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Trauma-hemorrhage (T-H) causes hypoxia and organ dysfunction. Mitochondrial dysfunction is a major
factor for cellular injury due to T-H. Aging also has been known to cause progressive mitochondrial
dysfunction. In order to study the effect of aging on T-H-induced mitochondrial dysfunction, we recently
developed a rodent mitochondrial genechip with probesets representing mitochondrial and nuclear genes
contributing to mitochondrial structure and function. Using this chip we recently identified signature
mitochondrial genes altered following T-H in 6 and 22 month old rats; augmented expression of the
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Hemorrhage transcription factor c-myc was the most pronounced. Based on reports of c-myc-IL6 collaboration and c-myc-
Trauma Sirt1 negative regulation, we further investigated the expression of these regulatory factors with respect to
Aging aging and injury. Rats of ages 6 and 22 months were subjected to T-H or sham operation and left ventricular
Blood loss tissues were tested for cytosolic cytochrome ¢, mtDNA content, Sirt1 and mitochondrial biogenesis factors
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Foxol, Ppara and Nrf-1. We observed increased cardiac cytosolic cytochrome ¢ (sham vs T-H, p<0.03),
decreased mitochondrial DNA content (sham vs T-H, p<0.05), and decreased Sirt1 expression (sham vs TH,
p<0.05) following T-H and with progressing age. Additionally, expression of mitochondrial biogenesis
regulating transcription factors Foxol and Nrf-1 was also decreased with T-H and aging. Based upon these
observations we conclude that Sirt1 expression is negatively modulated by T-H causing downregulation of
mitochondrial biogenesis. Thus, induction of Sirt1 is likely to produce salutary effects following T-H induced
injury and hence, Sirt1 may be a potential molecular target for translational research in injury resolution.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Aging is associated with increased cellular senescence and
decreased mitochondrial function [1,2]. Methods to improve mito-
chondrial function have demonstrated to prolong longevity and cell
viability [3,4]. Aging has also been demonstrated to worsen outcome
following injury [5-7]. However the mechanisms by which aging
adversely affect injury outcome are not fully elucidated. In the injury
model, trauma-hemorrhage (T-H), we have recently demonstrated
increased endoplasmic reticulum stress, decreased left ventricular
performance and decreased mitochondrial function [8-10]. Hemor-
rhagic shock causes a whole body hypoxia/reoxygenation injury,
leading to dysregulation of biochemical pathways and multiple organ

Abbreviations: T-H, Trauma-hemorrhage; Ppar, peroxisome proliferator activated
receptor; Pgc, peroxisome proliferative activated receptor, gamma, coactivator; Sirt,
silent mating type information regulation 2 homolog
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dysfunction syndrome [11-17]. A significant decrease in cardiac
output, cardiac contractility and stroke volume is observed following
T-H [18-22]. According to published reports, though onset of several
age-associated diseases increases with aging, injury remains one of
the top ten leading causes of death in all age groups [23]. After acute
life-threatening injury, such as severe hemorrhage, patients are at risk
for systemic inflammatory response syndrome [24] and also, age has
been found to be an independent risk factor for mortality following
sepsis [25]. Additionally, in spite of the advancements in therapy and
care there is approximately 50% mortality following septic shock
[26,27]. The molecular mechanisms underlying organ dysfunction and
death are still unclear and studies toward identifying alterations in
molecular pathways and regulation of energetics following injury are
expected to address this problem.

Mitochondria are the main source of ATP in the cell and mito-
chondrial function is known to decline with aging and injury [28-32].
Among the molecular consequences of mitochondrial dysfunction is
increased production of reactive oxygen species (ROS) and ROS in turn
cause more mitochondrial damage triggering a vicious cycle. It is
suggested that age-associated decline in mitochondrial function might
play an important role in cell aging, particularly in mitochondria-rich
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cells such as heart muscle, and cumulative damage to mtDNA due to
ROS might be involved in cellular aging process [6,7,31-34]. Therefore
determining the mechanism of mitochondrial damage following injury
and development of methods to improve mitochondrial function are of
translational significance.

Our previous results showed that the left ventricular performance
of the aged rats (22 months old) was lower than the younger rats
(6 months old) [10]. Interestingly, we observed a decreased propen-
sity for aged animals to alter expression of individual genes and an
overall decrease in the total number of genes altered following T-H
injury. The comprehensive mitochondrial gene expression profile
using our mitochondrial gene chip, RoMitoChip, demonstrated a
decreased expression of genes such as Pgc-1q, relating to mitochon-
drial function following T-H [10]. Others have also demonstrated
that specific activation of Ppara, another mitochondrial biogenesis
factor, by an agonist can improve liver function following T-H [35].
Interestingly, in both younger (6 months) and the aged (22 months)
rats, the most upregulated gene was c-myc, a proto oncogene and
pleotropic transcription factor. The enhancement of c-myc following
T-H was suggestive of its role in promoting glycolytic process in
injury. Furthermore, c-myc activates p53 promoting apoptosis. The
increased expression of c-myc is also important in T cell activation and
proinflammatory mediators, as it directs a complex inflammatory
program [36,37].

Recently it was reported that Sirt1 (silent mating type information
regulation 2 homolog 1) may negatively modulate c-Myc [38]. The
increased expression of c-myc following T-H irrespective of the age
of the animals, and on the established role of Sirt1 in regulating
mitochondrial function, prompted us to further investigate the
alteration of Sirt1 following T-H injury. In this manuscript, for the
first time, we report the relationship between Sirt1 expression and T-
H which might possibly help us identify additional molecular targets
in developing therapeutic strategies for preventing cardiovascular
functional deterioration following T-H.

2. Materials and methods
2.1. Animals

Six-month and 22-month old Fisher 344 rats were obtained
through the National Institute of Aging, Bethesda, MD. All animal
experiments were carried out in accordance with the protocol
approved by the Institutional Animal Care and Use Committee of
the University of Alabama at Birmingham and were consistent with
the guidelines of the National Institutes of Health.

2.2. Trauma-hemorrhage procedure

This procedure was performed as described earlier [12]. Rats were
fasted overnight but allowed water ad libitum. Before surgery the rats
were anesthetized with isoflurane (Minrad, Bethlehem, PA) and
restrained in a supine position. A 5-cm midline laparotomy was
performed and closed asceptically in 2 layers with sutures (Ethilon
6/0, Ethicon, Somerville, NJ). Both femoral arteries and the right
femoral vein were asceptically cannulated with polyethylene-10
tubing (Becton Dickinson, Sparks, MD). By attaching one of the
catheters to a blood pressure analyzer (Digi-Med BPA-190, Micro-
Med Inc., Louisville, KY) the blood pressure was continuously
monitored. Upon awakening, animals were bled rapidly through the
other arterial catheter to a mean arterial blood pressure of 35 + 5 mm
Hg within 10 min. The animals continued to bleed slowly maintaining
the same low arterial pressure until 50% blood volume was removed
in approximately 45 min. The animals were maintained in shock stage
by keeping the blood pressure low for another 45 min. During this
time 40% of the shed blood volume was given as Ringer's lactate in
small volumes. Following this, the rats were resuscitated with four

times the shed blood volume in the form of lactated Ringer's solution
over 60 min. The same surgical procedures were conducted on sham-
operated animals, but they did not undergo hemorrhage or resusci-
tation. Two hours following resuscitation, the animals euthanized and
left ventricles removed.

2.3. Real-time RT-PCR

Real-time RT-PCR was carried out using FAM-labeled Tagmann
real time PCR primers for Nrf1, Ppara, FoxO1 and (3-actin (ABI, Foster
City, CA). The template cDNA was prepared by random priming from
RNA isolated from the tissues. The results were expressed in relation
to B-actin expression. The PCR reaction was carried out in an ABI 7500
thermal cycler (ABI, Foster City, CA).

2.4. Mitochondrial DNA content assessment

Mitochondrial DNA content was assessed by SYBR green PCR using
custom primers. Primers for mtCOI and nuclear (-actin were as
described in Ref. [39] and were used to amplify mtDNA and nuclear 3-
actin DNA from total DNA isolated from the ventricular tissue of rat
heart.

2.5. Western blot

Protein expression of Sirtl or cytochrome c was analyzed by
Western blot as described [8]. Briefly, total proteins in tissue lysates
were resolved using 4-12% Nupage gel (Invitrogen, Carlsbad, CA) and
transferred to PVDF membranes. The membranes were saturated with
blocking buffer (10 mM Tris, 150 mM NaCl, and 0.05% Tween-20
supplemented with 5% dry milk) for 1 h at room temperature and
incubated with the respective primary antibodies: Sirt1 (Santa Cruz
Biotechnology, Santa Cruz, CA), cytochrome c (Cell Signaling,
Carlsbad, CA) or PB-actin (Abcam, Inc, Cambridge, MA). The mem-
branes were then washed five times with TBST (Tris-buffered saline
supplemented with 0.05% Tween-20) followed by incubation with
appropriate secondary antibody (Santa Cruz Biotechnology, Santa
Cruz, CA) conjugated with horseradish peroxidase for 1 h at room
temperature. The membranes were again washed five times with
TBST and probed using ECL (Amersham, Piscataway, NJ), and
autoradiographed. Cytochrome ¢ was tested using cytosol separated
from mitochondria in left ventricular tissues using a tissue mitochon-
drial isolation kit (Thermo Scientific, Chicago, IL).

2.6. Statistics

Statistical analyses were carried out by non-parametric Mann-
Whitney t-test. Graphpad prism software (La Jolla, CA) was used to
calculate statistical significance. Observed p values are mentioned in
the figure legends with appropriate references on respective figures.

3. Results

3.1. Mitochondrial functional alteration with aging and hemorrhage
injury

Using our custom mitochondrial gene chip, we studied the gene
expression profile of mitochondrial genes in 6 and 22 month old rats
subjected to sham or hemorrhage procedure [10]. We observed
significant changes in the expression of a total of 142 genes in
6 month old rats and 66 in the 22 month old rats. Among these 36
genes were changed in both age groups. Consistent with the alteration
of mitochondrial gene expression, we found a significant increase of
cytochrome c protein in the cytosol (Fig. 1) of rats subjected to T-H. As
seen in the figure, T-H caused marked increase in cytosolic
cytochrome c in both age groups and when the cytochrome c release
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Fig. 1. Cytochrome c release from mitochondria. Cytosolic cytochrome ¢ was quantified
in the left ventricles of 6 and 22 month old rats subjected to sham or T-H operation.
Western blot was carried out using cytosolic fractions of the tissue and quantified in
relation to the signal intensity of 3-actin. For details see Materials and methods. Values
were normalized to sham levels and represented as mean 4 SEM.

was compared between 6 month- and 22 month-old groups, there
was a significantly increased level of cytochrome c in the aged group.
Mitochondrial DNA content was assessed by real time PCR using
primers specific for mitochondrial COI and nuclear B-actin, and a
decline in the mt DNA content was observed with age (Fig. 2).

3.2. Increased cardiac IL-6 with aging and hemorrhage

mRNA expression level of IL-6 was tested in the left ventricular
tissue of rats at 6 and 22 months of age subjected sham or T-H
procedure and as shown in Fig. 3, there was a profound increase in the
cardiac IL-6 level after T-H and this was further augmented by the age
factor.

3.3. Sirt-1 expression changes with aging and hemorrhage injury

Sirt1 expression with aging and injury was investigated because
our previous finding [10] and the data described in this report point
toward mitochondrial functional alteration due to aging and injury.
This was further prompted by the hypothesis that there could be a
myc-Sirt1 negative regulation. Sirt1 protein expression was measured
by Western blot and we found a significantly decreased expression
following T-H both in 6 and 22 month old rats (Fig. 4).
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Fig. 2. Mitochondrial DNA following T-H and in relation to age. Total DNA was isolated
from left ventricles of 6 and 22 month old rats. Mitochondrial COI and nuclear (3-actin
were amplified by real-time PCR using SYBR green. Values expressed in relation to
nuclear 3-actin DNA were further normalized to sham levels and represented as box
and whisker plot.
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Fig. 3. Elevated IL-6 following T-H and in relation to age. IL-6 mRNA was PCR amplified
by realtime RT-PCR using Tagman primers for IL-6 and [3-actin. Values were normalized
to B -actin and represented as Mean 4 SEM.

3.4. Expression of mitochondrial biogenesis genes with aging and
hemorrhage injury

Real-time RT-PCR confirmed a significant change in the expression
of Ppara in 6 and 22 month old animals following T-H. The expression
of Ppara in 22 month-old sham animals also was lower as compared
to the expression at 6 months sham group (Fig. 5). This was further
followed up by determining the expression of Nrf-1 and Foxo-1,
transcription factors downstream to Ppara, and found that the
expression of these genes were also significantly declined following
T-H. Though the decrease following T-H at 22 month was not
significant as compared to their expression levels at 22 months, the
expression following T-H in the aged group was significantly lower as
compared to 6 month sham.

4. Discussion

Our recent mitochondrial gene expression studies have demon-
strated the alteration of several critical genes involved in mitochondrial
structure and function after T-H in young and aged rats [10]. We have
found a decreased number of genes to be altered following T-H at
22 months as compared to at 6 months and we speculated that this lack
of response of the rat to hemorrhagic injury could be due to cellular
senescence [10]. We have now confirmed the decline in mitochondrial
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Fig. 4. Sirt1 expression is altered following T-H. Sirt1 levels were tested by Western blot
and the bands were quantified by densitometry. Values expressed in relation to p-actin
were further normalized to sham levels and represented as Mean 4 SEM.
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Fig. 5. Expression of mitochondrial biogenesis transcription factors following T-H and in relation to age. Nrf-1, FoxO1 and Ppara mRNA were PCR amplified by realtime RT-PCR using

Taqman primers. Values were normalized to 3-actin and represented as Mean 4- SEM.

function not only with age, but also following T-H, as indicated by a
significant increase in the level of cytosolic cytochrome c (Fig. 1).
Cytochrome ¢, a component of the electron transport chain found
loosely bound to the inner mitochondrial membrane is released from
the mitochondria following pro-apoptotic signals. Our previous reports
have demonstrated that T-H leads to apoptosis of cells in several organs
[8,20,40]. The increased age has not only led to elevated mitochondrial
dysfunction, but has also significantly reduced overall mitochondrial
content of left ventricular cells, which will also markedly influence
cardiac energetics (Fig. 2). These findings are consistent with the report
of progressive decline in muscle mitochondrial DNA abundance and
protein synthesis with age [41,42]. However, surprisingly, we also
observed a marked decrease in the mitochondrial DNA copy number
following T-H in both age groups (Fig. 2). As the tissue was harvested
only 2 h following hemorrhage and resuscitation, such rapid deterio-
ration in mitochondria was not expected.

One of the genes that demonstrated the most upregulation
following T-H at both 6 and 22 months, in our gene expression
profiling studies, was the pleotropic transcription factor c-myc [10]. An
inflammatory response following T-H was previously confirmed and it
is not known whether c-myc plays a direct role in this effect. Never-
theless, a c-myc-IL-6 collaboration has been postulated in conditions
such as multiple myeloma, where an IL-6 dependency was observed for
c-myc induced plasma cell neoplasia [43]. Our experiments as shown
(Fig. 3) also demonstrate a significantly elevated IL-6 in the heart
following T-H. Though this is similar to the previous finding by our
group [44], we now find that the aged animals express significantly
more IL-6 in the heart than 6 month old ones, following T-H.

Our previous report indicated c-myc upregulation following T-H
injury, but the nature of IL-6 and c-myc collaboration remains
unknown. Additionally, c-myc has been shown to be negatively
regulated by Sirt1 [38]. Sirt1 or sirtuin (silent mating type information
regulation 2 homolog) 1 is a member of the sirtuin family of proteins
and deacetylates histones and several other proteins involved in
regulation of cellular processes. A decreased Sirt1 activity has been

directly correlated with aging and mitochondrial function. Methods
such as caloric restriction were found to be efficient in promoting
mitochondrial function and longevity. Several reports demonstrate that
the beneficial effect of caloric restriction or action of polyphenols in
improving mitochondrial function may be mediated by augmenting the
activity or elevating the expression level of a histone deacetelyse
enzyme, Sirt1 [45-47]. The activity of Sirt1 has also been shown to be
inversely related to inflammation [48]. As seen in Fig. 1, there is a
significant decline in mitochondrial function following T-H injury and
the age factor caused a further decline in mitochondrial function as
evidenced by the increased level of cytoplasmic cytochrome c. This was
further confirmed by a markedly declining activity of complex I enzyme
with aging and injury (data not shown). Based upon the report that
there is a negative regulation of c-myc expression by Sirt1 [38], we
investigated whether there was a change in Sirt1 expression following
T-H and our results clearly indicate a significant downregulation of Sirt-
1 expression following T-H (Fig. 4). This is the first report that
implicates a possible role for Sirt1 in hemorrhage mediated mitochon-
drial dysfunction. This may be consistent with the hypothesis that c-
myc is negatively regulated by Sirtl. Following T-H, c-myc was
significantly increased in both age groups (6.3- and 3.8-fold), though
more at 6 months [10]. In pathological stress c-myc regulates the
increased metabolic energy demand by promoting glycolysis, rather
than mitochondrial biogenesis, [49]. HIF, the transcript of which was
also significantly increased in both age groups [10], and which is a
hypoxic sensor [50,51], specifically blocks access of glycolytic end
products to mitochondria [9,36,37]. It is also suggested that c-Myc
promotes cell cycle and simultaneously primes activation of the Bcl-2
family controlled mitochondria apoptosis pathway [52].

Our results also show decreased levels of Nrf-1 and Foxol,
transcription factors that can positively modulate mitochondrial
function (Fig. 5). Foxol-mediated transcription of antioxidant genes
such as MnSOD genes are facilitated by activation of Foxo1 through
deacetylation by Sirtl. It has been reported that Foxol plays an
essential role in mediating Sirt1-induced upregulation of MnSOD gene
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Fig. 6. Sirt-Myc regulation following aging and injury: a possible pathway of mito-
chondrial biogenesis regulation in aging and hemorrhage.

in cardiomyocytes [53]. This was further confirmed by the observed
upregulation of cardioprotective molecules such as MnSOD and Bcl-xL
in the heart of mice transgenically expressing Sirt1 and subjected to
ischemia/reperfusion [53]. A similar down modulation was observed
for the transcription factor, nuclear respiratory factor-1 (Nrf-1), which
is a target of Pgc-1a and a direct modulator of mitochondrial biogen-
esis. Our previous studies have clearly demonstrated a decreased
mRNA and protein expression of Pgc-1a in 6-month old rats following
T-H [10]. Pgc-1a activates both Ppara and Nrf-1 to promote mito-
chondrial biogenesis; and as Pgc-1a activation depends on deacetyla-
tion by Sirt1, the declined Sirt1 expression following T-H will have
direct effect on Pgc1-a activity and mitochondrial biogenesis.

Following hemorrhage, we observed an increase in c-Myc and
decrease in Sirtl, Pgc-1a, Foxol and Nrf-1 with a concomitant
decrease in mitochondrial function. The observed changes in these
factors allow us to speculate a role for c-myc-Sirt1 negative regulation
in mitochondrial dysfunction following aging and T-H (Fig. 6). The
Sirt1-regulated mitochondrial function may also be relevant in other
health and disease conditions such as myocardial ischemia/
reperfusion syndrome. Considering that older patients with less
severe hemorrhage have an increased risk of developing myocardial
infarction and that in developed countries with aging populations,
the prevalence of heart failure is increasing [54,55], identification of
novel pathways such as Sirt1-modulated mitochondrial regulation
may have translational potential in injury management. The individ-
ual roles of c-myc and Sirt1 or their mutual regulation in T-H induced
mitochondrial dysfunction and consequent cellular injury may be
identified by using specific small molecule inhibitors or activators of
these key proteins. Such small molecule modulators may also have
therapeutic significance in injury resolution.
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