On Generalized Invariants of Injective Nonsingular Module Algebras

Miriam Cohen*

Department of Mathematics and Computer Science, Ben Gurion University of the Negev, Beer Sheva, Israel

Anatoli Koryukin

Institute of Mathematics, Novosibirsk, Russia

and

Sara Westreich*

Interdisciplinary Department of the Social Sciences, Bar-Ilan University, Ramat-Gan, Israel

Communicated by Susan Montgomery

Received January 25, 1999

0. INTRODUCTION

Let H be a Hopf algebra over a field k, let H^0 be its finite dual, and let A be an H-module algebra. The invariants of A, A^H, are \{ $a \in A | h \cdot a = a$ for all $h \in H$ \}, while its σ-invariants, A_σ, are \{ $a \in A | h \cdot a = \langle \sigma, h \rangle a$ for all $h \in H$ \}, where $\sigma \in G(H^0)$, the set of group-like elements of H^0. It is easy to see that $A_\sigma = \rho^{-1}(A^\text{fin} \otimes k \sigma)$, where ρ is the coaction induced by the given action and A^fin is an appropriate subalgebra of A. In the language of Lie algebras $0 \neq A_\sigma$ would be termed a weight space. Naturally, generalized invariants are $A_V = \rho^{-1}(A^\text{fin} \otimes V)$, where V is a subspace of H^0. Of particular interest is A_V for $V = kG(H^0)$ which equals the sum of all one-dimensional H-submodules of A.

* This research was supported by The Israel Science Foundation founded by the Israel Academy of Sciences and Humanities.
In Section 2 we show (consequences of Proposition 2.5 and Theorem 2.7) that if \(A \) is an injective and nonsingular \(A^H \)-module then so is \(A_v \) for any finite-dimensional \(V \subset H^0 \). If, moreover, \(V \subset C \subset H^0 \), where \(C \) is a pointed subcoalgebra of \(H^0 \), and \(A_v \) is finitely generated over \(A^H \) for all \(\sigma \in G(C) \), then so is \(A_v \).

In Section 3 we show that such \(A \) are abundant. In fact if \(A \) is \(H \)-semiprime and \(H \)-commutative then its \(H \)-quotient ring \(Q \) is a nonsingular and injective module over its invariants (Theorem 3.8). (If the \(H \)-commutativity condition is removed we show in Theorem 3.7 that the same conclusion holds over the central invariants.) Another feature of \(Q \) is that its \(\alpha \)-invariants are normalizing elements of \(Q \) (Corollary 3.2), and have a very simple form. They are cyclic modules over the invariants (Theorem 3.5). Consequently, results of Section 2 apply and we conclude in Theorem 3.8 that generalized invariants \(Q_v \) are finitely generated injective and projective modules over the invariants for all finite-dimensional \(V \subset C \subset H^0 \), where \(C \) is a pointed subcoalgebra of \(H^0 \).

In Section 4 we apply these results in some special cases. The first are \(H \)-module algebras in the so called “Yetter–Drinfeld” category, \(\mathcal{YD} \). We prove in Theorems 4.3 and 4.4 certain commutativity relations among elements in \(A_{k(G(H))} = \sum_{a \in G(H)} A_v \) and obtain additional results when \(H \) is a quasitriangular Hopf algebra. The second class of special cases are finite-dimensional Hopf algebras with special emphasis on \(A = H \) under the adjoint action (Theorem 4.8, Theorem 4.9, and Corollary 4.11). The final example is \(H = A = O_q(SL_n) \) where we show in Theorem 4.14 certain properties of its Martindale ring of quotients. Some generalized invariants are computed with respect to the pointed sub-Hopf algebra \(U_q(sl_n) \subset (O_q(SL_n))^0 \).

1. PRELIMINARIES

The basic references are [Sw, Mo].

Let \(H \) be a Hopf algebra over a field \(k \) with a comultiplication \(\Delta \), counit \(\varepsilon \), and antipode \(S \). For a left \(H \)-comodule, \((M, \eta)\), write

\[
\eta(m) = \sum m_{-1} \otimes m_0 \in H \otimes M
\]

and for a right \(H \)-comodule, \((M, \rho)\), write

\[
\rho(m) = \sum m_0 \otimes m_1 \in M \otimes H.
\]

Given \(m \in M \), \(M \) a left (right) comodule, set \(L(m) = sp_\lambda(m_{-1}) \) and \(R(m) = sp_\lambda(m_1) \). For an \(H \)-module \(M \), let

\[
M^H = \{ m \in M \mid h \cdot m = \varepsilon(h)m, \text{ all } h \in H \}.
\]
For a left H-comodule (M, ρ), let

$$M^\text{co}H = \{ m \in M \mid \rho(m) = 1 \otimes m \}.$$

An algebra A is called an H-module algebra if A is an H-module and

$$h \cdot (ab) = \sum (h_1 \cdot a)(h_2 \cdot b), \quad \text{for all } h \in Ha, \quad b \in A.$$

The following identity appears in [C] for H-module algebras:

$$\langle h \cdot a, b \rangle = \sum h_1(aSh_2 \cdot b). \quad (1)$$

Definition 1.1. Let (A, η) be a left H-comodule and a left H-module algebra. Then A is H-commutative if

$$ab = \sum (a_{-1} \cdot b) a_0, \quad \text{for all } a, b \in A. \quad (2)$$

Sometimes we say $\langle A, \cdot, \eta \rangle$ is H-commutative. In [CW2] H-commutativity was termed quantum commutativity.

Example 1.2. Every commutative H-module algebra is H-commutative with η defined by $\eta(a) = 1 \otimes a$, for all $a \in A$.

Example 1.3. $\langle H, \cdot_{adj}, \Delta \rangle$ is H-commutative where $h \cdot_{adj} x = \sum h_2 xSh_2$, for all $h, x \in H$.

More examples can be found in [CW1].

Lemma 1.4 [CW2]. If $\langle A, \cdot, \eta \rangle$ is H-commutative then A^H and $A^{\text{co}H}$ are contained in $Z(A)$, the center of A.

A subcoalgebra C of H is a simple subcoalgebra if the only nonzero subcoalgebra of C is C itself. A nonzero element $\sigma \in H$ is called a grouplike element if $\Delta(\sigma) = \sigma \otimes \sigma$. The set of grouplike elements of H is denoted by $G(H)$. The coalgebra H is said to be pointed if its simple subcoalgebras are one dimensional. This implies that every irreducible H-comodule is one dimensional as well.

We denote by H^0 the finite dual of H. If $\sigma \in G(H^0)$ and A is an H-module algebra, define the σ-invariants [BCM] by

$$A_\sigma = \{ a \in A \mid h \cdot a = \langle \sigma, h \rangle a, \text{for all } h \in H \},$$

where $\langle \cdot, \cdot \rangle$ denotes the evaluation of H^* on H. If H is finite dimensional then M is a left H-module iff M is a right H^*-comodule. Indeed, for a left H-module, M, define $\rho: M \to M \otimes H^*$ by $\rho(m) = \sum h_i \cdot m \otimes h^*_i$, where (h_i) and (h^*_i) are dual bases of H and H^*, respectively. Conversely, if (M, ρ) is a right H-comodule and $m \in M$ with $\rho(m) = \sum m_0 \otimes m_1$, then M turns out to be a left H-module by defining $h \cdot m = \sum \langle m_0, h \rangle m_1$.
If H is infinite dimensional then such a correspondence is no longer possible; instead, for a left H-module M, define

$$M^\text{fin} = \{ m \in M | H \cdot m \text{ is finite dimensional} \}.$$

Then M^fin is a right H^0-comodule [Mo, Lemma 1.6.4]. Of course if H or M are finite dimensional then $M^\text{fin} = M$.

From now on ρ denotes the right comodule structure on M^fin induced by the left action of H.

If $V \subset H^0$ and M is a left H-module set

$$M_V = \{ m \in M^\text{fin} | \rho(m) \in M^\text{fin} \otimes V \} = \rho^{-1}(M^\text{fin} \otimes V).$$

It was observed in [CRW] that $A_V = \rho^{-1}(A^\text{fin} \otimes k\sigma)$; hence in particular $A_v = A^H$. Note that $a \in A$ generates a one-dimensional H-submodule if and only if $0 \neq a \in A_v$, some $\sigma \in G(H^0)$. Hence if H^0 is pointed then $A_{k G(H^0)} = \sum$ finite-dimensional irreducible H-subcomodules of A.

2. A is an injective nonsingular A^H module

Sometimes (see Section 3) an H-module algebra is an injective nonsingular A^H-module. We see how this affects A_V for finite-dimensional $V \subset H^0$.

For completeness we review well known facts about injective and projective modules. A basic reference is [G, K a]. Recall:

Let R be a ring with 1 and $M, N \in _R\mathcal{M}$ ($_R\mathcal{M}$ = the category of left R-modules). Then $M \subset N$ is an essential submodule of N if $M \cap I \neq 0$ for every nonzero submodule I of N. We write then $M \subset \text{ess } N$.

M is a nonsingular R-module if for $E \subset \text{ess } R$ and $m \in M, E \cdot m = 0$ implies that $m = 0$.

Proposition 2.1. Let R be a ring with 1 and let $M, N \in _R\mathcal{M}$. Then

1. If $M \subset N$ and M is injective, then M is a direct summand of N.
2. A direct summand of an injective (projective) R-module is injective (projective), respectively.
3. A product of injective (nonsingular) R-modules is injective (nonsingular), respectively.
4. If $M \subset N$ and both M and N/M are injective (projective) then N is injective (projective), respectively.
5. Every $M \in _R\mathcal{M}$ can be essentially embedded in an injective module $I(M)$ (called the injective hull of M).
If \(M \subset N \) and \(N \) is injective, then \(I(M) \subset N \).

If \(M \subset_{\text{ess}} N \), and \(n \in N \), then \(E = n^{-1}M = \{ a \in R \mid na \in M \} \subset_{\text{ess}} R \).

If \(M \subset N \) then \(M \) is nonsingular if and only if \(N \) is nonsingular.

Let \(\phi : M \to N \), where \(M \) is injective and \(N \) is nonsingular; then \(\ker \phi \) is injective and \(M \cong \ker \phi \oplus L \), for some \(R \)-submodule \(L \) of \(M \).

If \(M \) is nonsingular then the map \(\alpha : \{ \phi \in \text{End}_R(I(M)) \mid \phi(M) \subset M \} \to \text{End}_R(M) \) defined by \(\alpha(\phi) = \phi_M \) is a ring isomorphism.

If \(R \) is a self-injective ring with 1 and \(N \) is finitely generated nonsingular \(R \)-module then \(N \) is a projective and injective \(R \)-module.

Let \(n < \infty \). If \(R \) is self-injective, \(N \) is a nonsingular \(n \)-generated \(R \)-module, and \(M \) is injective, then for every \(\phi \in \text{Hom}_R(M, N) \) we have \(M \cong \ker \phi \oplus \text{im} \phi \) and \(\text{im} \phi \) is an injective and projective \(m \)-generated \(R \)-module, where \(m \leq n \).

If \(M \) is an \(H \)-module and \(\phi \neq S \subset H \), set
\[
a_M(S) = \{ m \in M \mid S \cdot m = 0 \}.
\]

If \(A \) is an \(H \)-module algebra, then \(a_A(S) \) is obviously a left and right \(A^H \)-module.

Let \(A \) be an \(H \)-module algebra; in what follows \(A^H \) plays the role of \(R \) in Proposition 2.1.

Lemma 2.2. If \(A \) is an injective and nonsingular \(A^H \)-module, then \(a_A(S) \) is an injective \(A^H \)-module for all nonempty \(S \subset H \).

Proof. Set \(I = I(a_A(S)) \). Then by Proposition 2.1.6, \(I \subset A \). Let \(x \in I \) and \(E = x^{-1}(a_A(S)) \). Then \(E \subset_{\text{ess}} A^H \) by Proposition 2.1.5 and Proposition 2.1.7. Since \(Ex \subset a_A(S) \), we have
\[
0 = S \cdot (Ex) = E(S \cdot x).
\]
But \(A \) is a nonsingular \(A^H \)-module; hence by Proposition 2.1.8, \(S \cdot x = 0 \), and thus \(x \in a_A(S) \). We have shown that \(I = a_A(S) \) and hence the latter is injective.

Remark 2.3. Recall from linear algebra that if \(X \) is a vector space and \(V \) is a finite-dimensional subspace of \(X^* \) then \(V^* = \{ x \in X \mid \langle V, x \rangle = 0 \} \) is a subspace of \(X \) of finite codimension.

Lemma 2.4. Let \(M \) be an \(H \)-module; then:

1. If \(J \) is a subspace of \(H \) of finite codimension then \(a_M(J) \subset M^{\text{fin}} \).
2. If \(V \subset H^0 \) is finite dimensional and \(J = V^* \), then \(M_V \subset a_M(J) \). In fact,
\[
M_V = \ker \phi, \quad \text{where} \quad \phi = (\text{id} \otimes \pi) \rho : a_M(J) \to M^{\text{fin}} \otimes (H^0/V),
\]
where \(\pi \) is the projection of \(H^0 \) on \(H^0/V \). If \(M = A \) is an \(H \)-module algebra then \(\phi \) is an \(A \)-module map.

\textbf{Proof.} 1. Let \(x \in a_m(J) \); then \(H \cdot x = (H/J) \cdot x \). Since \(H/J \) is finite dimensional, so is \((H/J) \cdot x \). Hence \(x \in M^{\text{fin}} \).

2. By the remark above and by part 1, \(a_m(J) \subset M^{\text{fin}} \) and so \(\rho \) is defined on it. Let \(x \in M_V^i \); then \(\rho(x) = \sum x_0 \otimes x_1 \), where \(\{x_1\} \subset V \). Hence \(h \cdot x = \sum x_0 \langle x_1, h \rangle = 0 \), for all \(h \in J \). That is, \(x \in a_m(J) \). The rest is obvious. \(\square \)

Consequently,

\textbf{Proposition 2.5.} Let \(A \) be an \(H \)-module algebra and assume \(A \) is an injective and nonsingular \(A^H \)-module. If \(V \) is a finite-dimensional subspace of \(H^0 \), then \(A_V \) is an injective \(A^H \)-module. In particular \(A \sigma \) is an injective \(A^H \)-module for all \(\sigma \in G(H^0) \) and \(A^H \) is self-injective.

\textbf{Proof.} Let \(J \) and \(\phi \) be as in Lemma 2.4.2. Then by Lemma 2.2 \(a_m(J) \) is an injective \(A^H \)-module. Let \(\phi: a_m(J) \rightarrow A \otimes (H^0/V) \) be defined by \(\hat{\phi} = (i \otimes \text{id}) \phi \) where \(i \) is the inclusion map of \(A^{\text{fin}} \) in \(A \). Since \(A \otimes (H^0/V) \) as a left \(A^H \)-module is a product of copies of \(A \) and \(A \) is a nonsingular \(A^H \)-module, so is \(A \otimes (H^0/V) \). By Proposition 2.1.9 ker \(\hat{\phi} = A_V \) is an injective \(A^H \)-module. In particular, set \(V = k \sigma \), \(\sigma \in G(H^0) \); then \(A_v = A_V \). Hence \(A_v \) is an injective \(A^H \)-module for all \(\sigma \in G(H^0) \). For \(\sigma = e \), \(A_e = A^H \) is self-injective. \(\square \)

If \(W \subset V \) are left coideals of a coalgebra \(C \) then \(V/W \) is a left \(C \)-comodule with structure map \((\text{id} \otimes \pi)\Delta_C\). Set \(L(V/W) = \sum_{v \in V/W} L(\overline{v}) \).

\textbf{Lemma 2.6.} Let \(A \) be as in Proposition 2.5 and let \(K \subset V \) be finite-dimensional left coideals of \(H^0 \) such that \(\dim V/K = 1 \). Then \(L(V/K) = k \sigma \), \(\sigma \in G(H^0) \). If \(A_v \) is generated by \(n_v < \infty \) elements, then \(A_v / A_K \) is an injective and projective \(A^H \)-module generated over \(A^H \) by \(n_v \) elements.

\textbf{Proof.} Let \(\{v_i\}_{i \geq 1} \) be a basis of \(K \) and let \(v \in V - K \). Then \(B = \{v, v_i\}_{i \geq 1} \) is a basis of \(V \) and \((\overline{v}) \) is a basis of \(V/K \). Let

\[\Delta(v) = x \otimes v + \sum_{i \geq 1} x_i \otimes v_i, \quad x, x_i \in H^0, \quad x \neq 0. \]

Computing \((\Delta \otimes \text{id}) \Delta = (\text{id} \otimes \Delta) \Delta\), using the fact that \(K \) is a left coideal of \(H^0 \) and that \(B \) is linearly independent, we get \(\Delta(x) = x \otimes x \), that is, \(x = \sigma \in G(H^0) \) and \(L(V/K) = k \sigma \).

Let \(a \in A_V \). Then

\[\rho(a) = a' \otimes v + \sum_{i \geq 1} a_i \otimes v_i. \]
Using the form of $\Delta(v)$ and the linear independence of B we get: $\rho(a') = a' \otimes \sigma$. Define $\phi: A_v \to A_v$ by $\phi(a) = a'$ for all $a \in A_v$. Then ϕ is a left A^H-module map and $\ker \phi = A_K$. Hence $A_v/A_K \cong \text{im} \phi$. Moreover, by Proposition 2.5, A_v and A^H are injective. Apply Proposition 2.1.12 to $R = A^H$, $N = A_v$, $M = A_v$ and ϕ as above and we are done.

We are ready to prove the main theorem of this section:

Theorem 2.7. Let H be a Hopf algebra, let C be a pointed subcoalgebra of H^0, and let $W \subset V$ be finite-dimensional left coideals of C. Let A be an H-module algebra so that:

1. A is an injective and nonsingular A^H-module, and
2. For all $\sigma \in G(C) \cap L(V/W)$, A_v is generated over A^H by $n_\sigma < \infty$ elements.

Then A_v/A_w is an injective and projective A^H-module generated by nt elements where $n = \dim V/W$ and $t = \max(n_\sigma | \sigma \in G(C) \cap L(V/W))$. If V is a finite-dimensional subspace of C (not necessarily a coideal), then A_v is finitely generated over A^H.

Proof. By induction, $n = \dim V/W$. This is obviously true for $n = 0$. Let K be a left coideal with $W \subset K \subset V$ and let V/K be a simple left comodule. Since C is a pointed coalgebra, $\dim V/K = 1$. Since $L(V/K) \subset L(V/W)$, Lemma 2.6 applies to V/K and so A_v/A_K is an injective and projective A^H module generated by t elements. By induction, A_K/A_w is an injective and projective A^H-module generated over A^H by $(n - 1)t$ elements. Since $A_v/A_K \cong (A_v/A_w)/(A_K/A_w)$, we are done by the above and Proposition 2.1.4.

If V is a finite-dimensional subspace of C then $V^1 = \sum_{v \in V} R(v)$ is a left coideal contained in V and $A_{V^1} = A_V$. By above V_{V^1} is finitely generated over A^H.

3. H-Quotient Algebras

In this section we prove that Theorem 2.7 applies to quotient rings of certain H-module algebras. H-quotient algebras of H-module algebras were introduced in [C]. The construction is an analogue of Martindale's ring of quotients which will be denoted by $\text{Mar}(A)$. We use in the construction the filter $\mathcal{F} = \{I | I$ is an H-stable ideal of A with trivial left and right annihilators\}.

Specifically, let $I, J \in \mathcal{F}$ and $f: I \to A$, $f': J \to A$ be right A-module maps. Say that $f = f'$ if $f'|_K = f'|_K$ for some $K \in \mathcal{F}$. This is an equivalence
relation on the set of all such maps. Set \(q = [f] \) as the equivalence class of
\(f \), and set \(Q_H(A) \) as the set of all such \(q \). Then \(Q_H(A) \) is an \(H \)-module
algebra where the action of \(H \) on \(A \) is extended to \(Q_H(A) \) as follows: If
\(q = [f], f: I \to A \), then \(h \cdot q = [h \cdot f] \) where
\[
(h \cdot f): I \to A \quad \text{by} \quad a \mapsto \sum h_1 \cdot (f(Sh_2 \cdot a)).
\]

The algebra \(A \subset Q_H(A) \) by \(a \mapsto L_a \) where \(L_a: A \to A \) is left multiplication by \(a \). Recall that \(q \in \text{Mar}(A) \) is an \(A \)-normalizing element if \(qA = Aq \).

Note that \(Q_H(A) \subset \text{Mar}(A) \) [Mo, p. 98]. It is easy to see that \(q \in \text{Mar}(A) \) belongs to \(Q_H(A) \) if and only if there exists an \(I \in \mathcal{F} \) so that
\(qI \subset A \).

An algebra \(A \) is called \(H \)-semiprime if \(A \) contains no nontrivial \(H \)-stable nilpotent ideals. When \(A \) is \(H \)-semiprime, each \(H \)-stable ideal \(J \) gives rise to an element in \(\mathcal{F} \). Therefore, \(H \)-semiprimeness implies that \(\text{Ann}(J) \) is left annihilator of \(J \) and right annihilator of \(J \) in \(A \); and \(J \odot \text{Ann}(J) \in \mathcal{F} \).

In what follows we consider \(Q_H(A) \) for an \(H \)-module algebra \(A \) which is also an \(H \)-comodule. We first show that if \(\langle A, \cdot, \eta \rangle \) is an \(H \)-commutative algebra then \(Q_H(A) \) "commutes" in a sense with \(A \).

Proposition 3.1. Let \(\langle A, \cdot, \eta \rangle \) be an \(H \)-commutative algebra. If \(q \in Q_H(A) \) and \(a \in A \), then:

1. \(qa = \Sigma (a_{-1} \cdot q) a_0 \).
2. If \(H \) has a bijective antipode then \(qa = \Sigma a_0(S^{-1}(a_{-1}) \cdot q) \).

Proof.

1. Let \(I \in \mathcal{F} \) so that \(qI \subset A \) and \(x \in I \). Then,

\[
aqx = \sum (a_{-1} \cdot qx) a_0 \quad \text{by (2)}
= \sum (a_{-2} \cdot q)(a_{-1} \cdot x) a_0
= \sum (a_{-1} \cdot q) a_0 x \quad \text{by (2)}.
\]

Hence \((aq - \Sigma (a_{-1} \cdot q) a_0)I = 0 \), and we are done.

2.

\[
qa = \Sigma e(a_{-1}) qa_0
= \Sigma (a_{-1} \cdot (S^{-1}a_{-2} \cdot q)) a_0
= \Sigma a_0(S^{-1}(a_{-1}) \cdot q) \quad \text{by part 1}.
\]
We consider next some consequences of Proposition 3.1. Recall that each \(\sigma \in G(H^0) \) determines an automorphism \(\hat{\sigma} \) of \(A \) defined by

\[
a^\hat{\sigma} = \sum \langle \sigma, a_{-1} \rangle a_0.
\]

(4)

Note that \(\hat{\sigma} \) is a group homomorphism, in particular \(\hat{\sigma} \circ \hat{\tau} = \hat{\sigma} \circ \hat{\tau} \).

Corollary 3.2. Let \(\langle A, \cdot, \eta \rangle \) be an \(H \)-commutative algebra, and let \(\sigma \in G(H^0) \) and \(x \in (Q_H(A))_x \); then:

1. For all \(a \in A \), \(ax = xa^\hat{\sigma} \). In particular \(x \) is an \(A \)-normalizing element.
2. If \(I \in \mathcal{I} \) and \(xI \subset A \) then \(xI \) is a two sided \(H \)-stable ideal of \(A \).
3. \((Q_H(A))^H \subset Z(Q_H(A))\), the center of \(Q_H(A) \).

Proof.

1.

\[
ax = \sum (a_{-1} \cdot x) a_0 \quad \text{by } H\text{-commutativity}
\]

\[
= \sum \langle \sigma, a_{-1} \rangle xa_0 \quad \text{since } x \in (Q_H(A))_x
\]

\[
= \sum x\langle \sigma, a_{-1} \rangle a_0
\]

\[
= xa^\hat{\sigma}.
\]

2. By the first part, \(xI \) is a two sided ideal. Let \(h \in H \); then for all \(a \in I \),
\[
h \cdot (xa) = \sum (h_1 \cdot x)(h_2 \cdot a) = \sum \langle \sigma, h_1 \rangle h_2 \cdot a \in xI.
\]

Thus \(xI \) is \(H \)-stable.

3. By the first part, for each \(q \in (Q_H(A))^H = (Q_H(A))_x \), we have: \(aq = qa \) for all \(a \in A \). It is a routine argument in quotient rings to show that \(q \) is central in \(Q_H(A) \).

Another useful fact is:

Lemma 3.3. Let \(x \in (Q_H(A))_x \), \(a \in A \), and \(h \in H \); then:

1. \((h \cdot a)x = \sum \langle \sigma^{-1}, h_2 \rangle h_1 \cdot (ax)\),
2. \(x(h \cdot a) = \sum \langle \sigma^{-1}, h_1 \rangle h_2 \cdot (xa)\).

Proof.

1.

\[
(h \cdot a)x = \sum h_2 \cdot (aSh_2 \cdot x) \quad \text{by (1)}
\]

\[
= \sum h_2 \cdot (a\langle \sigma, Sh_2 \rangle x)
\]

\[
= \sum \langle \sigma^{-1}, h_2 \rangle h_1 \cdot (ax).
\]
2.

\[\sum \langle \sigma^{-1}, h_1 \rangle h_2 \cdot (xa) = \sum \langle \sigma^{-1}, h_1 \rangle (h_2 \cdot x)(h_3 \cdot a) = \sum \langle \sigma^{-1}, h_1 \rangle (\sigma, h_2 \cdot x)(h_3 \cdot a) = x(h \cdot a). \]

Let \(A \) be an \(H \)-module algebra. When there is no danger of ambiguity write \(Q = Q_H(A) \). Recall [BCM, 3.9] that \(Q_\sigma Q_\tau \subseteq Q_{\sigma \tau} \) for all \(\sigma, \tau \in G(H^0) \) and that \(S_Q = \sum_{\sigma \in G(H^0)} Q_\sigma \) is a direct sum. That is, \(S_Q \) is a \(G(H^0) \)-graded algebra. Corollary 3.2 indicates that if \(\langle A, \cdot\rangle \) is \(H \)-commutative then \(\hat{\cdot} \) is a so-called \((Kh2)\) \(X \)-inner automorphism. Following [Kh1, CM] we show that when \(A \) is \(H \)-semiprime, \(Q_\sigma \) has a nice form; it is a cyclic module over \(Q_H \).

Proposition 3.4. Let \(\langle A, \cdot, \eta \rangle \) be an \(H \)-commutative \(H \)-semiprime algebra. Let \(\sigma \in G(H^0) \); then:

1. For any \(x \in Q_\sigma \) there exists \(x' \in Q_{\sigma^{-1}} \) so that \(x = xx'x \) and \(x' = x'x'x' \).

2. \(x'x' = xx' = e_x \in Q_H \subseteq \mathbb{Z}(Q), \ x' e_x = x', \ x'e_x = x' \), and \(e_x \) is an idempotent.

3. If \(x \in Q_\sigma, \ y \in Q \) with \(x = ey \), and \(e \) is an idempotent then \(x = e_yx \) and \(e = ee \). If, moreover, \(y \in Q_\sigma \), then \(e = e_y e_x \).

4. The element \(x' \) is the unique element of \(Q_{\sigma^{-1}} \) so that \(xx'x = x \) and \(x'x'x' = x' \).

Proof. By Corollary 3.2.1 any \(x \in Q_\sigma \) is an \(A \)-normalizing element of \(\text{Mar}(A) \); hence [CM, Theorem 4] applies. So, there exists an \(x' \in \text{Mar}(A) \) satisfying \(xx'x = x \), \(x'x'x' = x' \) and \(xx' = x'x = e_x \in \mathbb{Z}(\text{Mar}(A)) \). We show first that \(x^2 \in Q \). Let \(I \in \mathcal{H} \) so that \(xI \subseteq A \). Then by Corollary 3.2.2 \(xI \) is an \(H \)-stable ideal of \(A \). Let \(K = \text{Ann}(xI) \), \(J = xI \oplus K \in \mathcal{H} \). Note that if \(a \in K \), then \(axI = 0 \) implies \(ax = 0 \); hence \(e_x a = ae_x = ax = 0 \). Therefore, \(e_x J = e_x (xI \oplus K) = xI \subseteq A \) which implies in turn that \(e_x \in Q \). Now, \(K = \text{Ann}(xI) = \text{Ann}(x(I \cap J)) \) and \(x' K = x' e_x K = 0 \). Hence \(J' = x(I \cap J) \oplus K \in \mathcal{H} \), and \(x' J' \subseteq A \). This implies that \(x' \in Q \).
We show now that $e_x \in Q^H$ and $x' \in Q_{\sigma^{-1}}$. Let $l \in I$, $a \in K$, $h \in H$; then for all $b = xl + a \in J$,

$$(h \cdot e_x)b$$

$$= \sum h_1 \cdot (e_xSh_2 \cdot b) \quad (\text{by (1)})$$

$$= \sum h_1 \cdot (e_xSh_2 \cdot (xl + a))$$

$$= \sum h_1 \cdot (e_x(Sh_3 \cdot x)(Sh_2 \cdot l)) \quad (\text{since } K \text{ is } H\text{-stable and } e_xK = 0)$$

$$= \sum h_1 \cdot (e_x(\sigma, Sh_2)xSh_2 \cdot l)$$

$$= \sum h_1 \cdot (x(\sigma, Sh_2)Sh_2 \cdot l) \quad (\text{since } e_x x = x)$$

$$= \sum \langle \sigma, h_1 \rangle \langle \sigma, Sh_2 \rangle xl$$

$$= \sum \langle \sigma, h_1 \rangle \langle \sigma, Sh_2 \rangle e_x(xl + a)$$

$$= e(h)e_xb.$$

Hence $h \cdot e_x = e(h)e_x$. Now,

$$h \cdot x' = (h \cdot x')xx' = \sum h_1 \cdot (x' Sh_2 \cdot x) x' = \sum h_1 \cdot (\langle \sigma, Sh_2 \rangle x' x) x' = \langle \sigma^{-1}, h \rangle x'.$$

This concludes the proof of the first two parts.

3. If $x = ey$, and e is an idempotent then $x = ex$. Thus $xx' = eex'$, so $e_x = ee_x = e_x e$. This in turn implies that $x = e_x x = e_x ey = e_x y$. If, moreover, $y \in Q_{\sigma}$, then $x = e_x y = e_x e_y y$. Setting $e = e_x e_y$, we have the above $e_x = e_x e_y$.

4. Assume $xx'' x = x$ and $x'' xx'' = x''$, where $x'' \in Q_{\sigma^{-1}}$. Then $e = xx'' \in Z(Q)$ and $e x = x$. By (3) this implies $e_x = ee_x = xx'' e_x = x x''$. Hence $x'' = x'' xx'' = x'' e_x = e_x x'' e_x = x'' x' x' x' = x' x' x' = x'$.

We call x' a partial inverse of x.

Define a partial ordering on Q_{σ} as follows: Let $x, y \in Q_{\sigma}$; then $x \leq y$ iff there exists an idempotent $e \in Z(Q)$ so that $x = ey$. By Proposition 3.4.3 this is equivalent to saying that $x = e_x y$. We are ready to prove:

Theorem 3.5. Let $\langle A, \cdot, \eta \rangle$ be an H-semiprime H-commutative algebra, $\sigma \in G(H^2)$, and $Q = Q_H(A)$. Then:

1. Every chain in Q_{σ} has an upper bound. That is, if $x_1 \leq x_2 \leq \cdots$ is a chain in Q_{σ} and $\{e_x\}$ is as in Proposition 3.4, then there exists $x \in Q_{\sigma}$ so that $x_j = e_x x$ for all j.

There exists $x_\sigma \in Q$ so that $Q_\sigma = Q^H x_\sigma$. In particular $e_{x_\sigma} y = y$, all $y \in Q_\sigma$.

3. $Q_{\sigma^{-1}} = Q^H (x_\sigma)'$, where $(x_\sigma)'$ is the partial inverse of x_σ.

Proof. Let $e_j = e_{x_j}$ and let $I_j \in \mathcal{F}$ so that $x_j I_j$ and $e_j I_j$ are contained in A. Let $I = \sum e_{I_j} K = \text{Ann}(I)$ and $J = I \oplus K \in \mathcal{F}$. Define $f: J \to A$ by
\[f(a + b) = x_j a, \quad a \in e_{I_j}, \quad b \in K. \]

This map is well defined for, say, $a \in e_k I_k$ with $k > j$; then $x_j < x_k$ implies that $x_j = e_j x_k$, which implies that $x_k a = x_k e_j a = x_j a$. Set $x = [f] \in Q^H$. Note that $xe_j = x_j$ and that $(h \cdot x)K = 0$, all $h \in H$. We wish to prove that $x \in Q_\sigma$. Well, for all $h \in H, a \in e_j I_j, b \in K$,
\[(h \cdot x)(a + b) = (h \cdot x)e_j a = (h \cdot (xe_j))a = (h \cdot x_j)a = \langle \sigma, h \rangle x_j a = \langle \sigma, h \rangle x(a + b). \]

This implies that $h \cdot x = \langle \sigma, h \rangle x$ and hence that $x \in Q_\sigma$.

2. Let $x_1 \leq x_2 \leq \cdots$ be any chain in Q_σ; then by the first part this chain has an upper bound $x \in Q_\sigma$, so that $x_i = e_{x_i} x$ for all i. We may apply Zorn’s lemma to find a maximal element $x_\sigma \in Q_\sigma$. Let $(x_\sigma)' \in Q_{\sigma^{-1}}$ be defined as in Proposition 3.4; that is: $(x_\sigma)' x_\sigma = e_{x_\sigma} \in Q^H$. Let $z \in Q_\sigma$; then since $1 - e_{x_\sigma} \in Q^H$, $x_\sigma + (1 - e_{x_\sigma})z \in Q_\sigma$. But $x_\sigma \leq x_\sigma + (1 - e_{x_\sigma})z$, for $e_{x_\sigma}(x_\sigma + (1 - e_{x_\sigma})z) = e_{x_\sigma} x_\sigma = x_\sigma$. By maximality of x_σ, we have: $(1 - e_{x_\sigma})z = 0$. Hence $z = ze_{x_\sigma} = z(x_\sigma)' x_\sigma$. Since $z(x_\sigma)' \in Q_\sigma Q_{\sigma^{-1}} \subset Q^H$, we are done.

3. We wish to prove that $(x_\sigma)'$ is maximal in $Q_{\sigma^{-1}}$. Assume that there exists $y \in Q_{\sigma^{-1}}$ with $(x_\sigma)' < y$; then $(x_\sigma)' = e_{x_\sigma} y$. Hence $(x_\sigma)' y = e_{x_\sigma} y$ and by Proposition 3.4.3 we also have that $e_{x_\sigma} y = e_{x_\sigma}$. Thus $(x_\sigma)' y = e_{x_\sigma}$ and hence $e_{x_\sigma} y = x_\sigma(x_\sigma)' y = x_\sigma e_{x_\sigma} = x_\sigma$. By maximality of x_σ, $y = x$ and by uniqueness of the partial inverse $y' = x'$, which proves our claim.

When A is H-prime we have:

Corollary 3.6. Let H be a Hopf algebra, let T be a pointed sub-Hopf algebra of H^0, and let $\langle A, \cdot, \eta \rangle$ be an H-commutative H-prime algebra. Then Q_T is an H-simple algebra.

Proof. Let $0 \neq I$ be an H-stable ideal of Q_T. Since T is pointed, I contains a simple T-subcomodule, which is of the form $I_\sigma, \sigma \in G(T)$. Since A is H-prime, so is Q, and hence Q^H is a domain. If $0 \neq x \in I_\sigma$ then $xx' = e \in Q^H$ is an idempotent, and thus equals 1. We have shown that I_σ contains an invertible element; hence $I = Q_T$.

We first show that for certain A, $Q_n(A)$ satisfies the conditions of Theorem 2.7. First we show a general result, similar in flavor to results about the Martindale ring of quotients [Kh2].

Theorem 3.7. Assume A is an H-semiprime H-module algebra and set $R = Z(Q)^H$, where $Q = Q_n(A)$. Then Q is a nonsingular injective R-module.

Proof. We first prove nonsingularity. Let E be an essential ideal of the commutative ring R, and $L = \text{Ann}_Q(E)$. Then L is an H-stable ideal of Q. Set $L' = \text{Ann}_Q(L)$; then L' is H-stable by (1) and $L \cap L' = \{0\}$ since Q is also H-semiprime. Set $B = L \oplus L'$ and define $\phi: B \to B$ by $\phi(a + a') = a$. Then $\phi = \phi^2$ is a left and right R-module map. Now, $\phi^{-1}(A) = A \cap L \neq 0$ and it is easy to see that $A \cap L' = \text{Ann}_Q(A \cap L)$. Take $T = (A \cap L) \oplus (A \cap L')$; then $T \in \mathcal{F}$ and $\phi^{-1}(A) \cap T = A \cap L$ is an H-stable ideal of A. Let $e = [\phi_T]$. Then $e \in Q$ is an idempotent, $e \in Z(Q)$ because ϕ_T is also left A-linear, and $e \in L$. Moreover, $ex = \phi(x)$ for all $x \in B$. We show that $e \in R$. Since $Le = eL$ and L is H-stable we have $h \cdot e \in Le$ for all $h \in H$. This implies by (1) that $h \cdot e = (h \cdot e)e = \Sigma h_1 \cdot (eSh_2 \cdot e)$. Since $h_2 \cdot e \in eL$, the latter expression equals $e(h)e$. We have shown that $e \in R$. But $L'e = eL' = \phi(L') = 0$; hence this is true for $E \subseteq L'$. This is a contradiction since E is an essential ideal of R and e is an idempotent. Hence Q is a nonsingular R-module.

We prove now that Q is an injective R-module. Let $I = I(Q)$ be the injective hull of the R-module Q. We show that $I = Q$. Let $m \in I$ and set $E = m^{-1}Q$. By Proposition 2.1.7, E is an essential ideal of R. For each $x \in E$ there exists $F_x \in \mathcal{F}$ such that $xF_x \subset A$. Similarly, since $mx \in Q$, there exists $F_{mx} \in \mathcal{F}$ such that $mxF_{mx} \subset A$. Then

$$J = \sum_{x \in E} x(F_x \cap F_{mx})$$

is an H-stable ideal of R since $x \in Z(Q)^H$ and F_x and F_{mx} are H-stable ideals of A. If $yJ = 0$ for some $y \in A$ then $yx = 0$ for all $x \in E$. But by the previous part, Q is a nonsingular R-module. Therefore $y = 0$. We have shown that $J \in \mathcal{F}$. Now, $mJ \subset A$, so we define $\beta: J \to A$ by $\beta(j) = mj$ for $j \in J$. Since β is a right A-module map, there exists $q \in Q$ such that $q = [\beta]$, and hence $(q - m)J' = 0$, where $J' \in \mathcal{F}$ and $J' \subset J$. But, $(q - m)E \subset Q$ and $(q - m)J^2E = 0$. Since $E \subset Z(Q)$, this implies that $(q - m)E = 0$. Since Q is a nonsingular R-module and $Q \subset_{ess} I$, so is I (by Proposition 2.1.8). Thus $q = m$ and so $I = Q$.

As a corollary we have:

Theorem 3.8. Let \(\langle A, \cdot, \eta \rangle \) be an \(H \)-semiprime, \(H \)-commutative, \(H \)-module algebra. Set \(Q = Q_H(A) \); then

1. \(Q \) is a nonsingular injective \(Q_H \)-module.
2. Let \(C \) be a pointed subcoalgebra of \(H^0 \) and let \(W \subset V \) be finite-dimensional left coideals of \(C \). Then \(Q_V/Q_W \) is an injective and projective \(Q_H \)-module generated over \(Q_H \) by \(\dim V/W \) elements.

Proof.

1. By [CW2, Corollary 2.4.2], \(Q_H \subset Z(Q) \); thus \(R = Q_H \) and the rest follows from Theorem 3.7.

2. By Theorem 3.5, \(Q_{\sigma} \) is a cyclic \(Q_H \) module for each \(\sigma \in G(H^0) \). By this fact and the first part Theorem 2.7 can be applied to \(Q \) and \(Q_H \) with \(t = 1 \) and the result follows.

4. APPLICATIONS AND EXAMPLES

We start by applications to \(H \)-commutative algebras in \(\text{YD}^H \), the "Yetter–Drinfeld" category, and in particular to quasitriangular Hopf algebras.

Definition 4.1. The "Yetter–Drinfeld" category \(\text{YD}^H \) is the category of objects which are left \(H \)-modules, left \(H \)-comodules, and satisfy the compatibility condition

\[
\sum h_{1''} \otimes h_2 \cdot v = \sum (h_1 \cdot v)_{-1} h_2 \otimes (h_1 \cdot v)_0. \tag{5}
\]

A particular example of an object in \(\text{YD}^H \) is \(H \) as in Example 1.3.

The subalgebra \(\sum_{\sigma \in G(H^0)} H_{\sigma} \) is then termed the semicenter of \(H \), for it is a well known notion for \(H = U(L) \), the enveloping algebra of a Lie algebra. The semicenter was explored in [BCM] for general \(H \) and in [MP] for \(H = kG \), when \(H \) was assumed to be prime. For both \(H = U(L) \) and prime \(H = kG \), the semicenter is a commutative algebra, which is both graded and acted upon by \(G(H^0) \). In the following we explore the existence of similar results for any \(H \)-commutative algebra, \(A \), in \(\text{YD}^H \). It is easy to see that \(A_{kG(H^0)} = \sum_{\sigma \in G(H^0)} A_{\sigma} \) is graded by \(G(H^0) \). We show that \(G(H^0) \) acts on \(A_{kG(H^0)} \) by automorphisms.

Lemma 4.2. Let \(A \in \text{YD}^H \), \(\sigma, \tau \in G(H^0) \). Then

\[
(A_{\sigma})^{\hat{\tau}} = A_{\tau^{-1} \sigma \tau}
\]

where \(\hat{\tau} \) is defined in (4).
Proof. Let \(a \in A_\sigma, h \in H \). Then

\[
h \cdot a^\tau = h \cdot \sum \langle \tau, a_{-1} \rangle a_0
\]

\[
= \sum \langle \tau^{-1}, h_1 \rangle \langle \tau, h_2 \rangle \langle \tau, a_{-1} \rangle h_3 \cdot a_0
\]

\[
= \sum \langle \tau^{-1}, h_1 \rangle \langle \tau, h_2 a_{-1} \rangle (h_3 \cdot a_0)
\]

\[
= \sum \langle \tau^{-1}, h_1 \rangle \langle \tau, (h_2 \cdot a)_{-1} h_3 \rangle (h_2 \cdot a)_0 \quad \text{(by (5))}
\]

\[
= \sum \langle \tau^{-1}, h_1 \rangle \langle \tau, h_3 \rangle \langle \sigma, h_2 \rangle \langle \tau, a_{-1} \rangle a_0 \quad \text{(since } a \in A_\sigma)\]

\[
= \langle \tau^{-1} \sigma \tau, h \rangle a^\tau.
\]

That is, \(a^\tau \in A_{\tau^{-1} \sigma \tau} \). Conversely, let \(b \in A_{\tau^{-1} \sigma \tau} \). Then by the above: \(a = b^{\tau^{-1}} \in A_{\tau^{-1} \sigma \tau}^{-1} = A_\sigma \), and so \(b = a^\tau \in (A_\sigma)^\tau \). \qed

Moreover,

Theorem 4.3. Let \(A \in H \mathcal{H} \mathcal{D} \) be an \(H \)-semiprime \(H \)-commutative algebra, and \(\sigma \in G(H^0) \); then:

1. For any \(x \in A_\sigma \), \(x^\tau = x \).
2. For any \(i, j \), if \(x \in A_{\sigma^i} \) and \(y \in A_{\sigma^j} \), then \(xy = yx \).

Proof. 1. For simplicity of notation let us write \(a^\sigma \) for \(a^\tau \). Let \(x \in A_\sigma \) and \(a \in A \); then by Corollary 3.2 \(ax = xa^\sigma \). In particular, \(x^2 = xx \). This implies that \(x(x^\sigma - x) = 0 \). On the other hand, by Lemma 4.2 \(x^\sigma \in A_\sigma \) as well, as thus \(xx^\sigma = x^2x^\sigma \). This implies that \((x^\sigma - x)x^\sigma = 0 \). Hence \((x^\sigma - x)^3 = 0 \). Since \(x^\sigma \) and \(x \) are in \(A_\sigma \), so is \(x^\sigma - x \). Thus by Corollary 3.2, \(I = A(x^\sigma - x) = (x^\sigma - x)A \) is an \(H \)-stable ideal of \(A \). By the above, \(I^3 = 0 \). Since \(A \) is \(H \)-semiprime, \(I \) must be 0. That is \(x^\sigma = x \) as claimed.

2. Let \(x \in A_{\sigma^i} \) and \(y \in A_{\sigma^j} \). By Lemma 4.2 \(x^{\sigma^n} \in A_{\sigma^n} \) and \(y^{\sigma^n} \in A_{\sigma^n} \) for all \(m \in \mathbb{Z} \). By part 1: \(x = x^{\sigma^i} = x^{\sigma^{-i}} \) and \(y = y^{\sigma^{-j}} \). Let \(d = \text{g.c.d}(i, j) \); then

\[
1 = \frac{i}{d} t + \frac{j}{d} t \quad \text{some } s, t \in \mathbb{Z}.
\]

We may choose \(s < 0 \). Now by Corollary 3.2 applied repeatedly we have

\[
xy = y^{\sigma^i} x = \cdots = x^{\sigma^{-s} \sigma^{i-s}} y^{\sigma^{i-s}} = y^{\sigma^{-s} \sigma^{i-s}} x^{\sigma^{-s}}.
\]

Set \(n = \frac{i}{d} (-s) \); then \(nj = \frac{i}{d} (-s) \) and so \(i \mid nj \). Since \(x^{\sigma^i} = x \), we have \(x^{\sigma^{i-s}} = x \). While by (6)

\[
n + 1 = \frac{i}{d} (-s) + 1 = \frac{j}{d} t.
\]
This implies that \((n + 1)i = jn + 1\). Hence \(j(n + 1)i\), and so \(y^{y^{(n+1)i}} = y\). By (7) we have \(xy = yx\) as claimed.

If \(G(H^0)\) is abelian (for example if \(H\) is quasitriangular), more can be said. The next theorem generalizes [C] which was proved for the semicenter of a semiprime cocommutative \(H\).

Theorem 4.4. Assume \(\sigma, \tau \in G(H^0)\) commute and \(A \in \mathcal{H}^0\mathcal{Y}\mathcal{D}\) is an \(H\)-semiprime \(H\)-commutative algebra; then:

1. If \(x \in Q_\sigma\) and \(y \in Q_\tau\), then \(xy = yx\), where \(z \in Q^H \subset Z(Q)\).
2. If \(x \in Q_\sigma, y \in Q_\tau, \sigma^i = 1 = \tau^j\), and \(g.c.d(i, j) = 1\) then \(xy = yx\).

Proof. First assume \(Q_\sigma = Q^H x\) and \(Q_\tau = Q^H y\). Since \(xy \in Q_{\sigma\tau}, yx \in Q_{\sigma\tau}\), and \(\sigma\tau = \tau\sigma\), we have \(xy, yx \in Q_{\sigma\tau} \subset Q_{\sigma\tau}\). By Theorem 3.5 \(Q_{\sigma\tau} = Q^H t\). Thus there exists \(z \in Q^H\) so that \(xy = zt\). But then \(xy = xye = zte = tzx\). Since \(tx' \in Q_{\sigma}, Q_{\tau-1}\), we have \(tx' \in Q_{\tau}\). Hence \(tx' = wy\), some \(w \in Q^H\). Thus \(xy = zwxy\), where \(zw \in Q^H\). Now, for any \(a \in Q_\sigma, b \in Q_\tau\), the result follows from the above since \(a = mx\), \(b = py\), where \(m, p \in Q^H\).

2. Since \(\sigma\tau = \tau\sigma\), Lemma 4.2 implies that \((A_\sigma)^{-1} = A_{\sigma^{-1}}\), and \((A_\tau)^{-1} = A_{\tau^{-1}}\). That is \(x^{-1} \in A_\sigma\) and \(y^{-1} \in A_{\tau}\). Applying Corollary 3.2 repeatedly we have:

\[
xy = y^{\sigma^{-1}}x = x^{\tau^{-1}}y^{\sigma^{-1}} = \cdots = y^{\sigma^{-(n + 1)}}x^{\tau^{-n}}.
\]

Since \(g.c.d(i, j) = 1, 1 = is + jt\), where \(t < 0\). Set \(n = j(-t)\); then \(x^{\tau^{-n}} = x^{\tau^{n}} = x\), since \(\tau^1 = 1\), while \(n + 1 = is\) implies that \(y^{\sigma^{-(n+1)}} = y^{\sigma^n}\). Since \(\sigma^i = 1, y^{\sigma^{(n+1)}} = y\). We have shown that \(y^{\sigma^{-(n+1)}}x^{\tau^{-(n+1)}} = xy\). Hence \(xy = yx\).

Examples in which \(z\) in the above theorem is not 1 exist.

More can be said when \((H, R)\) is quasitriangular. Note that for such \(H\), if \(M\) is a left \(H\)-module then \(M \in \mathcal{H}^0\mathcal{Y}\mathcal{D}\) by \(\eta(m) = \sum R^2 \otimes R^1 \cdot m\), for all \(m \in M\), where \(R = \sum R^2 \otimes R^1\). Moreover, as is well known \(R\) induces a braiding on \(H^*\) by: \(\langle a|b\rangle = \sum \langle a, R^2 \rangle \langle b, R^1 \rangle\), all \(a, b \in H^*\). In this case there is an interesting constraint on the possible \(\sigma\) so that \(A_\sigma \neq 0\).

Lemma 4.5. Let \((H, R)\) be a quasitriangular Hopf algebra and \(A\) an \(H\)-module algebra. Let \(x \in A_\sigma\); then

1. \(x^{\sigma} = \langle\sigma|\sigma\rangle x\) and
2. if \(u = \Sigma(SR^2)R^1\) then \(u \cdot x = \langle\sigma|\sigma\rangle^{-1}x\).
Proof. 1. Let \(x \in A_\sigma \); then
\[
x^{\hat{\sigma}} = \sum \langle \sigma, x \rangle x_0
= \sum \langle \sigma, R^2 \rangle R^1 \cdot x
= \sum \langle \sigma, R^2 \rangle \langle \sigma, R^1 \rangle x
= \langle \sigma | \sigma \rangle x.
\]

2. Observe that
\[
\langle \sigma, u \rangle = \langle \sigma, \sum (SR^2)R^1 \rangle = \sum \langle \sigma, SR^2 \rangle \langle \sigma, R^1 \rangle = \langle \sigma^{-1}, R^2 \rangle \langle \sigma, R^1 \rangle.
\]
But this equals \(\langle \sigma^{-1} | \sigma \rangle \) which equals \(\langle \sigma | \sigma \rangle^{-1} \). Thus
\[
\langle \sigma, u \rangle = \langle \sigma | \sigma \rangle^{-1};
\] (8)
hence if \(x \in A_\sigma \), then \(u \cdot x = \langle \sigma, u \rangle x = \langle \sigma | \sigma \rangle^{-1} x \).

Corollary 4.6. Let \((H, R)\) be a quasitriangular Hopf algebra, and \(A \) an \(H \)-semiprime \(H \)-commutative algebra (with \(\eta \) defined as above). If \(A_\sigma \neq 0 \) then \(\langle \sigma | \sigma \rangle = 1 \), and \(u \) acts as the identity on \(A_\sigma \).

Proof. By Theorem 4.3 \(x^{\hat{\sigma}} = x \) for any \(x \in A_\sigma \), which by Lemma 4.5 implies that if \(x \neq 0 \) then \(\langle \sigma | \sigma \rangle = 1 \).

The \(H \)-semiprimeness condition in Corollary 4.6 cannot be omitted as seen in the following example:

Example 4.7 [CW1, Ra]. Let \(H = kZ_2 \) where \(Z_2 = \{1, g\} \) and \(\text{Char} \ k \neq 2 \). Set \(R = \frac{1}{2}(1 \otimes 1 + 1 \otimes g + g \otimes 1 - g \otimes g) \); then \(u = g \). Let \(A = A_1 \oplus A_g \) be a \(Z_2 \)-graded algebra, where \(a \in A_1 \) has degree 0 and \(a \in A_g \) has degree 1. Assume that \(A \) is a commutative superalgebra: \(ab = (-1)^{\deg a \deg b} ba \). This is equivalent to \(A \) being \(H \)-commutative. It is not \(H \)-semiprime since \(a^2 = 0 \) for each \(a \in A_g \), so \(Aa \) is a nilpotent \(H \)-stable ideal of \(A \). Now, let \(H^* = Sp(p_1, p_g) \), where \(\{p_1, p_g\} \) is a dual basis of \(\{1, g\} \); then \(\sigma = p_1 - p_g \in G(H^*) \) and \(A_\sigma = A_g \). But then \(\langle \sigma, u \rangle = -1 \). This, by (8), implies that \(\langle \sigma | \sigma \rangle = -1 \). Also note that for each \(x \in A_\sigma \), \(x^{\hat{\sigma}} = -x \), exhibiting the necessity of \(H \)-semiprimeness in Theorem 4.3.

In what follows we consider applications to finite-dimensional Hopf algebras. In this case, if \(A \) is a left \(H \)-module algebra then \(A^{\text{fin}} = A \). Our first application is to \(A = H \), with the adjoint action of \(H \) on itself.
Theorem 4.8. Let H be a finite-dimensional semisimple Hopf algebra acting on itself by the adjoint action. Let $\sigma \in \text{G}(H^*)$; then:

1. $H_\sigma = H^\sigma = Z(H)$ [BCM, 3.12].
2. $H_\sigma = Z(H)x_\sigma = \{x \in H | hx = xh^\sigma \text{ for all } h \in H\}$, with h^σ as defined in (4).
3. For each $x \in H_\sigma$ there exists a unique $x' \in H_{\sigma^{-1}}$ so that $xx' = x'x = e_x \in Z(H)$ is an idempotent, and $xe_x = x$, $x'e_x = x'$.
4. For all $x \in H_\sigma$, $x^\sigma = x$.
5. Let m be the order of σ; then $S_\sigma = \sum_{i=1}^m H\sigma^i$ is a commutative algebra with 1.
6. If $\sigma \neq e$ and $x \in H_\sigma$, then $\langle e, x \rangle = 0 = \langle \sigma, x \rangle$.
7. If $G(H^*)$ is abelian then for $x \in H_\sigma$, $y \in H_\sigma$, there exists $c \in Z(H)$ so that $xy = cyx$. If the orders of σ and τ are relatively prime then $xy = yx$.

Proof. 1. Since H is finite dimensional and semisimple, the only ideal of H with trivial annihilator is H; hence $\mathcal{F} = \{H\}$, and so $Q_{H}(H) = H$. Since $\langle H, \text{adj}, \Delta \rangle$ is H-commutative as discussed in Example 1.3, we can use Theorem 3.5. This proves the first equality. As for the second equality, if x satisfies the right hand side condition, then for all $h \in H$

$$h \cdot x = \sum h_1 xSh_2 = \sum xh_1^\sigma Sh_2 = \langle \sigma, h \rangle x;$$

hence $x \in Q_\sigma$. The converse follows from Corollary 3.2.

2. Is a consequence of Proposition 3.4.
3. Is a consequence of Theorem 4.3.1.
4. Is a consequence of Theorem 4.3.2.
5. Since H is semisimple, the integral $0 \neq t \in Z(H) = H_\epsilon$. Hence for $x \in H_\sigma$, $tx \in H_\sigma$. But $tx = \langle e, x \rangle t \in H_\sigma$. Since $H_\epsilon \cap H_\sigma = \{0\}$, it follows that if $\sigma \neq e$ then $\langle e, x \rangle = 0$. Now, by (4) $x = x \leftarrow \sigma$; thus $x = x \leftarrow \sigma^{-1}$ as well. But then $\langle \sigma, x \rangle = \langle \sigma, x \leftarrow \sigma^{-1} \rangle = \langle e, x \rangle = 0$.
6. Follows from Theorem 4.4.

If H is finite dimensional and H^* is pointed then as a corollary of Theorem 3.8 we have:

Theorem 4.9. Let H be an n-dimensional Hopf algebra so that H^* is pointed. Let $\langle A, \cdot, \eta \rangle$ be an H-semiprime H-commutative algebra; then $Q = Q_H(A)$ is generated over Q^H by n elements.

Remark 4.10. Under the hypothesis of Theorem 4.9 Q is a (finite) centralizing extension of Q^H; hence there is a strong connection between these two rings. In particular, their prime ideals, radicals, chain conditions, and module structures are strongly related [BR1, BR2, RS].
If A is H-simple then $Q_H(A) = A$; hence as a corollary of this theorem we have:

Corollary 4.11. Let H be and H^* be as in Theorem 4.9 and let $\langle A, \cdot, \eta \rangle$ be an H-commutative H-simple algebra. Then $\dim A$ over the field A^H is at most n.

If A is a commutative H-module algebra then $\langle A, \cdot, \eta \rangle$ as in Example 1.2 is H-commutative. By the above we have:

Corollary 4.12. Let H and H^* be as in Theorem 4.9, and let A be a commutative H-module algebra. If A is H-semiprime then $Q = Q_H(A)$ is generated over Q^H by n elements. If A is H-simple then $\dim A$ over A^H is at most n.

In the last part of this section we consider infinite-dimensional H. Let T be a pointed sub-Hopf algebra of H^0, and let $\{C_i\}$ be the associated coradical filtration of $T[TW]$, where $C_i = C_{i-1} \oplus K_i$ for all $i \geq 0$, $C_{-1} = 0$. Fix $\sigma \in G(T)$; set

$$K_\sigma,i = \{ t \in K_i | \Delta(t) = \tau \otimes t + t \otimes \sigma + \sum t_j \otimes s_j, \tau \in G(T), t_j, s_j \in C_{i-1} - G(T) \}$$

and

$$C_{\sigma,k} = \sum_{i \leq k} K_{\sigma,i}.$$

Using coassociativity, it is straightforward to check that $C_{\sigma,k}$ is a left coideal of T. Let A be an H-module algebra; set

$$A_{\sigma,k} = \rho^{-1}(A^\text{fin} \otimes C_{\sigma,k}),$$

and

$$A_{\sigma,=} = \bigcup_k A_{\sigma,k}.$$

By the comodule axioms, $Q_T = \bigoplus_{\sigma \in G(T)} Q_{\sigma,=}$, and Q_T is graded by $G(T)$. Note also that for $\sigma \in G(T)$, $A_{\sigma,0} = A_{\sigma,}$. We take now again $A = H$ as in Example 1.3. Since the action is the adjoint action, every two-sided ideal of H is H-stable and hence H-semiprimeness is equivalent to usual semiprimeness and $Q_H(H)$ is just the usual Martindale ring of quotients $Q(H)$. Thus, in order to apply results of the previous sections we require that H is semiprime. We first prove:

Proposition 4.13. Let H be a semiprime Hopf algebra, let Q be its Martindale ring of quotients, and let T be a pointed sub-Hopf algebra of H^0.
Then

\[Q_{\sigma,k} = \left\{ q \in Q \mid hq = qh^\sigma + \sum_{m \in c_{\sigma,k}} q_m (h \leftrightarrow t_m), \text{ all } h \in H \right\}, \]

where \(\rho(q) = q \otimes \sigma + \sum_{m \in c_{\sigma,k}} q_m \otimes t_m \) and \(h \leftrightarrow t_m = \sum (t_m, h) h_2 \). In particular \(Q^H = Z(Q) \).

Proof. If \(q \) satisfies the right hand side condition, then

\[h \cdot q = \sum h_1 q S h_2 = \left(q h_1^\sigma + \sum_{m \in c_{\sigma,k}} q_m (h \leftrightarrow t_m) \right) S h_2 = \langle \sigma, h \rangle q + \sum_{m \in c_{\sigma,k}} \langle t_m, h \rangle q_m. \]

By the definition of \(\rho \) on \(Q^{\text{fin}} \), it follows that \(\rho(q) = q \otimes \sigma + \sum_{m \in c_{\sigma,k}} q_m \otimes t_m \), hence \(q \in Q_{\sigma,k} \). Conversely if \(q \in Q_{\sigma,k} \) then for all \(h \in H \),

\[h \cdot q = \langle \sigma, h \rangle q + \sum_{m \in c_{\sigma,k}} \langle t_m, h \rangle q_m. \]

Hence

\[hq = \sum (h_1 \cdot q) h_2 = \sum \left(\langle \sigma, h_1 \rangle q + \sum_{m \in c_{\sigma,k}} \langle t_m, h_1 \rangle q_m \right) h_2 \]

which equals the expression on the right. \(\square \)

A nice example is \(O_q(SL_n) \) (e.g., [D]). It is known that when \(q \) is not a root of unity then \(U_q(sl_n) \subset (O_q(SL_n))^0 \). Recall that \(U_q(sl_n) \) is generated as an algebra by \(a_i, e_i, \) and \(f_i \) for \(1 \leq j \leq n - 1 \), where \(\{a_i\} \) are grouplike elements and

\[\Delta(e_i) = a_i \otimes e_i + e_i \otimes 1, \quad \Delta(f_i) = 1 \otimes f_i + f_i \otimes a_i^{-1}. \]

Choose \(T = U_q(sl_n) \) which is pointed; then it can be deduced from [ChM, Theorems A and B] that for all \(\sigma \in G(U_q(sl_n)) \),

\[K_{\sigma,i} = \sigma \prod_{j \neq i} t_j^i, \quad \text{where } t_j = a_j^{-1} e_j \text{ or } t_j = f_j. \]

This implies that \(K_{\sigma,i} \) is finite dimensional for all \(\sigma \in G(T), i \geq 0 \). Thus we have:

Theorem 4.14. Let \(H = O_q(SL_n) \) and let \(Q \) be the Martindale ring of quotients of \(H \). Let \(T = U_q(sl_n) \subset (O_q(SL_n))^0 \). Then

1. \(Q^H = Z(Q) \) is a field.
2. For each \(\sigma \in G(T), Q_{\sigma} = Z(Q) x_{\sigma}, \) where \(x_{\sigma} \) is 0 or an invertible element which normalizes \(A \).
3. If $\sigma, \tau \in G(T)$, then $x_\sigma x_\tau = z x_\tau x_\sigma$, where $z \in Z(Q)$.
4. $Q_{\sigma, k}$ is finite dimensional over $Z(Q)$ and moreover, $HQ_{\sigma, k} = Q_{\sigma, k} H$ for all $\sigma \in G(T)$, $k \geq 0$.
5. $Q_T = \rho^{-1}(Q^{1n} \otimes T) = \bigoplus_{\sigma \in G(T)} Q_{\sigma, k}$ is a simple algebra graded by $G(T)$.

Proof.
1. Follows directly from the fact that $H = Q_q(SL_n)$ is prime.
2. Is a consequence of Theorem 3.5. The fact that x_σ is invertible follows since $x_\sigma x_\sigma'$ is an idempotent in a field.
3. Is a consequence of Theorem 4.4 since $G(T)$ is abelian.
4. The first part follows by Theorem 3.8 and the fact that $K_{i, i}$ is finite dimensional for all $i > 0$ and $\sigma \in U_q(sl_n)$. The second part follows by Proposition 4.13.
5. Is a consequence of Corollary 3.6. □

REFERENCES

