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Tuberculosis (TB) is the deadliest bacterial disease in the world. New therapeutic agents are urgently

needed to replace existing drugs for which resistance is a significant problem. DNA topoisomerases are

well-validated targets for antimicrobial and anticancer chemotherapies. Although bacterial

topoisomerase I has yet to be exploited as a target for clinical antibiotics, DNA gyrase has been

extensively targeted, including the highly clinically successful fluoroquinolones, which have been

utilized in TB therapy. Here, we review the exploitation of topoisomerases as antibacterial targets and

summarize progress in developing new agents to target DNA topoisomerase I and DNA gyrase from

Mycobacterium tuberculosis.
Introduction
Although the information content of DNA is essentially indepen-

dent of how the DNA is knotted or twisted, the access to this

information depends on the topology of the DNA. DNA topoi-

somerases are ubiquitous enzymes that maintain the topological

homeostasis within the cell during these DNA transaction pro-

cesses [1–3]. In the words of James C. Wang, ‘DNA topoisomerases

are the magicians of the DNA world’ [4]; however, unlike the

sleight of hand used by a magician, topoisomerases rely on the

elegant chemistry of transesterification. Depending on their

mechanism of action, these enzymes are broadly classified as type

I (which make transient single-stranded breaks in DNA) and type

II (transient double-stranded breaks). The enzymes are further

subdivided into types IA and IB, distinguished by whether the

transient covalent bonds are to the 50- or 30-phosphate, respec-

tively, and types IIA and IIB, which differ in mechanistic and

evolutionary aspects [5]. Given their functional importance, ev-

ery species has at least one enzyme from each type. Although the

presence of more than one topoisomerase from each type allows

for a division of labor for supercoiling, relaxation, knotting/

unknotting, and catenation/decatenation, this redundancy also
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provides for a certain degree of overlap in their functions. For

instance, in Escherichia coli, there are four topoisomerases: two

type I [topoisomerase (topo) I and topo III] and two type II (DNA

gyrase and topo IV). In vitro, all four enzymes are capable of DNA

relaxation, whereas, in vivo, their roles tend to be more special-

ized, for example, gyrase introduces negative supercoils, whereas

topo IV is responsible for decatenation following replication [6];

these functions are critical for cell survival. By contrast, the

Mycobacterium tuberculosis (Mtb) genome encodes a single type I

(topo I; gene = Rv3646c) and a single type II topoisomerase [gyr-

ase; genes = Rv0006 (gyrA) and Rv0005 (gyrB)] [7], which take care

of the entire burden of decatenation, relaxation, and supercoil-

ing. In organisms with additional topoisomerases, not all the

topoisomerases are essential for cell survival. For example, in E.

coli, topo I is not necessarily essential [8], whereas saturation

mutagenesis studies suggested the essentiality of Mtb topo I

(MttopoI) [9]. This essentiality is confirmed by generating condi-

tional knockdown strains, wherein the intracellular level of the

enzyme is downregulated [10]. The minimal composition of the

topoisomerases in the Mtb genome necessitates the enzymes to

carry out additional functions in vivo. Previous studies of myco-

bacterial topoisomerases have revealed these additional func-

tions as well as their distinct features [11–18].
rase as targets for TB therapy, Drug Discov Today (2016), http://dx.doi.org/10.1016/
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FIGURE 1

Topoisomerase reaction mechanisms. (a) Bacterial topoisomerase I (topo I) reaction cycle: the multistep reaction is initiated with the interaction and binding of the

enzyme to negatively supercoiled DNA. DNA binding is followed by the first transesterification reaction in which the nucleophilic attack by the tyrosine of the

active site on the phosphodiester backbone results in the formation of the topo I-DNA covalent complex and separation of the domains to form an enzyme–DNA
gate. Next, the intact strand of DNA is passed through this enzyme–DNA gate, resulting in a change in linking number. After strand passage, during the second

transesterification reaction, the separated domains close and the 30-hydroxyl group targets the phosphotyrosine covalent adduct with a nucleophilic attack,

resulting in the resealing of the cleaved DNA strand. During the reaction cycle, the various domains of the enzyme open and close like a clamp, facilitating the
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DNA cleavage: the Achilles’ heel of the topoisomerase
mechanism
The reaction mechanism of type IA topoisomerases involves a

series of coordinated steps. The reaction cycle, depicted in

Fig. 1a, shows the noncovalent binding of the enzyme to the

substrate, followed by a transesterification reaction involving a

nucleophilic attack on the phosphodiester backbone by the ac-

tive-site tyrosine, resulting in the formation of a phosphotyrosine

covalent adduct. The intact strand of DNA is passed through the

cleaved DNA followed by another transesterification reaction in-

volving nucleophilic attack by the free 30-OH on the phosphotyr-

osine covalent adduct resulting in the resealing of the cleaved DNA.

A cleavage–religation equilibrium between the two transesterifica-

tion reactions is an important feature of the overall reaction.

Perturbation of this equilibrium can lead to the accumulation of

enzyme–DNA covalent adducts, which are potentially cytotoxic.

Topoisomerase poisons are molecules that perturb the cleavage–

religation equilibrium, resulting in the accumulation of enzyme–

DNA covalent adducts [19]. The cleavage of the DNA is a vulnerable

step during the reaction mechanism of the enzyme that could be

exploited to develop inhibitors that can act as topoisomerase

poisons.

In the case of type II topoisomerases, such as bacterial gyrases,

the reaction cycles proceed via transient double-stranded breaks in

DNA. In the general case, as represented by eukaryotic topo II and

bacterial topo IV, the dimeric enzyme binds two segments of DNA,

a G (or gate) segment and a T (or transported) segment. Double-

stranded cleavage of the G segment facilitates passage of the T

segment through the G segment (and, thus, through the protein

interfaces of the dimeric enzyme), in a reaction driven by the

binding and hydrolysis of ATP [20]. Gyrase is a special case of this

mechanism (Fig. 1b) in which the G and T segments are colinear

and the strand-passage event leads to the introduction of negative

supercoils [1]. As with the type I enzymes, cleavage of the DNA

(double stranded in this case) is a vulnerability that can be poten-

tially exploited to develop inhibitors [21].

Thus, one of the most desired classes of molecule that target

topoisomerases are topoisomerase poisons [19]. However, until

recently, no such molecules had been discovered for bacterial type

I enzymes, although it has been genetically and chemically vali-

dated as an anti-TB target [22]. By contrast, several molecules

target type II topoisomerases (bacterial and eukaryotic) and type

IB enzymes (typically found in eukaryotes). In the case of eukary-

otic type IB enzymes, camptothecin [23,24] and its various deri-

vatives target human topo I. Although an inhibitor that acts in a

similar fashion is desired for type IA topoisomerases, catalytic

inhibitors of the enzyme might also be useful in those organisms

harboring a single type IA topoisomerase. DNA gyrase has been

extensively exploited as a target for the development of antibac-

terial compounds (discussed below), prominent among them
Please cite this article in press as: Nagaraja, V. et al. DNA topoisomerase I and DNA gy
j.drudis.2016.11.006

formation of the topo I-DNA gate and religation, respectively. (b) Model for the me

follows: GyrB-NTD, dark blue; GyrB-TOPRIM domain, red; GyrB-tail, green; GyrA-NTD

and purple, respectively. (i) The subunits and DNA in their free states in solution; star

ATP-binding pocket. (ii) The G segment binds between GyrA-NTD and GyrB-TOPRIM,
in a positive crossover. (iii) ATP is bound, closing the GyrB clamp (GyrB-NTD) and ca

one ATP molecule allows GyrB to rotate, the DNA gate to widen, and the transpor

through the C gate, and the G segment is religated. The hydrolysis of the remain
Abbreviations: CTD, C-terminal domain; NTD, N-terminal domain; TOPRIM, topoiso
being the fluoroquinolones, which are one of the most effective

cellular poisons, arresting the gyrase reaction after DNA cleavage

leading to the generation of double-strand breaks [25,26].

Inhibitors of MttopoI
In work by the Nagaraja lab, in part supported by the MM4TB

consortium (www.mm4tb.org), has pursued the design of proof-of-

principle inhibitors for MttopoI. Biochemical characterization of

topo I from both Mycobacterium smegmatis [11] as well as Mtb [27]

revealed the site-specific nature of the enzyme, which recognizes a

hexameric sequence, CG/TCT#TC/G (where # indicates the site of

cleavage) [16]; these sites are referred to as ‘strong topoisomerase

sites’ (STS). The binding as well as the cleavage reaction is sequence

specific and, therefore, enabled the design of oligonucleotide sub-

strates that can inhibit the DNA relaxation reaction. Incubation of

the enzyme with the oligonucleotides harboring the STS causes the

DNA-binding site of the enzyme to be occluded for the binding of

negatively supercoiled DNA, leading to the inhibition of the DNA

relaxation reaction [16]. Next, monoclonal antibodies (mAbs) were

developed that specifically inhibit the mycobacterial topo I, an

approach that had been used previously to develop specific inhi-

bitors of mycobacterial gyrase [28]. Apart from being used as tools

to understand the finer details of the reaction, these mAbs could

also serve as valuable start points for the development of small-

molecule inhibitors against mycobacterial topo I. One of the mAbs,

1E4F5, was especially interesting owing to its mechanism of action.

Depending on the order of addition of the mAb, it could inhibit the

reaction at multiple steps. Pre-incubation of the mAb with the

enzyme led to the inhibition of the DNA-binding ability, while

incubation of the mAb with a preformed topo I-DNA complex led

to the formation of a mAb-topo I-DNA ternary complex [29]. This

mAb was shown to close the clamp of the enzyme, thus stimulating

the second transesterification step. Another mAb, 2F3G4, affected

the cleavage–religation equilibrium of the reaction, leading to the

accumulation of the topo I-DNA covalent complex; thus, 2F3G4

behaves like a topoisomerases poison [30].

All topoisomerases, irrespective of their class, transiently cleave

DNA during their reaction cycle. As discussed, this step has been

extensively exploited in the development of antibacterial as well as

anticancer agents, which target gyrase and eukaryotic topoisome-

rases, respectively. Thus, it is surprising that there is a dearth of such

small molecules that target bacterial topo I. However, in the recent

past, several studies have addressed this shortcoming. Using an

high-throughput screening (HTS) assay based on SOS induction in

E. coli, a phenanthrene compound, stephenanthrene, was identi-

fied as a bacterial topo I poison [31]. More recently, derivatives of

bolden, seconeolitsine, and N-methyl-seconeolitsine (Fig. 3) were

also identified to target the DNA relaxation activity of bacterial

topo I [32]. Apart from derivatives of bolden, bisbenzimidazole

analogs of Hoechst dyes, 3,4-dimethoxyphenyl bisbenzimidazole
rase as targets for TB therapy, Drug Discov Today (2016), http://dx.doi.org/10.1016/

chanism of DNA supercoiling by DNA gyrase. Gyrase domains are colored as

, orange; GyrA-CTD, light blue. The G and T DNA segments are colored black

s indicate the active site residues for DNA cleavage and the circle indicates an

 at the dimer interface, and the GyrA CTDs wrap DNA to present the T segment
pturing the T segment; the G segment is transiently cleaved. (iv) Hydrolysis of

t of the T segment through the cleaved G segment. (v) The T segment exits

ing ATP molecule resets the enzyme. Reprinted, with permission, from [73].
merase primase domain.
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(DMA) [33] and DPA 153 [34] with a terminal alkyne substitution

have been identified as potential inhibitors of topo I (Fig. 3). DMA

was shown to act as a topoisomerase poison, both in vitro as well as,

to a limited extent, in whole-cell assays [33]. More recently, analogs

of bisbenimidazoles, such as bisbenzimidazole 12b (Fig. 3), were

shown to be an improvement over DMA in terms of IC50 values and

having lower MICs among the compounds tested against several

E. coli strains [35].

Exploring natural product chemical space yielded anziaic acid

(Fig. 3) derived from the lichen Hypotrachyna sp. and shown to be a

dual inhibitor of type IA as well as type IIA topoisomerases. Anziaic

acid was demonstrated to act like a topoisomerase poison [36].

However the molecule exhibited toxicity toward human pulmonary

artery endothelial cells, possibly because of its dual-targeting ability

[36]. Another small molecule identified by exploring the natural

product spectrum was 2,4-diiodoemodin (Fig. 3), a haloemodin

derived from the bioactive natural product emodin. This molecule

is a dual inhibitor of topoisomerase I and DNA gyrase [37]. The dual

inhibition capability could have important implications in suppres-

sing resistance in pathogenic bacteria, such as Mtb, which has only

two topoisomerases.

An alternate approach was used to find small-molecule inhibi-

tors for MttopoI. Initially, a structural model of the enzyme was

generated to screen in silico a large number of molecules followed

by testing these molecules for enzyme inhibition directly (Fig. 2).

Using this target-based approach, three molecules were shown to

inhibit the DNA relaxation activity of MttopoI as well as to affect

the growth of Mtb cells in a whole-cell assay (Fig. 3). One of the

three molecules, m-AMSA (amsacrine; Fig. 3), is a well-known type

IIA topoisomerases poison [38]. The other two molecules, imipra-

mine and norclomipramine (Fig. 3), are used clinically as anti-

depressants [39,40]. These two molecules inhibited the DNA
Please cite this article in press as: Nagaraja, V. et al. DNA topoisomerase I and DNA gy
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(a)

FIGURE 2

Structural model of Mycobacterium tuberculosis (Mtb) topoisomerase I (MttopoI). S

sphere), and the superimposition of the crystal structure shown in yellow with the h

structure and the model of the enzyme are outside the docking region.
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relaxation activity at lower concentrations [41]. Notably, they

arrested the reaction and formed cleavage complexes with a higher

efficiency and were found to be bactericidal. Moreover, a decrease

in the MIC for the compounds in cells overexpressing topo I

validated topo I as the intracellular target and their action as

intracellular topo I poisons [41]. Although their potency was

not comparable to that of fluoroquinolones, they are the most

potent anti-topo I inhibitors reported so far. This study also

highlighted the potential to repurpose clinically relevant com-

pounds to target mycobacterial topo I [38]. Recent efforts starting

from a polyamine scaffold have led to the identification of four

more compounds that inhibit the DNA relaxation activity of

MttopoI and also affect the growth of mycobacterial cells; howev-

er, none of these molecules acts as a topoisomerase poison [42].

To summarize, the search for potent inhibitors of bacterial type

IA enzymes has begun, with some indications of success. Although

these efforts using different approaches have yielded a few hits, the

efficacy of these molecules in in vivo models of infection needs to

be tested. Such studies are underway with imipramine. Clearly,

more efforts are needed to develop better inhibitors using a variety

of approaches and a combination of strategies, including synthesis

of new derivatives from the early leads. Perhaps a high-throughput

assay for screening a large number of compounds in a short time

might not be out of place. The X-ray structure of the truncated

MttopoI published recently is a way forward in finding potent

inhibitors of the enzyme [43]. The availability of this structure will

provide major insights into the rational design of small-molecule

inhibitors of MttopoI.

Inhibitors of M. tuberculosis gyrase
In contrast to topo I, Mtb gyrase (Mtgyrase) has been extensively

exploited as a target for potential antibacterials. This is in part
rase as targets for TB therapy, Drug Discov Today (2016), http://dx.doi.org/10.1016/

(b)
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FIGURE 3

Small-molecule inhibitors of topoisomerase I.
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because of the high degree of success of gyrase as a target for

antibiotics effective against a range of pathogenic bacteria [21]. In

addition, the extensive structural information on gyrase from

several bacteria, including Mtb [44–48], has potentiated in silico

methods for developing new gyrase-specific inhibitors; examples

of this approach are given below. Perhaps surprisingly, there is

currently no complete crystal structure of gyrase (A2B2) for any

organism. However, it is possible to build such a structure (in this

case for Mtgyrase) using available information from domains and

protein fragments (Fig. 4).

The most successful gyrase-targeted antibacterial agents are the

fluoroquinolones and several of these compounds have proved

efficacious against TB; these include gatifloxacin and moxifloxacin

(Fig. 5) [49–51], which are being evaluated both for first-line

therapeutics and second-line therapy for multi-drug resistant

(MDR) and extensively drug-resistant (XDR) TB (Fig. 5). In relation

to moxifloxacin, which is currently the most promising fluoro-

quinolone targeted to TB, the results from a recent large-scale

Phase 3 trial demonstrated that this drug could not be substituted

for isoniazid or ethambutol in a 4-month treatment regimen

[52,53]. However, it is clear that moxifloxacin will still have an

important role in TB therapy, particularly for MDR-TB.

Work on understanding quinolone action on Mtgyrase and

developing new inhibitors has been greatly assisted by X-ray

crystallography. The structures of the GyrA N-terminal domain
Please cite this article in press as: Nagaraja, V. et al. DNA topoisomerase I and DNA gy
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(NTD) and the catalytic core [C-terminal domain (CTD) of GyrB

fused to the GyrA NTD] were initially determined [47,48]. Given

that these regions contain amino acid residues that interact with

quinolones, this gave some initial insight into drug–protein

interactions. Work on gyrase and topo IV from other organisms

revealed crystal structures with bound DNA and quinolones,

specifically, the structure of the catalytic core fusion of Strepto-

coccus pneumoniae topo IV complexed with moxifloxacin and

clinafloxacin [54], the structure of the catalytic core fusion of

Staphylococcus aureus gyrase complexed with ciprofloxacin [55],

and the catalytic core fusion of Acinetobacter baumannii topo IV

complexed with moxifloxacin [56]. These structures provided

molecular insight into the mechanism of inhibition by quino-

lones. In more recent work, structures have been obtained for

the Mtb GyrB-GyrA catalytic core with moxifloxacin, gatifloxa-

cin, and other quinolones [45]. These structures highlight the

details of Mtgyrase–quinolone–DNA interactions and how these

differ from those seen in other organisms, and will potentiate

the development of new compounds with increased potency

against TB.

However, despite success in understanding the molecular basis

of gyrase–quinolone–DNA interactions, resistance to quinolones is

a serious problem in TB and other bacterial infectious diseases.

Therefore, we need to develop other agents that can avoid the

resistance issues of existing antibiotics.
rase as targets for TB therapy, Drug Discov Today (2016), http://dx.doi.org/10.1016/
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FIGURE 4

Structural model of Mycobacterium tuberculosis DNA gyrase (Mtgyrase). The figure shows space-filling (a) and ribbon (b) representations of Mtgyrase. The models

were made by taking existing crystal structures (5BS8, 1ZVU, and 3ZKB) and using the program COOT to assemble a model of the A2B2 complex. Domains are
colored as follows: GyrB-NTDs, pink and sea-green; GyrB-CTDs, gold and gray; GyrA-NTDs, coral and ice blue; GyrA-CTDs, purple and pale brown. DNA is in a green

ribbon representation. Abbreviations: CTD, C-terminal domain; NTD, N-terminal domain.
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In work supported by the MM4TB consortium, we investigated a

large number of compounds for their potential as new gyrase-

targeted antibiotics (unpublished data). Specifically, we were seek-

ing compounds that show efficacy against Mtb (growing and/or

dormant) and that inhibit the gyrase supercoiling reaction. Ideal-

ly, the compounds should have a good IC50 against gyrase

(<50 mM) and, if possible, should stabilize the cleavage complex

but not show crossresistance to quinolones. We received >2000

compounds (mostly synthetic) from other partners and evaluated

their efficacy versus Mtgyrase. We found >60 compounds with

IC50 <50 mM and evidence for compounds with new modes of

action; fully characterizing these compounds and establishing

their prospects as potential TB agents is the subject of ongoing

work.

In connection with the MM4TB project, we also investigated

naphthoquinone natural products as inhibitors of Mtgyrase.

Extracts from the South African ‘toothbrush’ tree, Euclea nata-

lensis, have been extensively used in traditional medicine and

were found to be active against Mtb [57]. One active component

of this extract was shown to be the naphthoquinone diospyrin

(Fig. 5) [58], which was found to be an inhibitor of DNA gyrase

[60]. Moreover, diospyrin and other naphthoquinones were

found to have a novel mechanism of action, binding to the

GyrB-NTD, but not at the ATPase site [59]. The molecular details

of this binding pocket remain to be determined. Interestingly,

naphthoquinone compounds have also been found to inhibit

Mtb ThyX, an essential thymidylate synthase [60]. Whereas some

compounds, such as 7-methyljuglone (Fig. 5), inhibit both

enzymes, most affect ThyX without inhibiting gyrase. This sug-

gests that the pharmacophores for the two targets (ThyX and

GyrB) are distinct [60].

Other research groups have been developing new TB agents

targeted to gyrase, particularly using in silico methods based on the

new and emerging structural information on Mtgyrase. The crystal

structure of the GyrB-NTD (ATPase domain) of E. coli gyrase
Please cite this article in press as: Nagaraja, V. et al. DNA topoisomerase I and DNA gy
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complexed with an ATP analog, and that of the 24-kDa GyrB

N-terminal subdomain with novobiocin [61,62], paved the way

for structure-based drug design based around these ligand pockets.

More recently, the corresponding structure (GyrB-NTD) for Mtgyr-

ase has further promoted such work [44]. The group of Sriram

investigated a large number of inhibitors of Mtgyrase, following

computationally based approaches [63,64]; for example, using this

methodology, 28 2-amino-5-phenylthiophene-3-carboxamides

were synthesized, the best one having an MIC against Mtb of

�4 mM and an IC50 for Mtgyrase supercoiling of �0.8 mM [65]. In

another study, 48 quinoline-aminopiperidine-based urea and

thiourea derivatives were designed, synthesized, and evaluated;

the best compound had an MIC against M. tuberculosis of �3.5 mM

and an IC50 for Mtgyrase supercoiling of �0.7 mM [66]. Similar work

has been carried out with substituted benzofuran compounds and

pyrrolamides [67,68].

Astra-Zeneca have also published a series of papers describing

compounds that target the ATP-binding site. Aminopyrazina-

mides (Fig. 5) were identified from a HTS using the M. smegmatis

GyrB ATPase reaction [69]. A crystal structure of one of these

compounds complexed with the M. smegmatis GyrB-NTD revealed

the specifics of ligand–protein interactions in this case. Aside from

having good IC50, these compounds also show promising MICs.

In silico approaches led to thiazolopyridine ureas [70] and thiazo-

lopyridone ureas [71] as compounds that also had good activities

and properties.

Although a significant amount of effort has been expended on

discovering new Mtgyrase inhibitors, most of this has centered on

the ATP- and quinolone-binding sites. Exceptions to this are the

naphthoquinone studies described above [59,60] and work from

GSK [72], which identified novel bacterial topoisomerase inhibi-

tors (NBTIs) with activity against Mtgyrase and that lack cross-

resistance to fluoroquinolones (Fig. 5). More inhibitors acting at

sites different from the well-known binding pockets would be

desirable.
rase as targets for TB therapy, Drug Discov Today (2016), http://dx.doi.org/10.1016/
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FIGURE 5

Small-molecule inhibitors of Mycobacterium tuberculosis DNA gyrase (Mtgyrase): (a) fluoroquinolones; (b) naphthoquinones; (c) a representative

aminopyrazinamide from Astra-Zeneca [69], and a representative novel bacterial topoisomerase inhibitor (NBTI) from GSK [72].
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Concluding remarks
There is no question that topoisomerases have been effective

targets both for anticancer and antibacterial chemotherapy and

there appears to be every reason to persist in the search for new

agents that target MttopoI and Mtgyrase. These two enzymes can

be regarded separately. In the case of MttopoI, it can be regarded as

a ‘new’ target that remains to be exploited clinically. However,

given the urgent need to find new antibacterial agents and the

depth of knowledge about this enzyme, it is justifiable to expend

more effort in seeking new inhibitors. In the case of Mtgyrase, the

success of fluoroquinolones and the existence of other exploitable

ligand-binding pockets in gyrase suggest that work on seeking new

gyrase-specific inhibitors will continue to be important. Whether

these searches are target-based or follow phenotypic screens is a
Please cite this article in press as: Nagaraja, V. et al. DNA topoisomerase I and DNA gy
j.drudis.2016.11.006
moot point; the evidence from recent studies suggests that both

approaches are valid. In any case, it is probably that combined

academic and pharma efforts will be needed to achieve success.
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