TWO FAMILIES OF GRAPHS SATISFYING THE CYCLE BASIS INTERPOLATION PROPERTY

Elzbieta B. JARRETT
National Research Institute for Mathematical Sciences, Numerical and Applied Mathematics Division, CSIR, P.O. Box 395, Pretoria 0001, South Africa

Received 11 September 1986
Revised 27 September 1988

Abstract

The length of a cycle basis of a graph G is the sum of the lengths of its cycles. Let c^{-}, c^{+}be the lengths of the minimal and maximal cycle basis, respectively. Then G has the cycle basis interpolation property (cbip) if for all integers $c, c^{-} \leqslant c \leqslant c^{+}$, there exists a cycle basis of length c. We construct two families of graphs with the cbip, namely snake-graphs and kite-graphs.

1. Introduction

Let G be a simple, undirected and connected graph with p vertices and q edges. All cycles, the disjoint unions of cycles in G and an empty set form a vector space over the field of integers modulo 2, where the addition corresponds to the symmetric difference of edge sets. A basis of this cycle space is called a cycle basis. It is well known that when G is connected, the dimension $m=m(G)$ of the cycle space of G satisfies $m=q-p+1$.

The length of a cycle C is the number of edges in it and is denoted by $l(C)$. The length of a cycle basis $\mathscr{C}=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}$ is the sum of the lengths of its cycles:

$$
l(c)=\sum_{i=1}^{m} l\left(C_{i}\right)
$$

Let $c^{-}=c^{-}(G)$ and $c^{+}=c^{+}(G)$ be the minimum and maximum length, respectively, of a cycle basis of G. Then G has the cycle basis interpolation property (cbip) if for all integers $c, c^{-} \leqslant c \leqslant c^{+}, G$ has a cycle basis of length c.

For the symmetric difference of cycles we use the notation $C_{1} \oplus C_{2}, \Sigma C_{i}$. Terminology not given here can be found in [1].

Some elementary properties of cycle bases relevant for studying graphs with the cbip can be found in [2]. Two families of graphs with the cbip are known, namely complete graphs K_{p} and wheels W_{p} ([2]). We prove that snake-graphs and kite-graphs also satisfy the cbip. The proofs are based on the following lemma:

Lemma 1.1 [2]. If m cycles $\mathscr{C}^{\prime}=\left\{C_{1}^{\prime}, C_{2}^{\prime}, \ldots, C_{m}^{\prime}\right\}$ generate all cycles of some cycle basis $\mathscr{C}=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}$, then \mathscr{C}^{\prime} is also a cycle basis.

2. Snake-graphs

It is clear that graphs K_{p} and W_{p} have a triangular cycle basis. Studying the cbip of these and some other graphs, the authors of [2] conjecture that:

Conjecture 1. Every biconnected graph which has a triangular cycle basis has the cbip.

The snake graphs described in this section form one more family of graphs having a triangular cycle basis and satisfying the cbip.

Definition. Snake-graph $S_{m}, m \geqslant 2$, is a maximal outerplanar graph whose cycle graph $G_{S_{m}}$ is a path of m vertices (Fig. 1).
S_{2}

S_{3}

Fig. 1. The snake-graphs S_{m} and their cycle graphs $\mathscr{G}_{S_{m}}$ for $m=2,3,4$.
It is clear that every S_{m} has a triangular cycle basis as the minimal basis. To identify a cycle basis of the particular length c, we first characterize m cycles of the total length c and then show that they generate a triangular cycle basis of S_{m} (Lemma 1.1) (Fig. 2).

Fig. 2. The snake-graph S_{m} with its cycle graph $\mathscr{G}_{S_{m}}$ (the path $\left(x_{1}, x_{2}, \ldots, x_{m}\right)$).
Let us denote by t_{i} a triangle of S_{m} corresponding to the vertex x_{i} in $G_{S_{m}}$, $i=1,2,3, \ldots, m$.

These triangles form the minimal cycle basis \mathscr{B}_{m}^{-}of the graph S_{m}

$$
\mathscr{B}_{m}^{-}=\left\{t_{1}, \ldots, t_{m}\right\} \quad \text { and } \quad l\left(\mathscr{B}_{m}^{-}\right)=3 m
$$

Define $C^{k, p}=t_{k} \oplus t_{k+1} \oplus \cdots \oplus t_{p}, \quad 1 \leqslant k \leqslant p \leqslant m . C^{k, p}$ is a cycle of the length $p-k+3: l\left(C^{k, p}\right)=p-k+3$.

Consider a set of cycles

$$
\mathscr{B}_{m}^{+}=\left\{C^{1, m}, C^{2, m}, \ldots, C^{[m / 2], m}, C^{1,[m / 2]}, C^{1,[m / 2]+1}, \ldots, C^{1, m-1}\right\}
$$

$\mathscr{B}_{\mathrm{m}}^{+}$consists of m cycles, which generate \mathscr{B}_{m}^{-}:

$$
t_{k}= \begin{cases}C^{k, m} \oplus C^{k+1, m} & k=1,2, \ldots,\lceil m / 2\rceil-1 \tag{1}\\ C^{1, k-1} \oplus C^{1, k} & k=\lceil m / 2\rceil+1, \ldots, m \\ C^{1, m} \oplus C^{\lceil m / 2\rceil, m} \oplus C^{1,\lceil m / 2\rceil} & k=\lceil m / 2\rceil\end{cases}
$$

Hence \mathscr{B}_{m}^{+}is a cycle basis (Lemma 1.1).
Let us denote $e_{i}=$ the common edge of t_{i-1} and $t_{i}, i=2,3, \ldots, m ; e_{1}=$ an edge of t_{1} different from $e_{2} ; e_{m+1}=$ an edge of t_{m} different from e_{m}.
\mathscr{B}_{m}^{+}is a maximal cycle basis, because it can be constructed by the StepanecZykov method with the set of edges $e_{1}, e_{2}, \ldots, e_{m}$ ([3]).

Enumerate the elements of \mathscr{B}_{m}^{+}as following:

$$
\begin{array}{ll}
C_{1}=C^{1, m} & l\left(C_{1}\right)=m+2 \\
C_{2}=C^{2, m} & l\left(C_{2}\right)=l\left(C_{3}\right)=m+1 \\
C_{3}=C^{1, m-1} & \\
C_{4}=C^{3, m} & l\left(C_{4}\right)=l\left(C_{5}\right)=m \\
C_{5}=C^{1, m-2} & \vdots \\
\vdots & \\
C_{2 i}=C^{i+1, m} & l\left(C_{2 i}\right)=L\left(C_{2 i+1}\right)=m+2-i \\
C_{2 i+1}=C^{1, m-i} &
\end{array}
$$

For m odd we obtain

$$
\begin{aligned}
& C_{m-1}=C^{\lceil m / 2], m} \\
& C_{m}=C^{1,[m / 2]}
\end{aligned} \quad l\left(C_{m-1}\right)=l\left(C_{m}\right)=(m+5) / 2
$$

and for m even:

$$
\begin{array}{ll}
C_{m-2}=C^{\lceil m / 2], m}=C^{m / 2, m} & \\
C_{m-1}=C^{1,[m / 2]+1}=C^{1, m / 2+1} & l\left(C_{m-2}\right)=l\left(C_{m-1}\right)=(m+6) / 2 \\
C_{m}=C^{1, m / 2} & l\left(C_{m}\right)=(m+4) / 2 .
\end{array}
$$

Note that
$C_{1} \oplus C_{2}=t_{1}$
$C_{1} \oplus C_{3}=t_{m}$
$C_{2} \oplus C_{4}=t_{2}$
$C_{3} \oplus C_{5}=t_{m-1}$
$C_{4} \oplus C_{6}=t_{3}$
$C_{5} \oplus C_{7}=t_{m-2}$
$C_{2 i-2} \oplus C_{2 i}=t_{i} \quad$ for
$C_{2 i+1} \oplus C_{2 i+3}=t_{m-i} \quad$ for $i=1,2, \ldots,[m / 2]$
$i=0,1, \ldots,\lceil m / 2\rceil-2$.

It is easy to see that the set of cycles $C_{1}, C_{2}, \ldots, C_{k}(k \geqslant 3)$ generates triangles $t_{1}, t_{2}, \ldots, t_{[k / 2]}$ and $t_{m}, t_{m-1}, \ldots, t_{m-([k / 2]-2)}$

Theorem 1. The snake-graphs $S_{m}, m \geqslant 2$ have the cbip.
Proof. $\mathscr{B}_{m}^{-}=\left\{t_{1}, \ldots, t_{m}\right\}$ is a minimal cycle basis of S_{m}; hence $c^{-}=l\left(\mathscr{B}_{m}^{-}\right)=3 m$.
$\mathscr{B}_{m}^{+}=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}$, described previously, is a maximal cycle basis of S_{m}.

$$
c^{+}=l\left(\mathscr{B}_{m}^{+}\right)= \begin{cases}\left(3 m^{2}+8 m+1\right) / 4 & m \text {-odd } \\ m(3 m+8) / 4 & m \text {-even } .\end{cases}
$$

Let c be an integer between c^{-}and c^{+}, and let k be the maximum number of consecutive cycles $C_{1}, C_{2}, \ldots, C_{k}$ from \mathscr{B}_{m}^{+}that can occur in a cycle basis of length c :

$$
k=\max _{1 \leqslant j<m}\left\{j: \sum_{i=1}^{j} l\left(C_{i}\right)+3(m-j) \leqslant c\right\} .
$$

The cycle basis \mathscr{B} of length c that we construct consists of k cycles $C_{1}, C_{2}, \ldots, C_{k}$ from $\mathscr{B}_{m}^{+}, m-k-1$ triangles from \mathscr{B}_{m}^{-}and a cycle C^{*} of length l, where $l=c-\sum_{i=1}^{k} l\left(C_{i}\right)-3(m-k-1)$ and $3 \leqslant l \leqslant l\left(C_{k+1}\right)$. We proceed with regard to the values of m, k, and l.

Case A. $k=0$.

$$
\mathscr{B}=\left\{C^{*}, t_{2}, t_{3}, \ldots, t_{m}\right\}, \quad \text { where } C^{*}=C^{1, t-2}
$$

It is easy to check that $l\left(C^{*}\right)=l$ and \mathscr{B} generates \mathscr{B}_{m}^{-}.
Case B. k is odd. There are two possibilities:
(i) If $k=1$, then

$$
\mathscr{B}=\left\{C_{1}, C^{*}, t_{3}, t_{4}, \ldots, t_{m}\right\}, \quad \text { where } C^{*}=C^{2, t-1}
$$

Of course, $l\left(C^{*}\right)=l$ and \mathscr{B} generates \mathscr{B}_{m}^{-}. Namely,

$$
\begin{aligned}
& t_{2}=C^{*} \oplus t_{3} \oplus t_{4} \oplus \cdots \oplus t_{l-1} \\
& t_{1}=C_{1} \oplus C^{*} \oplus t_{l} \oplus t_{l+1} \oplus \cdots \oplus t_{m}
\end{aligned}
$$

(ii) If $3 \leqslant k<m$, then

$$
\begin{aligned}
& \mathscr{B}=\left\{C_{1}, C_{2}, \ldots, C_{k}, C^{*}, t_{[k / 2]+2}, t_{[k / 2]+3}, \ldots, t_{m-[k / 2]+1}\right\} \quad \text { where } \\
& C^{*}=C^{[k / 2]+1, l+\lceil k / 2]-2} .
\end{aligned}
$$

C^{*} is the sum of $l-2$ triangles; hence $l\left(C^{*}\right)=l$.
\mathscr{B} generates the elements of the minimal cycle basis \mathscr{B}_{m}^{-}as follows:

$$
C_{1}, C_{2}, \ldots, C_{k} \text { generate } t_{1}, t_{2}, \ldots, t_{[k / 2]} \text { and } t_{m}, t_{m-1}, \ldots, t_{m-\lceil k / 2]+2}
$$

Triangles $t_{[k / 2]+2}, t_{[k / 2]+3}, \ldots, t_{m-[k / 2]+1}$ belong to \mathscr{B}.

$$
\begin{align*}
& t_{[k / 2]+1}=C^{*} \oplus t_{[k / 2]+2} \oplus t_{[k / 2]+3} \oplus \cdots \oplus t_{l+[k / 2]-2} \tag{4}\\
& t_{[k / 2]}=\left(t_{[k / 2]+1}\right)=C_{1} \oplus t_{1} \oplus \cdots \oplus t_{[k / 2]-1} \oplus t_{[k / 2]+1} \oplus \cdots \oplus t_{m} .
\end{align*}
$$

Note that $l \leqslant l\left(C_{k+1}\right)=m+2-(k+1) / 2=m+2-\lceil k / 2\rceil$. Hence $l+\lceil k / 2\rceil-$ $2 \leqslant m$ and all triangles in (4) either belong to \mathscr{B} or can be generated by elements of \mathscr{B}.

Case C. k is even.
(i) $k=2$.

$$
\mathscr{B}=\left\{C_{1}, C_{2}, t_{3}, t_{4}, \ldots, t_{m-1}, C^{*}\right\}, \quad \text { where } C^{*}=C^{m-l+3, m}
$$

Triangles t_{1}, t_{2} and t_{m} are generated by \mathscr{B} :

$$
\begin{aligned}
& t_{m}=C^{*} \oplus t_{m-l+3} \oplus t_{m-l+4} \oplus \cdots \oplus t_{m-1} \\
& t_{2}=C_{2} \oplus t_{3} \oplus t_{4} \oplus \cdots \oplus t_{m} \\
& t_{1}=C_{1} \oplus C_{2}
\end{aligned}
$$

(ii) $4 \leqslant k<m$.

$$
\begin{aligned}
& \mathscr{B}=\left\{C_{1}, C_{2}, \ldots, C_{k}, C^{*}, t_{k / 2+1}, t_{k / 2+2}, \ldots, t_{m-1-k / 2}\right\}, \quad \text { where } \\
& C^{*}=C^{m+3-k / 2-t, m-k / 2} .
\end{aligned}
$$

One can easily check that $l\left(C^{*}\right)=l$. We shall show how to generate $t_{m-k / 2}$ and $t_{m-k / 2+1}$. Other cycles of \mathscr{B}_{m}^{-}either belong to \mathscr{B} or are generated by $C_{1}, C_{2}, \ldots, C_{k}$.

$$
\begin{aligned}
& t_{m-k / 2}=C^{*} \oplus t_{p} \oplus t_{p+1} \oplus \cdots \oplus t_{m-k / 2-1} \quad \text { where } p=m+3-k / 2-l \\
& t_{m-k / 2+1}=C_{1} \oplus t_{1} \oplus \cdots \oplus t_{m-k / 2} \oplus t_{m-k / 2+2} \oplus \cdots \oplus t_{m} .
\end{aligned}
$$

The theorem is proved.
All known families of graphs with the cbip have a triangular cycle basis. The triangles seem to play an important role in the cbip of graphs.

The graphs on the left side of Fig. 3 do not satisfy the cbip. But if we "add" to them some more triangles, we obtain graphs (B) with the cbip. The graphs on the right side of Fig. 3 form a family of the kite-graphs.

Fig. 3. Some graphs without (A) and with (B) the cbip.

3. Kite-graphs

Observe that every snake-graph has exactly two vertices of degree 2. By removing any such vertex from S_{m}, we obtain the graph S_{m-1}. The triangles of S_{m} with vertices of degree 2 will call free-triangles (they correspond to the end vertices of the cycle graph of S_{m}).

Definition. The kite-graph G_{m} is a graph obtained from the snake-graph S_{m-2} by replacing one of its free-triangles by the cycle C of length m.

Fig. 4. The kite-graph G_{m}.
It is clear that the minimal cycle basis \mathscr{B}^{-}of the kite-graph G_{m} consists of the cycle C and $n-3$ triangles. Its length is equal to $c^{-}=m+3(m-3)=4 m-9$.

Let us denote by t_{i} the triangle of G_{m} induced by edges e_{i-1} and e_{i}, $i=1,2, \ldots, m-3$.

The maximal cycle basis \mathscr{B}^{+}of G_{m} can be obtained by the Stepanec-Zykov method with the set of edges $e_{0}, e_{1}, \ldots, e_{m-3}$:

$$
\begin{aligned}
& \mathscr{B}^{+}=\left\{\left\{C_{0}, C_{1}, C_{2}, \ldots, C_{m-3}\right\}, \quad \text { where } C_{0}=C,\right. \\
& \\
& \quad C_{i}=C \oplus t_{1} \oplus \cdots \oplus t_{i}, \quad i=1,2, \ldots, m-3 . \\
& l\left(C_{i}\right)=m+i, \quad i=0,1, \ldots, m-3
\end{aligned}
$$

$$
\begin{aligned}
& c^{+}=\sum_{i=0}^{m-3}(m+i)=m(m-2)+\sum_{i=0}^{m-3} i=m(m-2)+(m-3)(m-2) / 2 \\
& c^{+}=3(m-1)(m-2) / 2
\end{aligned}
$$

Let $c^{-}<c<c^{+}$and $k=\max _{0 \leqslant j<m-3}\left\{j: \sum_{i=0}^{j} l\left(C_{i}\right)+3(m-j-3) \leqslant c\right\}$.
We now describe the construction of a cycle basis of length c. The basis \mathscr{B} consists of the $k+1$ longest cycles of \mathscr{B}^{+}(namely $C_{m-3}, C_{m-4}, \ldots, C_{m-k-3}$), $m-k-4$ triangles of \mathscr{B}^{-}and a cycle C^{*} of length l, where $l=c-$ $\sum_{i=0}^{k} l\left(C_{m-3-i}\right)-3(m-k-4)$ and $3 \leqslant l \leqslant l\left(C_{m-k-4}\right)=2 m-k-4$.

Consider two cases with regard to the value of l.
Case A. $m \leqslant l<2 m-k-4$.

$$
\begin{aligned}
\mathscr{B}= & \left\{C_{m-3}, C_{m-4}, \ldots, C_{m-k-3}, C^{*}, t_{1}, t_{2}, \ldots, t_{m-k-4}\right\} \\
& \text { where } C^{*}=C_{0} \oplus t_{1} \oplus t_{2} \oplus \cdots \oplus t_{l-m} .
\end{aligned}
$$

It is easy to see that $l\left(C^{*}\right)=l$. Furthermore,

$$
\begin{aligned}
& C_{0}=C^{*} \oplus t_{1} \oplus \cdots \oplus t_{l-m} \\
& t_{i} \in \mathscr{B}, \quad i=1,2, \ldots, m-k-4 \\
& t_{i}=C_{i-1} \oplus C_{i}, \quad i=m-k-2, \quad m-k-1, \ldots, m-3 \\
& t_{m-k-3}=C_{m-k-3} \oplus t_{1} \oplus \cdots \oplus t_{m-k-4} .
\end{aligned}
$$

Case B. $3 \leqslant l<m$.

$$
\begin{aligned}
& \mathscr{B}=\left\{C_{m-3}, C_{m-4}, \ldots, C_{m-k-3}, C^{*}, t_{2}, t_{3}, \ldots, t_{m-k-3}\right\}, \\
& \quad \text { where } C^{*}=t_{1} \oplus t_{2} \oplus \cdots \oplus t_{l-2} .
\end{aligned}
$$

\mathscr{B} generates all elements of \mathscr{B}^{-}, namely:

$$
\begin{aligned}
& t_{i}=C_{i+1}+C_{i}, \quad i=m-k-2, \quad m-k-1, \ldots, m-3 \\
& t_{i} \in \mathscr{B} \quad i=2,3, \ldots, \quad m-k-3 \\
& t_{1}=C^{*} \oplus t_{2} \oplus t_{3} \oplus \cdots \oplus t_{l-2} \\
& C_{0}=C_{m-k-3} \oplus t_{1} \oplus t_{2} \oplus \cdots \oplus t_{m-k-3}
\end{aligned}
$$

In both cases $l\left(C^{*}\right)=l, l(\mathscr{B})=c$ and as \mathscr{B} generates the cycles of the minimal cycle basis $\mathscr{B}^{-}, \mathscr{B}$ is also a cycle basis. Thus we have proved the following theorem:

Theorem. The kite-graphs have the cbip.
The kite-graphs do not have a triangular cycle basis, but still have many triangles. It would be interesting to find a family of (2-connected) graphs with a small number of triangles or without any triangle at all.

References

[1] F. Harary, Graph Theory (Addison-Wesley, Reading 1969).
[2] F. Harary, E. Kolasinska and M.M. Syslo, Cycle basis interpolation theorems, Ann. Discrete Math. 27 (1985) 369-380.
[3] E. Hubicka and M.M. Syslo, Minimal bases of cycles of a graph, in: Recent Advances in Graph Theory (Ed. M. Fiedler) (Academia, Prague 1975) 283-293.

