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A simple deterministic dynamic programming model is used as a general 
framework for the analysis of stochastic versions of three classical optimization 
problems: knapsack, traveling salesperson, and assembly line balancing problems. 
It is shown that this model can provide an alternative to the preference order 
models proposed for these problems. Counterexample to the optimality of the 
preference order models are presented. 

1. INTRODUCTION 

The preference order dynamic programming models developed by Mitten 
[l] and Sobel [2] p rovide an extremely flexible framework for formulation 
and analysis of sequential decision problems. Unlike standard dynamic 
programming models such as those developed by Bellman [3], Aris 141, 
Nemhauser 151, Mitten [6], Yakowitz [7], Hinderer IS], Kreps [9, lo] and 
others, the preference order models can be used in situaions where the 
optimality criterion is not based on real valued objective functions. 

Attempts have been made to use the preference order models in the 
context of stochastic problems in which the optimality of the solution is 
based on probabilistic criteria related either to the reward or the constraints. 
For example, Kao Ill] proposed such a model for a probabilistic 
constrained stochastic assembly line balancing problem and a similar model 
for a stochastic traveling salesperson problem with a probabilistic type 
objective function (Kao [ 121). Also, Steinberg and Parks [ 131 proposed such 
a model for a knapsack problem with a probabilistic type objective function. 

The objective of this paper is to show that the stochastic problems studied 
in [ 1 l-131 can be formulated as simple deterministic final state dynamic 
programming problems. In this sense the use of preference order models in 
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[ 1 l-131 is somewhat “artificial” for the problems under consideration can be 
analyzed in the context of Bellman’s [3] model in which the optimality of the 
solutions is based on a real valued objective function. 

We use Bellman’s simple model as a basis for the construction of coun- 
terexamples to the optimality of the solutions derived by the procedures 
proposed in [ 1 l-131. 

2. FINAL STATE MODEL 

Under consideration is the simple deterministic sequential decision model 
introduced by Bellman [3, pp, 82, 831. The truncated version of this model 
can be specified by the following elements: 

(1) A sequence N = (n: n = 1,2,..., N) of decision stages and a final 
stage, n = N + 1, which is preserved for the description of the final state of 
the process. 

(2) A nonempty state space S. 
(3) A nonempty decision space D and a collection (D, : n E N) of maps 

from S to the set of all the subsets of D such that D,(s) is interpreted as the 
set of feasible decisions associated with stage n E N, and state s E S. 

(4) A sequence (7’,, : n E N) of transformations from S X D to S so that 
s’ = T”(s, d) is interpreted as the state resulting at stage n + 1 if the decision 
d E D is applied to state s E S at stage II. 

(5) A real valued objective function, g, defined on S. 

The objective is to determine a sequence of decisions (d, , d, ,..., dN) so as 
to optimize the objective function which is applied to the final state of the 
process. That is, if the initial stae is sr and the decisions (d,, dz,..., dN) are 
applied sequentially, starting at stage n = 1, the states s,, s, = 
TICS,, d,),..., S,, , = T,,,(s,, dN) are generated and the total “reward” g(s,+ ,) 
is realized. 

Formally the problem under consideration can be stated as 

G(s’) := (d ytd ) g(s,v+ 11, so E s, (1) ,I 3, 
subject to 

s, = so, 4, E Dn(sn)r s, + , = Tn(s, 3 4th VnEN (2) 

where the initial state, so, is viewed as a parameter and “opt” is either “mitt” 
or “max”. 
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Following standard dynamic programming arguments (31 we consider the 
recursion 

starting at n = N + 1 with 

Gv+ ,(s> := g(s), s E S,Nfl, (4) 

where the state spaces (S, : n E N U (N + 1 }) are determined as follows: 
S, := (so} and 

S n+1 := (s: s = T,(s’, d), s’ E S,) d E D”(d)}, 1 <n<N. (5) 

The sequential structure of the problem and the fact that G(s’) depends 
only on the last state guarantee that if D,(s) is finite for every n E N and 
s E S, then G(sO) = G,(sO) and the dynamic programming solutions are 
optimal. 

In the next section we consider a special case of the above model which 
will enable the analysis of stochastic problems. 

3. STOCHASTIC PROBLEMS 

In order to enable the use of the above model in the context of stochastic 
problems we consider the case S = W x F, where W is a nonempty set and F 
is the set of all the distribution functions associated with real valued random 
variables. Thus, if slit, = (w,f) E S is the final state generated by applying 

(d , ,..., d,v) to the initial state so, then f is the distribution function generated 
by so and (d, ,..., dN) so that g(w, f) can be a real number determined by J 
For example, g(w,f) can be the expected value of the random variable 
induced by f or the probability that this variable is equal to or greater than a 
given value. 

Since the dynamic programming recursion is uniquely determined by the 
objects N, so, {T,}, (D,} and g, in each application it would suffke to 
specify these objects. It should be noted that as far as computation is 
concerned, often it is possible to replace the distribution functions,fE F, by 
their parameters. 

4. APPLICATIONS 

The stochastic version of the final state mode1 enables the formulation of a 
variety of stochastic sequential decision problems. Three such problems are 
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considered here. In the sequel let * denote the convolution operator, I be the 
set of non-negative integers, andf(C) denote the probability that the random 
variable induced by f is equal to or smaller than C. We also denote by o” the 
degenerate distribution function having zero mean and variance, and by 0 
the empty set. 

4.1. Stochastic Knapsack Problem 

Under consideration is the stochastic knapsack problem studied by 
Steinberg and Parks [ 131. It can be described as follows: There are K types 
of items denoted by k = 1, 2,..., K, each of which is characterized by its 
weight, wk, and its volume, vk. In the stochastic version under consideration 
(w 1 ,***, wk. are non-negative integers and (V 1 ,..., v,J are independent random 
variables having known distribution function (rp, ,..., ok). The objective is to 
select items so as to maximize the probability that their total volume would 
be equal to or greater than a given constant C, subject to the constraint that 
their total weight would be equal to or smaller than a given positive 
integer w”. 

For this problem we set W := {w: w = 0, l,..., w’}, and S := W X F and 
specify the elements of the final state model as follows: N= K, so = (w’, q”), 
opt = “max.” and 

D,,(x, f) := (d: d . w, < w, d E Z), (w,f )E s; (6) 

T,(w,f,d):=(w-d.~,,d*(p,*~), dEz, (wf)ES; (7) 

s(w,f) := 1 -f(C), (wf )E s; (8) 

where in (7) qt” is the distribution obtained by convoluting o,n with itself d 
times. Notice that by construction at stage n the state s, = (w, f) can be 
interpreted as follows: w is the weight available after selecting items of type 
1, 2,..., n - 1 and f is the distribution function of the total volume of these 
items. 

4.2. Stochastic Traveling Salesperson Problem 

Under consideration is the stochastic traveling sales person problem 
studied by Kao [ 121 in which a salesperson must visit a set of K cities 
denoted by k, k E L := { 1, 2 ,..., K). Each city must be visited once and only 
once and each tour starts and terminates at an origin point denoted by 0. 
The travel time between cities i andj is a random variable, having a known 
distribution function pii. For simplicity it is assumed that the traveling times 
are stochastically independent. The objective is to determine a tour so as to 
maximize the probability that the total travel time would be equal to or 
smaller than a given constant C. 
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For this case we let L denote the set of all the subsets of L and set W = 
L x L, S = W x F, so that the state s = (i, 1,f) E S can be interpreted as 
follows: i the city we currently visit, I is the set of cities we have yet to visit 
and f is the distribution function of the total travel time from the origin point 
to city i through the cities L - {i) - {I). The elements of the model are 
specilid by N = K - 1, so = (0, L, rp”), opt E “max” and 

D,(i, 1, f) := (d: d E I), (i, 1, f > E S, (9) 

T,(i, 1, f, 4 := (4 I- (4 f * vi,J, (4 I, f> E S, d E 1, (10) 

d4 6.f) := [f* Pi,Ol(c>Y (4 1, S) E S. (11) 

Notice that at the final stage n = N + 1 the states sh’ + , = (i, 1, f) E S,v+ , are 
such that I is the empty set; i.e., we have already visited all the cities, so that 
in (11) we convolute f with oio, which is the distribution function of the 
travel time from city i to the origin point. 

4.3. Stochastic Assembly Line Balancing Problem 

Under consideration is the stochastic assembly line balancing problem 
studied by Kao [ 111. It can be described as follows: a set of K tasks denoted 
by k E L := { 1, 2,..., K} are to be processed by work stations placed serially 
along an assembly line. The processing time of each task is a random 
variable having a known distribution functions Pi, and (vi,..., v)~) are 
assumed to be independent. The objective is to assign tasks to work stations 
so as to minimize the total number of work stations required for the 
processing of the tasks, subject to two constraints: A precedence constraint 
is required, specified by a precedence relation B so that for each task k the 
set B(k) is a subset of L interpreted as the immediate predecessors of k. That 
is, task k can be processed only after all the elements of B(k) have been 
processed. It is also required that each station will complete the processing 
of the tasks assigned to it in C or less units of time with probability greater 
than or equal to a. 

For this case we set W = L x L, and S = W x F, where L is the set of all 
the subsets of L so that the state (m, Z,f) can be interpreted as follows: m is 
the number of stations to which we have already assigned tasks, I is the set 
of tasks we have already assigned and f is the distribution function of the 
processing time of the tasks assigned to the last station, i.e. the mth station. 
In order to guarantee the existence of feasible solutions it is assumed that for 
every k the condition pk(C) < a is satisfied and that there exists a 
permutation of tasks which satisfies the precedence constraint specified by B. 

The elements of the final state model are specified by N= K, so = 
(0, Q, o”), opt z “max”, and 
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Dn(m, l,f) := (d: d E L, B(d) E I}, (m, 1, f) E s, (12) 

T&G k, s, 4 := ! 
Cm, 1 u k$f* v)J if If* vdl(C) > a 
(m + 1, lu WI, vJ if IS * vdl(C) < a, (13) 

s(m, 1, f) := m, (14) 

observing that for every stage n the states s, = (n, 1,f) E S, are such that m 
is not greater than it, and 1 is a collection of IZ - 1 tasks satisfying the 
precedence relations. 

It should be emphasized that the final state recursion wold be simplified 
because (14) could be constructed by an additive recursion which does not 
require the incorporation of m in the state variables. 

5. DISCUSSION 

Experience with dynamic programming has shown that in practice the 
dynamic programming recursion is often constructed on the basis of intuitive 
arguments in which Bellman’s [3, p. 831 principle of optimality is invoked to 
justify the optimality of the solutions. As indicated by the counterexamples 
developed by Elmaghraby [ 141 and Erlenkotter [ 151 certain difficulties may 
be encountered if the principle of optimality is invoked “axiomatically.” 

Similarly, the question regarding what types of problems dynamic 
programming can handle is not trivial because the answer to it depends on 
how one defines the elements of the sequential decision problems. For 
example, Sniedoviich [ 161 shows that contrary to Askew’s [ 171 and 
Rossman’s [ 191 conclusions, dynamic programming can handle probabilistic 
constraints defined over the entire “life of the process.” 

As indicated by Mitten [ 1, p. 431 and Sobel [2, pp. 967, 9681 preference 
order dynamic programming models are suitable for the analysis of 
sequential decision processes in which the optimality of the solutions is not 
based on real-valued objective functions. In this sense, it is not clear why 
preference order models should be used for the analysis of the problems 
studied in [ 1 l-131 for, as indicated in the preceding section, these problems 
can be formulated as simple deterministic final state dynamic programming 
problems having real-valued objective functions. Moreover, as will be shown 
in the sequel, preference order models proposed in [ 1 l-131 may fail to 
provide the optimal solutions. 
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6. PREFERENCE ORDER MODELS 

Since it is always possible to redefine the final state model as a preference 
order model according to Sobel’s [2] formulation, the question is not 
whether or not the above problems constitute legitimate preference order 
dynamic programming problems but rather what the advantage is, if any, of 
such a formulation. For this reason we briefly describe the preference order 
models proposed in [ 1 l-131. 

6.1. Stochastic Knapsack Problem 

The preference order recursion proposed by Steinberg and Parks [ 131 for 
the stochastic knapsack problem discussed in (4.1) can be described as 
follows: For every positive integer w E Z define X,(W) := {x:x . W, < W, 
x E I} so that X,,(W) is the set of all the feasible decisions available while 
selecting items of type n, given that we still have w units of weight. 

Step 1. For n = 1 solve 

.fl(w> := I ~VT”l~ WE w. (15) 
xeX,(w) 

Step 2. For 1 < n <N solve 

f,(w) := I idY*fn-,(w-x. w,>L WE w. (16) 
XEX,,o(‘) 

where 1 is a preference order operator on the set of all the subsets of F with 
values in F such that for any subset Q of F, the distribution q” = I IQ 1 
satisfies the condition 

lqO * PI(C) 2 14 * VI3 VsEQ, ~PEF, (17) 

where F is the set of all the distribution function that can be generated by 
convoluting the elements (pi, (oz ,..., qN). 

As indicated by Steinberg and Parks [ 13 ] the operator 1 is transitive and 
reflexive but not necessarily complete. If, however, 1 is complete, then 
Mitten’s ] 1 ] monotonicity condition is satisfied and fV(wo) is an optimal 
solution. 

Obviously, because in (17) we convolute the arguments of I with all the 
elements of F the completeness assumption is rather restrictive and the 
computational requirements can be significant. On the other hand, since the 
recursion is based on the elements w E W, (16) is more efficient than the 
final state recursion as far as storage requirements are concerned. The 
difficulty here is that in general 1 is not complete and hence the recursion is 
not always well defined. 

4OYf7Y!2 I5 
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6.2. Stochastic Traveling Salesperson Problem 

Consider the problem described in (4.2) and let A, denote the set of all the 
subsets of {O} U L which include the origin point 0 and k distinct cities. That 
is, ak E A, is a set of k + 1 elements including 0 and k elements of L, so that 
by construction A, = (0} and A, = (0 U L 1. Define 

W k+I:=((irZ):iEL,lEA,+,,i~Z}, O<k<K, (18) 

with W,, := {(i, 4): i E L}, so that w = (i, 1) E W, can be interpreted as 
follows: i is the city we currently visit and 1 is the cities we have yet to visit. 

The preference order dynamic programming recursion proposed by Kao 
] 12 ] can be described as follows: 

Step 1. For k = 0 solve 

G,(i, 4) := Qi,o, (i,$)E W,. (19) 

Step 2. For 0 < k <K solve 

G,(k 9 := I ((D),~ * G,-,(d, I- (d))}. 
dsl 

(20) 

where I is a preference order operator on the set of all the subsets of F with 
values in F satisfying the following condition: For any subset Q of F the 
distribution function q” = I [ Q] is such that 

[qO * cpl(C) < [q * PI(C), VqEQ, PEF. (21) 

As indicated by Kao [ 121 the operator I is transitive and reflexive but not 
necessarily complete because in (21) its arguments are convoluted with all 
the elements of F. However, if I is complete then it satisfies Mitten’s [ 1 ] 
monotonicity condition and therefore the optimality of the preference order 
solution is guaranteed. That is, G,(O, L) is the optimal distribution function 
of the total travel time. 

Obviously, since in (21) the arguments of I are convoluted with all the 
elements of F, the completeness assumption is extremely restrictive and the 
computational requirements can be extremely demanding. In view of these 
difftculties, Kao [ 12, p. 10361 proposes that I can be modified as follows: 
While applied in (20) its arguments could be convoluted only with the 
elements of the set (q,[ : j E L, j & 1). In this case the completeness 
assumption is less restrictive and the recursion is more efficient. However, as 
will be shown in the sequel under this condition, Mitten’s [l] monotonicity 
condition is not implied by the completeness condition and hence the 
proposed procedure may generate non-optima1 solutions. 
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6.3. Assembly Line Balancing Problem 

Consider the problem described in (4.3) and the objects (a, ,..., a,), Y, A 
and i defined as follows: 

(1) a, is an element of L such that B(a,) = 0, a, is the set L and for 
every 1 < j < J, the set aj is a subset of L such that for every i E aj the set 
B(i) is equal to ai,, for some J" < j. Details regarding how such a sequence 
can be generated can be found in Kao (12, p. 10881. 

(2) Y is a map from the set of all the subsets of L to itself such that for 
every aj, 1 < j,<J, the set Y(aj) consists of all the elements, k, of aj such 
that aj - {k} = aio, for some 1 <J” < j. 

(3) A is the map from I x F x L to I X F defined by 

AM, S, i> = I 
Cm, f * ulih if If * P(l(c> 2 Q, 

(Cm + 11, ~4 if [f * pi](C) < a. (22) 

(4) 1 is a preference order operator such that when applied to sets of the 
form Q = {(mi,h): i= 1, 2 ,..., q}, the element (miO,&) = l[Q] is selected 
according to the criteria 

mio < mi9 V i = 1, 2 ,..., q, 

and if i0 is not unique then the condition 

(23) 

IJ;:~*ull-‘(~),<l~~*v11-‘(~)~ V(OEF, (24) 

is used to resolve the tie between all elements i’ for which miO = m,,, where 
q- ‘(a) := inf{ I: rp(t) < a}. 

The proposed preference order dynamic programming recursion’proposed 
by Kao [ 111 can be described as follows: 

Step 1. Set 

G(a,) := (1, (D,,). (25) 

Step 2. For 1 < j < J solve 

G(aj) := 1 (A(G(aj - ii}), i)}. (26) 
ie Y(O,) 

As indicated by Kao [ 111, if 1 is complete then (m, f) = G(a,) is optimal 
in that m is the minimum number of work stations required for the 
processing of the tasks, subject to the precedence and probabilistic 
constraints. However, since in (24) the convolution is over all the elements 
of F the completeness assumption is restrictive and the computational 
requirements can be extremely demanding. 
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Consequently, Kao [ 11, p. 10991 proposes that while applying (26), in 
order to resolve a possible tie in (23), there is no need to convolute cpi with 
all the elements of F and that the convolution can be restricted only to the 
elements (‘pi: i 65 uj, i E L}. However, as will be shown in the sequel in this 
case, the completeness of 1 does not necessarily guarantee the validity of 
Mitten’s [ I] monotonicity condition and hence the recursion may provide 
non-optimal solutions. 

6.4. Summary 

The completeness assumption and the computational requirements 
associated with the proposed preference order recursions are extremely 
restrictive. In the sequel we show that the modified procedures proposed in 
] 1 l-l 31 for overcoming these difficulties may generate non-optimal 
solutions. 

7. COUNTEREXAMPLES 

The fact that in the final state model it was necessary to incorporate 
distribution functions in the state variables could be used as an argument to 
question the optimality of the proposed preference order procedures. It 
should be noted that in order for the preference order procedures to be 
computationally feasible it is necessary that 1 be complete. However, since 
in each case it is proposed to modify the original structure of 1 so as to 
reduce the amount of computation, it is no longer obvious that if the 
simplified version of I is complete the procedure will generate optimal 
solutions. The counterexamples to be presented below were constructed on 
the basis of the final state model which is guaranteed to provide optimal 
solutions. 

7.1. Knapsack Problem 

Consider the numerical example presented by Steinberg and Parks [ 13, 
pp. 143, 1441. It is defined by N = 10, C = 30, the variables (wi, w2 ,..., wN) 
and the normal distributions (cp,, rp, ,..., opt) whose means {pu,} and variances 
{ui} are specified in Table I. 

TABLE I 

Parameters for Numerical Example 

n 1 2 3 4 5 6 7 8 9 10 

W” 5 I 11 9 8 4 12 10 3 6 
Pu, 7 12 14 13 12 5 16 11 4 I 

2 0” 15 20 15 10 8 20 8 15 20 25 
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For w” = 25 the optimal solution obtained by the preference order 
procedure proposed by Steinberg and Parks [ 131 is x, = 1, x, = 2, x, = 0, 
V n # 2,4. This solution generates a normal distribution with mean ,u = 38 
and variance u* = 40. For this distribution the probability that the total 
volume would be equal to or greater than C = 30 is 0.896. 

On the other hand, the final state model generates the solution x, = 1, 
xg = 2, x, = 0, V n # 4, 5. This solution generates the normal distribution 
with mean p = 37 and variance cr* = 26, for which the probability that the 
total volume would be C or more is 0.915. Obviously, the preference order 
solution is not optimal although the recursion is well defined. 

1.2. Traveling Salesperson Problem 

Consider the traveling salesperson problem specified by N = 4, C = 70 
and the normal distributions (vii} whose means and variances are specified 

0 1 2 3 4 
0 -70707013 
1 70 - 10 15 70 

bijl = 2 

3 
i 8 70 - 20 70 

147024-70 
4 70 8 70 70 - 1 

0 1 @if} = : 
3 
4 

0 1 2 3 4 
- 0 0 0 0 

O-620 
2 O-12 0 
902-O 
0 10 o- 

For this problem Kao’s [ 121 procedure generates the tour (0,4, 1, 3,2,0) 
which generates the normal distribution with mean p = 68 and variance 
a* = 7, yielding a probability of 0.775 for the travel time to be less than or 
equal to C = 70. 

On the other hand, the final state model generates the tour (0,4, 1, 2, 3, 0) 
which generates the normal distribution with mean fi = 65 and variance 
cr’ = 28, yielding a probability of 0.829 for the tour to be completed in 
C = 70 units of time or less. Obviously, the preference order solution is not 
optimal. 

1.3. Assembly Line Problem 

Consider the stochastic assembly line problem specified by N = 5, 
C = 14.3, a = 0.95 the normal distributions (pr ,..., v)~) and the preference 
relation B specified in Table II. 

For this case Kao’s [ 111 procedure generates the assignment ((1,3), (2,4), 
(5)) which requires three stations while the final state model generates the 
assignment ((1. 2), (3,4, 5)) which requires only two stations. Obviously, the 
preference order solution is not optimal. 
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TABLE II 

Parameters for Numerical Example 

Task n B(n) P” 
2 

0, 

I 8 0 
2 4 0 
3 IIt 3 2 
4 {2,31 4 I 
5 i4t 4 I 

8. CONCLUSIONS 

The preference order procedures proposed in [ 1 l-13) should be used with 
caution because they may generate non-optimal solutions. While it is true 
that if the original form of the preference order operator is used the solutions 
are optimal, this form of the operator is extremely restrictive because of the 
completeness assumption and the computational requirements. 

On the other hand, these procedures can be used as efficient heuristic 
methods, with the understanding that the optimality of the solutions is not 
guaranteed. From the methodological point of view it should be emphasized 
that the final state model could be used as a general framework for the 
analysis of these problems and therefore the use of the preference order 
models is somewhat artificial. 

More details regarding the non-optimality of the preference order models 
and the counterexamples presented in this paper can be found in [ 19-2 11. 
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