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Dirac equation and Foldy–Wouthuysen transformation.

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

In series of previous works [1–4] we developed a Poincare-
invariant variational formulation describing particle with spin. This 
classical model provides a unified description of both Frenkel and 
BMT equations [5]. The latter are considered as a basic tool in 
the analysis of the polarization precession measurements [6]. In 
[7] we extend the variational formulation to the general relativity, 
where the classical models of a spinning particle are widely used 
to describe a rotating body in pole-dipole approximation [8–16]. 
Another possible application can be related with the kinetic the-
ory of chiral medium, where, in the regime of weak external 
fields and weak interactions between spinning (quasi)-particles, 
each particle can be considered as moving along a classical tra-
jectory [17].

For variational formulations provide a striating point to the 
canonical quantization [18], they have incredible theoretical im-
portance connecting classical and quantum descriptions of nature. 
Canonical quantization of the free relativistic spinning particle 
(within our variational formulation, [19]) leads to the positive-
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energy part of the Dirac equation in the Foldy–Wouthuysen rep-
resentation. It also identifies [19] the non-commutative Pryce’s 
d-type center of mass operator1 as the quantum observable which 
corresponds to the classical position variable. Non-commutativity 
of (physically meaningful) position operators for relativistic spin-
ning particles was noticed already by Pryce [20]. He shown that 
coordinates of the relativistic center-of-mass have to obey non-
trivial Poisson brackets. As a result, the corresponding quantum 
observables do not commute. Therefore a physically meaningful 
position operators of a spin-1/2 should be non-commutative.

Recent theoretical studies revive Snyder’s attempts [21] to solve 
fundamental physical problems by introducing non-commutativity 
of the space [22]. It is believed that this fundamental non-
commutativity may be important at Plank length scale λP . Exten-
sive studies of non-commutativity cover both classical and quan-
tum theories, as well relativistic and non-relativistic situations. 
Postulating non-commutative deformation of position operators 
[31] one can study physical consequences and estimate possible 
effects. Calculations of the hydrogen spectrum corrections strongly 
limit possible non-commutativity of coordinate parameters in the 
Dirac equation [26–30].

1 See also [32], where the same result was obtained for the classical particle with 
anticommuting spin variables.
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In the present work we will study effects of a natural non-
commutativity of Pryce’s d-type center of mass (at both classi-
cal and quantum levels) in the description of electron interacting 
with an electromagnetic background. Our considerations extend 
results of [19] towards a quantization of interacting spinning par-
ticle.

In the free theory, different candidates for the position op-
erator are almost indistinguishable. All these operators obey the 
same Heisenberg equations (uniform rectilinear motion), and the 
difference in their expectation values is of Compton wave length 
order, λC . In the interacting case, the problem of the identifi-
cation of quantum position observables becomes more compli-
cated.2

Fleming [25] noted:

“The simplest form of interaction is that due to a static potential 
which may be expressed in terms of the position operator of the 
particle. For a relativistic particle, however, the important question 
arises of which position operator should be used. The conventional 
approach, in which the position operator is assumed to be local, forces 
the choice of the center of spin.”3

He also observed, that a formal substitution of Pryce d-type op-
erator into the potential leads to some reasonable corrections:

“The first correction term to a spherically symmetric local potential 
will be recognized as the spin-orbit coupling that Thomas derived 
many years ago as a consequence of classical relativity and which 
appears in the nonrelativistic limit of the Dirac equation for spin par-
ticles.”

Analogous situation was observed in general relativity, [35,
37–39] where a formal substitution of a non-local position vari-
able into potential results in correct equations of motion for the 
spinning particle. Restricting ourselves to the case of special rel-
ativity, in the present work we provide some theoretical grounds 
for such substitution.

The paper is organized as follows. In the first section we 
present general considerations of the structure of classical and 
quantum Hamiltonians for a spinning particle. In the second sec-
tion we give a brief description of the vector model for the clas-
sical description of a relativistic spinning particle. In the third 
section we will realize classical algebra of Dirac brackets by quan-
tum operators in the case of a stationary electro-magnetic back-
ground. This realization will deform free Foldy–Wouthusen Hamil-
tonian and at low energies will give Pauli Hamiltonian with correct 
spin-orbital interaction. In the conclusion we discuss obtained re-
sults.

2. Model independent discussion of the quantum and classical 
Hamiltonians of a spinning particle

From quantum point of view, at low energies an electron inter-
acting with a background electromagnetic field is described by the 

2 Another related problem is in the identification of spin operator, since a change 
of the center of mass definition leads to the modification if the spin definition. 
[24] compares Pauli, Foldy–Wouthuysen, Czachor, Frenkel, Chakrabarti, Pryce, and 
Fradkin–Good spin operators in different physical situations and concluded that in-
teraction with electromagnetic potentials allows to distinguish between various spin 
operators experimentally.

3 Fleming calls the Newton–Wigner position operator as the center of spin, while 
Pryce d-type operator is called as the center of mass.
two-component Schrödinder equation. Pauli Hamiltonian4 includes 
spin-orbital and Zeeman interactions

Ĥ ph = 1

2m
(p̂ − e

c
A)2 − e A0 + e(g − 1)

2m2c2
Ŝ[p̂ × E] − eg

2mc
BŜ

= Ĥcharge + Ĥspin−em . (1)

Gyromagnetic ratio g is a coupling constant of spin with an elec-
tromagnetic field. In principle, in non-relativistic theory one can 
expect different coupling constants for the third and the fourth 
terms of the Hamiltonian. Experimental observations of the hydro-
gen spectrum lead to the factor g − 1 in the third term and to the 
factor g in the last term. Thus, Hamiltonian explains Zeeman effect 
and reproduces fine structure of the energy levels of the hydrogen 
atom. This Hamiltonian follows also from the non-relativistic limit 
of the Dirac equation in the Foldy–Wouthuysen representation [18,
36].

From classical point of view, models of spinning particles are 
based on a Lagrangian or Hamiltonian mechanics, both in the rela-
tivistic and non-relativistic regime [23]. In a covariant formulation, 
the spin part of the Hamiltonian describing an interaction between 
spin S and electromagnetic field reads

Hspin−em−cov ∼ eg

2m2c2
S[p × E] − eg

2mc
BS . (2)

We emphasize that the expression (2) follows from the analysis of 
all possible terms in covariant equations of motion and thus is a 
model-independent [35]. It can also be predicted from symmetry 
considerations on the level of a Hamiltonian. For instance, if we 
take the Frenkel spin-tensor Sμν , the only Lorentz-invariant com-
bination that could give the desired terms is Fμν Sμν = 2Ei Si0 +
ε ijk Si j Bk (see our notations in Appendix).

For the classical gyromagnetic ratio g = 2, the classical spin-
orbital interaction in (2) differs by the famous and troublesome 
factor5 of 1

2 from its quantum counterpart in (1). It seems quanti-
zation of Hspin−em−cov will not reproduce quantum behavior given 
by Ĥspin−em . The issue about this difference was raised already in 
1926 [34] and still remains under discussion [35].

In principle, Hamiltonian Hspin−em can be obtained, if one im-
pose a non-covariant supplementary condition on spin, 2Si0 p0 +
Sij p j = 0, where p0 = −mc in the non-relativistic limit. On a first 
glance, any covariant spin-supplementary condition [8,34,42–44]
would give Hspin−em−cov and the discrepancy factor of 1

2 .
In the next section we study this issue in the framework of 

vector model of a spinning particle [4]. We show that the vector 
model provides an answer on a pure classical ground, without ap-
peal to the Dirac equation. In a few words, it can be described as 
follows. The relativistic vector model involves a second-class con-
straints, which should be taken into account by passing from the 
Poisson to Dirac bracket. The emergence of a higher non-linear
classical brackets that accompany the relativistic Hamiltonian (2)
is a novel point, which apparently has not been taken into account 
in literature. If we pretend to quantize the model, it is desirable 
to find a set of variables with the canonical brackets. The relativis-
tic Hamiltonian (2), when written in the canonical variables, just 
gives (1).

4 We will write quantum Hamiltonians and other operators using the hat, the 
same observables without the hat correspond to the classical theory. Thus (1) de-
fines also classical Pauli-like Hamiltonian.

5 This factor is often referred to Thomas precession [33]. We will not touch this 
delicate and controversial issue [34,40] since the covariant formalism automatically 
accounts the Thomas precession [41].
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3. Vector model of spinning particle in the parametrization 
of physical time

To find the classical brackets that accompany Hcov we need a 
systematically developed model of a spinning particle. Here we 
consider the vector model and briefly describe the construction of 
the Hamiltonian and the brackets in a stationary electromagnetic 
field. For a detailed discussion of the model, see [4].

Configuration space of the vector model of spinning particle 
is parameterized by a point xμ(τ ) of a world-line and a vector 
ωμ(τ ) attached to that point. The configuration-space variables 
are taken in an arbitrary parametrization τ of the world-line. The 
conjugate momenta of the variables are denoted by pμ and πμ , 
correspondingly. Frenkel spin-tensor in the vector model is a com-
posite quantity, Sμν = 2(ωμπν − ωνπμ). The free Lagrangian can 
be written in a number of equivalent forms [11,19]. To describe the 
spin-field interaction through the gyromagnetic ratio g , we use the 
Lagrangian with an auxiliary variable λ(τ )

S =
∫

dτ
1

4λ

[
ẋNẋ + DωNDω

−
√

[ẋNẋ + DωNDω]2 − 4(ẋNDω)2

]

− λ

2
(m2c2 − α

ω2
) + e

c
Aẋ, (3)

where Dωμ ≡ ω̇μ − λ
eg
2c F μνων . The auxiliary variable provides a 

homogeneous transformation law of Dω under the reparametriza-
tions, Dτ ′ω = dτ

dτ ′ Dω. The matrix Nμν is the projector on the plane 
orthogonal to ων , Nμν = ημν − ωμων

ω2 . The parameter m is mass, 

while α determines the value of spin. The value α = 3h̄2

4 is fixed 
by quantization conditions and corresponds to an elementary spin 
one-half particle. In the spinless limit, α = 0 and ωμ = 0, the func-
tional (3) reduces to the well known Lagrangian of the relativistic 
particle, 1

2λ
ẋ2 − λ

2 m2c2 + e
c Aẋ.

Frenkel considered the case g = 2 and found approximate equa-
tions of motion neglecting quadratic and higher terms in spin, 
fields and field gradients. Equations of motion obtained from (3)
coincide with those of Frenkel in this approximation [34].

To find relativistic Hamiltonian in the physical-time parametri-
zation,6 we use the Hamiltonian action associated with (3). This 
reads [4], 

∫
dτ pẋ+πω̇−λi T i , where λi are Lagrangian multipliers 

associated with the primary constraints Ti . The variational problem 
provides both equations of motion and constraints of the vector 
model in an arbitrary parametrization. Using the reparametrization 
invariance of the functional, we take physical time as the evolution 
parameter, τ = x0

c = t , then the functional reads

S H =
∫

dt cP̃0 − e A0 + pi ẋ
i + πμωμ

−
[

λ

2

(
−P̃2

0 +P2
i − eg

4c
(FS) + m2c2 + π2 − α

ω2

)
+ λ2ωπ + λ3Pω + λ4Pπ

]
, (4)

where P̃0 = p0 − e
c A0 and P i = pi − e

c Ai is U (1) -invariant canon-
ical momentum.

We can treat the term associated with λ as a kinematic con-
straint of the variational problem. Following the known prescrip-
tion of classical mechanics, we can solve the constraint,

6 Which is necessary for the canonical quantization.
P̃0 = −P̃0 = −
√
P2

i − eg

4c
(FS) + m2c2 + π2 − α

ω2
, (5)

and substitute the result back into Eq. (4), this gives an equivalent 
form of the functional

S H =
∫

dt pi ẋ
i + πμω̇μ

−
[

c

√
P2

i − eg

4c
(FS) + m2c2 + π2 − α

ω2
+ e A0

+ λ2ωμπμ + λ3Pμωμ + λ4Pμπμ

]
, (6)

where the substitution (5) is implied in the last two terms as well. 
The sign in front of the square root (5) was chosen according to the 
right spinless limit, L = −mc

√−ẋμ ẋμ . The expression in square 
brackets is the Hamiltonian.

The variational problem implies the first-class constraints T2 ≡
ωπ = 0, T5 ≡ π2 − α

ω2 = 0. They determine gauge symmetries and 
physical observables of the theory. The quantities xi(t), P i(t) and 
Sμν(t) have vanishing Poisson brackets with the constraints and 
hence are candidates for observables. The set

T3 = −P0ω0 +P iωi = 0, T4 = −P0π0 +P iπ i = 0, (7)

where

P0 ≡
√
P2

i − eg

4c
(FS) + m2c2 (8)

represents a pair of second class constraints. In all expressions be-
low the symbol P0 represents the function (8). The constraints 
imply the spin-supplementation condition

SμνPν = 0, (9)

as well as the value-of-spin condition Sμν Sμν = 8α.
To represent the Hamiltonian in a more familiar form, we take 

into account the second-class constraints by passing from Poisson 
to Dirac bracket. As the constraints involve conjugate momenta of 
the position x, this leads to nonvanishing brackets for the position 
variables. In the result, the position space is endowed, in a natural 
way, with a noncommutative structure which originates from ac-
counting of spin degrees of freedom. For the convenience, an exact 
form of Dirac brackets of our observables is presented in the Ap-
pendix. Since the Dirac bracket of any quantity with second-class 
constraints vanishes, we can omit them from the Hamiltonian. The 
first-class constraints can be omitted as well, as they do not con-
tribute into equations of motion for physical variables. In the result 
we obtain the relativistic Hamiltonian

Hcov = c

√
�P2 − eg

4c
Fμν Sμν + m2c2 + e A0. (10)

Equations of motion follow from this Hamiltonian with use of the 
Dirac bracket7: dz

dt = {z, Hcov}D .

4. First relativistic corrections and fine structure of hydrogen 
spectrum

To quantize our relativistic theory we need to find quantum 
realization of highly non-linear classical brackets (21)–(21). They 
remain non-canonical even in absence of interaction. For instance, 

7 We emphasize that the use of canonical brackets will lead to different equa-
tions. In our opinion, this turns out to be the reason for debates around the contro-
versial results obtained by different groups, see the discussion in [35].
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Eq. (21) in a free theory reads {xi, x j} = 1
2mcp0 Sij . It is worth noting 

that non-relativistic spinning particle [3,23] implies the canon-
ical brackets, so the deformation arises as a relativistic correc-
tion induced by spin of a particle. Technically, the deformation 
arises from the fact that the constraints, used to construct the 
Dirac bracket, mixes up the space-time and inner-spin coordinates. 
Quantum realization of the brackets in a free theory has been 
obtained in [19], while in an interacting theory its explicit form 
is unknown. Therefore we quantize the interacting theory per-
turbatively, considering c−1 as a small parameter and expanding 
all quantities in power series. Let us consider the approximation 
o(c−2) neglecting c−3 and higher order terms. For the Hamiltonian 
(11) we have H ph ≈ mc2 + P2

2m − P4

8m3c2 − eg
8mc (FS). Since the last 

term is of order (mc)−1, resolving the constraint SμνPν = 0 with 
respect to Si0 we can approximate P0 = mc, then Si0 = 1

mc SijP j . 
Using this expression we obtain

H ph = mc2 + P2

2m
− P4

8m3c2
+ e A0

+ eg

2mc

[
1

mc
S[P × E] − BS

]
+ o

(
1

c2

)

= Hcharge + Hspin−em−cov + o

(
1

c2

)
. (11)

Due to the second and fourth terms, we need to know the opera-
tors P̂ i and x̂i up to order c−2, while Ŝ i j ∼ Ŝ should be found up to 
order c−1. With this approximation, the commutators [x̂, ̂x], [x̂, P̂], 
and [P̂, P̂] can be computed up to order c−2, while the remaining 
commutators can be written only up to c−1. Therefore, we expand 
the right hand sides of Dirac brackets (21) in this approximation

{xi, x j} = 1

2m2c2
Sij + o

(
1

c2

)
,

{xi,P j} = δi j + o

(
1

c2

)
,

{xi, S jk} = 0 + o

(
1

c

)
, (12)

{P i,P j} = e

c
F i j + o

(
1

c3

)
,

{P i, S jk} = o

(
1

c2

)
,

{Sij, Skl} = 2(δik S jl − δil S jk − δ jk Sil + δ jl S ik) + o

(
1

c

)
.

An operator realization of these brackets reads

P̂i = −ih̄
∂

∂xi
− e

c
Ai(x), (13)

x̂i = xi − h̄

4m2c2
εijk P̂ jσ k, (14)

Ŝ i j = h̄εijkσ
k, (15)

then

Ŝ i = 1

4
εijk S jk = h̄

2
σ i, (16)

Ŝ i0 = h̄

mc
εijkP̂ jσ k. (17)

By construction of a Dirac bracket, the operator Ŝ i0 automatically 
obeys the desired commutators up to order c−1.
We substitute these operators into the classical Hamiltonian 
(11). Expanding A0(x̂) in a power series, we obtain an addi-
tional contribution of order c−2 to the potential due to non-
commutativity of the position operator

e A0
(

xi − (2mc)−2εijkP̂ j Ŝk
)

≈ e A0(x) − e

2m2c2
Ŝ[P̂ × E]. (18)

The contribution has the same structure as fifth term in the Hamil-
tonian (11). In the result, the quantum Hamiltonian up to order 
c−2 reads

Ĥ ph = mc2 + P̂2

2m
− P̂4

8m3c2
+ e A0 + e(g − 1)

2m2c2
Ŝ[P̂ × E]− eg

2mc
BŜ.

(19)

The first three terms corresponds to an increase of relativistic 
mass. The last two terms coincides with those in Eq. (1). We 
could carry out the same reasoning in the classical theory, by ask-
ing on the new variables z′ that obey the canonical brackets as 
a consequence of Eq. (12). In the desired approximation they are 
P i = P ′ i − e

c Ai(x′ j), xi = x′ i − 1
4m2c2 S ′ i jP ′ j and Sij = S ′ i j . In the 

result, we have shown that non-commutativity of electron’s posi-
tion at the Compton-scale is responsible for the fine structure of 
hydrogen atom.

5. Conclusions

Relativistic spinning particles give an example of noncommu-
tative system, with noncommutative geometry of position space 
induced by spin of the particle. The “parameter of noncommu-
tativity” is being proportional to spin-tensor. As a consequence, 
canonical quantization of the variational model of electron gives 
(in the leading approximation) the Pauli Hamiltonian. Our calcula-
tions show that
1) classical interaction of spin with electromagnetic field is given 
by manifestly covariant term Sμν Jμν [4] and all constraints are 
covariant as well;
2) phase space is endowed with a non-trivial symplectic struc-
ture (Dirac brackets), in particular, position variables become non-
commutative due to non-vanishing Dirac brackets;
3) the Thomas precession automatically appears in the equations 
of motion [1] due to non-trivial Dirac bracket, without modification 
of the Hamiltonian;
4) quantization of classical model for free electron leads to the 
positive energy part of Dirac equation in the Foldy–Wouthuysen 
representation, the free Hamiltonian acts in the space of two-
component spinors and reads Ĥphys(F = 0) = √

p̂ 2 + m2c2, position 
operator of free electron is the Pryce’s d-type [19,20];
5) quantization of classical model in the case of a stationary elec-
tromagnetic background formally leads to the Hamiltonian

Ĥphys(F ) = c

√
(p̂ − e

c
A(x̂))2 − eg

4c
Ŝμν Fμν(x̂) + m2c2 + e A0(x̂) ,

which, up to o(c−2) order, coincides with the positive energy part 
of Dirac Hamiltonian in the Foldy–Wouthuysen representation. It 
would be interesting to compare high-order terms;
6) non-commutativity of position operator results in the Thomas 
1/2-correction of spin-orbital interaction coming from e A0(x̂)

term.8

8 For instance, similar corrections were obtained in [29]. However, they appear 
from the non-commutativity introduced in the Dirac representation, therefore they 
give additional contribution to the correct spectrum as if non-commutativity acts 
twice.
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Table 1
Auxiliary Poisson brackets.

{P0,∗} {T3,∗} {T4,∗}

xi − P i

P0 −ωi + ω0P i

P0 −π i + π0P i

P0

P i − e
P0c

[(F �P)i + g
8 ∂ i(SF)] eω0

P0c
[(F �P)i + 8 ∂ i(SF)] − e

c (F �ω)i eπ0

P0c
[(F �P)i + g

8 ∂ i(SF)] − e
c (F �π)i

P0 0 e
2P0c

[(g − 2)( �P F �ω) + g
8 ωi∂ i(SF) − μF 0iP [0ωi]] e

2P0c
[(g − 2)( �P F �π) + g

8 π i∂ i(SF) − g
2 F 0iP [0π i]]

ωμ − eg
2P0c

(Fω)μ
ω0eg
2P0c

(Fω)μ −Pμ + π0eg
2P0c

(Fω)μ

πμ − eg
2P0c

(Fπ)μ Pμ + ω0eg
2P0c

(Fπ)μ
π0eg
2P0c

(Fπ)μ

Jμν − eg
2P0c

(FS)[μν] ω0eg
2P0c

(FS)[μν] − 2P [μων] π0eg
2P0c

(FS)[μν] − 2P [μπν]
In the considered approximation our Hamiltonian Ĥphys(F ) co-
incides with the Pauli Hamiltonian for the case of stationary fields. 
Therefore, within this approximation there is no any difference be-
tween standard and non-commutative approach to the spin-orbital 
interaction except a conceptual one. However, in the case of non-
stationary fields the classical Hamiltonian changes form. Further 
studies of time-dependent electromagnetic fields and next order 
corrections may give suggestions for the experimental searches of 
effects produced by non-commutativity.
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Appendix A

Notation Our variables are taken in arbitrary parametrization τ , 
then ẋμ = dxμ

dτ . The square brackets mean antisymmetrization, 
ω[μπν] = ωμπν − ωνπμ . For the four-dimensional quantities we 
suppress the contracted indexes and use the notation ẋμNμν ẋν =
ẋNẋ, Nμ

ν ẋν = (Nẋ)μ , ω2 = ημνω
μων , ημν = (−, +, +, +), μ =

(0, i), i = 1, 2, 3, Notation for the scalar functions constructed from 
second-rank tensors are FS = Fμν Sμν , S2 = Sμν Sμν .

Electromagnetic field:

Fμν = ∂μ Aν − ∂ν Aμ = (F0i = −Ei, Fij = εijk Bk),

Ei = −1

c
∂t Ai + ∂i A0, Bi = 1

2
εijk F jk = εijk∂ j Ak.

Spin-tensor:

Sμν = 2(ωμπν − ωνπμ) = (Si0 = Di, Sij = 2εijk Sk),

then Si = εijkω jπk = 1
4 εijk S jk . Here Si is three-dimensional spin-

vector of Frenkel and Di is dipole electric moment.

Dirac bracket Dirac bracket for the constraints (7) reads

{A, B}D = {A, B} − {A, T3}{T4, T3}−1{T4, B}
− {A, T4}{T3, T4}−1{T3, B}.

Complete list of brackets computed in an arbitrary parametriza-
tion can be found in [2]. Here we present the brackets of the 
observables xi(t), P i(t) and Sμν(t). To compute them, we use the 
auxiliary Poisson brackets shown in the Table 1. We will use the 
notation
u0 = P0 − (g − 2)a

2
(SFP)0 + ga

8
S0μ∂μ(FS),

a = −2e

4m2c3 − e(g + 1)(SF)
,

μν = − 2ca

eu0
P(0 Sμν),

P(0 Sμν) = P0 Jμν +PμSν0 +Pν S0μ,

K μν = − gca

4eu0
S0μ∂ν(SF), Lμνα = − ga

u0
(FS)[μν]S0α,

gμν = ημν − 2caP0

eu0
PμPν .

(20)

Using the table, we obtain {T3, T4} = eu0

2caP0 . Then

{xi, x j}D = 1

2
�i j, {xi,P j}D = δi j − e

2c

[
�ik F kj − K ij

]
,

{P i,P j}D = e

c
F i j − e2

2c2

[
F ik�kn F nj − F [ik K kj]] ,

{Sμν, Sαβ}D = 2(gμα Sνβ − gμβ Sνα − gνα Sμβ + gνβ Sμα)

+ Lμν[αPβ],

{Sμν, x j}D = P [μ�ν] j + 1

2
Lμν j,

{Sμν,P j}D = e

c

[
−Pμ(�νk F kj − K ν j) − (μ ↔ ν)

+1

2
Lμνk F kj

]
.

(21)
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