose cycle 
graph Gs, is a path of m vertices (Fig. 1). 
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w 

- 

. - . 

Fig. 1. The snake-graphs S, and their cycle graphs SSm for m = 2, 3, 4. 

It is clear that every S,,, has a triangular cycle basis as the minimal basis. To 
identify a cycle basis of the particular length c, we first characterize m cycles of 
the total length c and then show that they generate a triangular cycle basis of S, 
(Lemma 1.1) (Fig. 2). 
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Fig. 2. The snake-graph S, with its cycle graph Y& (the path (I,, x2, . , x,)). 

Let us denote by ti a triangle of S,,, corresponding to the vertex xi in Gsm, 
i = 1,2,3, . . . , m. 
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These triangles form the minimal cycle basis 58; of the graph S,,, 
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w,= (t1, . . . ) t,} and I(%&) = 3m. 

Define ck’p=tk@tk+l@-“@tp, lckspcm. Ckjp iS a Cycle of the length 
p-k+3: 1(Ck.p)=p-k+3. 

Consider a set of cycles 

93; consists of m cycles, which generate 9;: 

@m @ ck+l,m k = 1,2, . . . 
tk = 

i 

CW-’ @ c1.k k= [m/2] +‘l,!y.‘!!il (1) 
C’s” @ Cb4219 @ Cl.h”1 k = [m/2]. 

Hence 3: is a cycle basis (Lemma 1.1). 
Let US denote ei = the common edge of ti_1 and ti, i = 2,3, . . . , m; e, = an 

edge of tl different from e2; e,,, = an edge of t,,, different from e,. 
93: is a maximal cycle basis, because it can be constructed by the Stepanec- 

Zykov method with the set of edges e,, e2, . . . , e, ([3]). 
Enumerate the elements of 99; as following: 

Cl = Cl.” 

c2 = (5” 

c3 = cl,m-1 

c4 = C3,” 

c5 = p,m-2 

c2i = Ci+‘.m 

cZifl = @m--i 

For m odd we obtain 

cm_, = crm4.m 

C- = ~1, w4 

and for m even: 

1(C,)=m+2 

1(CJ = f(C,) = m + 1 

I(C,) = 1(C,) = m 

I(C,J = L(C,,+,) = m + 2 - i 

I(Cm-l) = I(&) = (m + 5)/2 

(2) 

1(C,,_,) = I(&_,) = (m + 6)/2 

I(&) = (m + 4)/2. 
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Note that 

C1@C*=t1 C,@Ccf=fm 
C,@C,=t, c3 63 c5 = cm_1 

C,@C,=t, cs a3 c, = L-2 

C*i__2 @ Ca = ti for C*i+i @ C2i+3 = tm_i for 

i = 1,2, . . . ) [m/2] i = 0, 1, . . . , [m/2] - 2. (3) 

It is easy to see that the set of cycles Cr, Cz, . . . , Ck (k 2 3) generates triangles 

tl, fZ, . . . , tlkj21 and L, klr . . . , ~-(r~/21-~) 

Theorem 1. The snake-graphs S,, m 2 2 have the chip. 

Proof. w,= {fl, . . . ) tm} is a minimal cycle basis of S,; hence c- = r(-Z?;) = 3m. 
B;={c1,c2,..., C,}, described previously, is a maximal cycle basis of S,. 

c+ = I(%;) = 
I 

(3m2 + 8m + 1)/4 m-odd 

m(3m + 8)/4 m-even. 

Let c be an integer between c- and cc, and let k be the maximum number of 
consecutive cycles Ci, C2, . . . , C, from 93: that can occur in a cycle basis of 

length c: 

The cycle basis S of length c that we construct consists of k cycles 

C1, cz, . . . , C, from a;, m - k - 1 triangles from 93, and a cycle C* of length 1, 
where I = c - Cfzc=, Z(Ci) - 3(m - k - 1) and 3 G 1 G I(Ck+r). We proceed with 
regard to the values of m, k, and 1. 

Case A. k = 0. 

93 = {C*, t,, t3, . . . , t,}, where C” = C’,‘-2. 

It is easy to check that I(C*) = 1 and 8 generates 93;. 

Case B. k is odd. There are two possibilities: 
(i) If k = 1, then 

93 = {C,, C*, t3, f4, . . . , t,,,}, where C* = C2,‘-‘. 

Of course, 1(C*) = I and 5B generates 33,. Namely. 

t,=C*cBt,cI3t,cB~~*c383t,_, 

t1= Cl (33 c* 03 t1 a3 t1+, CB. * * 03 tm. 
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(ii) If 3~k cm, then 

B= {C,, c2, * * * 9 Ck, c*7 trk/21+2, trk/21+3, . . * 7 L-[k/21+1) where 

c* = C[k/2] +1,1+ [k/21 -2 

C* is the sum of 1 - 2 triangles; hence f(C*) = 1. 
9 generates the elements of the minimal cycle basis 9; as follows: 

C1, c2, * f * , Ck generate h, f2, . . . , tlk121 and L, L-~, . . . , t,,,-[k/21+2. 

Triangles tlk/21+2, tlk/21+3, . . . , t,,,-rk121+1 belong to 9. 

trknl+l = C* @ t [k/21 +2 @ frk/21+3 @ * . * @ h+ [k/21 -2 (4) 

trk121 =(t[k12J+1)=Cl~tl~’ “~trk/21-1~trk/21+1~“‘~fm. 

Note that 1 S I(&+,) = m + 2 - (k + 1)/2 = m + 2 - [k/2]. Hence I+ [k/2] - 
2 s m and all triangles in (4) either belong to 6% or can be generated by elements 
of 93. 

Case C. k is even. 

(i) k = 2. 

9 = {Cl, c2, t3, 14, . . * , t m-1, C*}, where C* = Cm-‘+3*m. 

Triangles tl, t2 and t,,, are generated by 9: 

t, = c* 03 tm_,+3 cl3 tm__1+4 c3 9 * * 633 t,-1 

t:!=C2a3t3cI3t4cI3~~‘cBt m 

Cl = Cl 03 c2. 

(ii) 4 G k < m. 

3 = {CIP C2, * . . 7 ck, c*> tk/2+1, tkl2+2, . . . , t,,,-1-k,2}, where 
C* = cm+3-k/2--I,+k/2 

One can easily check that 1(C*) = 1. We shall show how to generate t,,,_k,2 and 

h-k/2+1. Other cycles of 6%; either belong to 53 or are generated by 

cl, c2, * * * > ck* 

tm-k/2 = c*cBt,cBt,+,Gb~ @t,,,_k,2_1 wherep=m+3-k/2-1 

t,,,-k/2+1 = Cl @ tl @ ’ ’ ’ @ t,,-_k/2 @ t,,-,&+2 @ * . . @ t,,,. 

The theorem is proved. Cl 

All known families of graphs with the chip have a triangular cycle basis. The 
triangles seem to play an important role in the chip of graphs. 

The graphs on the left side of Fig. 3 do not satisfy the chip. But if we “add” to 
them some more triangles, we obtain graphs (B) with the chip. The graphs on the 
right side of Fig. 3 form a family of the kite-graphs. 
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cl=- c 
Fig. 3. Some graphs without (A) and with (B) the chip. 

3. Kite-graphs 

Observe that every snake-graph has exactly two vertices of degree 2. By 
removing any such vertex from S,, we obtain the graph S,,_,. The triangles of S, 
with vertices of degree 2 will call free-triangles (they correspond to the end 
vertices of the cycle graph of S,). 

Definition. The kite-graph G,,, is a graph obtained from the snake-graph S,_, by 
replacing one of its free-triangles by the cycle C of length m. 

Fig. 4. The kite-graph G,. 

It is clear that the minimal cycle basis 53’- of the kite-graph G,,, consists of the 
cycle C and it - 3 triangles. Its length is equal to c- = m + 3(m - 3) = 4m - 9. 

Let us denote by t, the triangle of G,,, induced by edges ei_i and ei, 
i = 1,2, . . . , m - 3. 

The maximal cycle basis .%+ of G,,, can be obtained by the Stepanec-Zykov 
method with the set of edges eo, e,, . . . , em-3: 

LB+ = {{Co, Cl, Cz, . . . , Cm-3}, where Co = C, 

Ci=C@t,@...@ti, i=1,2,.. . ,m-3. 

l(CJ=m+i, i=O, 1,. . .,m-3 
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m-3 m-3 

c+ = iFo (m + i) = m(m - 2) + zFo i = m(m - 2) + (m - 3)(m - 2)/2 

c+ = 3(m - l)(m - 2)/2. 

Let c- < c <c+ and k = maxoy<m_3 {j: C{=, l(C) + 3(m -j - 3) s c}. 

We now describe the construction of a cycle basis of length c. The basis 58 

consists of the k + 1 longest cycles of LB+ (namely C,,_-3, C,,_-4, . . . , Cm-k-3), 

m -k - 4 triangles of B3- and a cycle C* of length 1, where 1= c - 

Cr==, I(C,,_-3_-i) - 3(m - k - 4) and 3 s 1 G I(C,_,_,) = 2m - k - 4. 

Consider two cases with regard to the value of 1. 

CaseA. msl<2m-k-4. 

B= (G-3, c?F-4,~~~ 9 Cm-k-3, c*, t1, t2, 

whereC*=C,@t,@t,@...@t,_,. 

It is easy to see that I(C*) = 1. Furthermore, 

CO=C*@t~cB-~-cBt~_-m, 

tiEBy i=l,2,...,m-k-4 

ti=Ci_,~Ci, i=m-k-2, m-k-l, 

tm_&_3= C,_,_,~t,~...~t,_,_,. 

Case B. 3 G 1 < m. 

B= (G-3, G-4,. . . , G-k-3, c*, t2,t3, 

where C* = tl 63 t2 63 - . . CB tl_-2. 

$33 generates all elements of S, namely: 

ti=C;+l+Ci, i=m-k-2, m-k-l, 

tie% i=2,3,..., m-k-3 

t, = c* cI9 t, @ t, @ * . . CD t,-_2 

C,=C,_,_,~t,~t,~...~t,_,_,. 

. . . > t m-k-4 > , 

. . . 9 tm-k-3}, 

. . 

.,m-3 

.,m-3 

In both cases I(C*) = 1, I(B)) = c and as 99 generates the cycles of the minimal 

cycle basis SR-, W is also a cycle basis. Thus we have proved the following 

theorem: 

Theorem. The kite-graphs have the chip. 

The kite-graphs do not have a triangular cycle basis, but still have many 

triangles. It would be interesting to find a family of (Zconnected) graphs with a 

small number of triangles or without any triangle at all. 
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