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a b s t r a c t

Similarity and dissimilarity measures are widely used in many research areas and
applications. When a dissimilarity measure is used, it is normally required to be a distance
metric. However, when a similaritymeasure is used, there is no formal requirement. In this
article, we have three contributions. First, we give a formal definition of similarity metric.
Second, we show the relationship between similaritymetric and distancemetric. Third, we
present general solutions to normalize a given similarity metric or distance metric.
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1. Introduction

Distance and similarity measures are widely used in bioinformatics research and other fields. Here, we give a few
examples.
Distance: Sequence edit distance and tree edit distance are used in many areas [14,28]. Moreover, the widespread use
of distance is exemplified in the following contexts: constructing phylogenetic trees [19,21,23], improving database
search [18], describing the relationship between words [3], comparing graphs or attributed trees [2,24], comparing
information contents [8], and evaluating the importance of attributes in data mining [10,17,25].
Similarity: Protein sequence similarity based on BLOSUMmatrices is used for protein sequence comparison [20]. Similarity
metrics are used in data mining for evaluating the importance of attributes [5–7,9,12,16].
Distance metric is a well defined concept. In contrast, although similarity measures are widely used and their properties

are studied and discussed [22,26], it seems that there is no formal definition for the concept. In this article, we give a formal
definition of similarity metric. We then show the relationship between similarity metric and distance metric. Furthermore,
we consider the problem of normalized similarity metric and normalized distance metric. Although there are studies on
normalizing specific similarity and distance metrics [2,5,7,8,10,12,17,24], there is no general solution. We present general
solutions to normalize a given similarity metric or distance metric. Finally, we illustrate with examples the generality of the
presented solutions.
The rest of the paper is organized as follows. Section 2 reviews the definition of distance metric and introduces a formal

definition of similaritymetric while showing some useful properties. Section 3 concerns the relationship between similarity
metric and distancemetric. Section 4 concerns normalized similaritymetric. Section 5 concerns normalized distancemetric.
Section 6 concerns the generality of the presented solutions. Section 7 presents concluding remarks.

I Preliminary work can be found in [S. Chen, B. Ma, K. Zhang, The normalized similarity metric and its applications, in: Proceedings of 2007 IEEE
International Conference on Bioinformatics and Biomedicine, BIBM 2007, 2007, pp. 172–180; B. Ma, K. Zhang, The similarity metric and the distance
metric, in: Proceedings of the 6th Atlantic Symposium on Computational Biology and Genome Informatics, 2005, pp. 1239–1242]. This work was partially
supported by NSERC grants.
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2. Similarity metric and distance metric

Recall the formal definition of a distance metric as follows.

Definition 1 (Distance Metric). Given a set X , a real-valued function d(x, y) on the Cartesian product X × X is a distance
metric if for any x, y, z ∈ X , it satisfies the following conditions:

1. d(x, y) ≥ 0 (non-negativity),
2. d(x, y) = d(y, x) (symmetry),
3. d(x, z) ≤ d(x, y)+ d(y, z) (triangle inequality),
4. d(x, y) = 0 if and only if x = y (identity of indiscernibles).

To our knowledge, there is no formal metric definition for similarity. In the following, we present a formal definition for
the similarity metric [4,11].

Definition 2 (Similarity Metric). Given a set X , a real-valued function s(x, y) on the Cartesian product X × X is a similarity
metric if, for any x, y, z ∈ X , it satisfies the following conditions:

1. s(x, y) = s(y, x),
2. s(x, x) ≥ 0,
3. s(x, x) ≥ s(x, y),
4. s(x, y)+ s(y, z) ≤ s(x, z)+ s(y, y),
5. s(x, x) = s(y, y) = s(x, y) if and only if x = y.

Condition 1 states that s(x, y) is symmetric. Condition 2 states that for any x the self similarity is nonnegative. Although
it is not mandatory to set this lower bound at zero, this is a common and reasonable choice. Condition 3 states that for any
x the self similarity is no less than the similarity between x and any y. Condition 4 states that the similarity between x and z
through y is no greater than the direct similarity between x and z plus the self similarity of y. This property is the equivalent
of the triangle inequality in distance metric. Condition 5 states that the statements s(x, x) = s(y, y) = s(x, y) and x = y are
equivalent.
With the possible exceptions of condition 4 and 5, the remaining conditions clearly agree with the intuitive meaning

of similarity. As to condition 4 and 5, although their relevance to similarity may not be intuitively clear, we explain in the
following that they are indeed indispensable properties for similarity.
Consider condition 4. At first sight, this inequality might appear unnatural since, from the triangle inequality, one might

expect it to be s(x, y) + s(y, z) ≤ s(x, z) without the s(y, y) term. In a deeper analysis, as follows, we shall see why this
s(y, y) term should be included.
Intuitively, the notion of similarity serves as a means to quantify the common information shared by two objects. Two

scenarios arise. In the first scenario, only non-negative values are used to quantify similarity. In the second scenario, real
values are used to quantify similarity. In the current discussion, we borrow notations from set theory due to its convenience
in conveying the intuition underlying similarity.
For non-negative quantification, the similarity between x and ymay be expressed as |x ∩ y|which represents that which

is commonly shared by both objects. Moreover, note that |x ∩ y| = |x ∩ y ∩ z| + |x ∩ y ∩ z̄|, where a notation x̄ denotes the
complement of x. In this scenario, we are concerned with the inequality:

|x ∩ y| + |y ∩ z| ≤ |x ∩ z| + |y| .

The validity of this inequality is justified as

|x ∩ y| + |y ∩ z| = |x ∩ y ∩ z| + |x ∩ y ∩ z̄| + |x ∩ y ∩ z| + |x̄ ∩ y ∩ z| ≤ |x ∩ z| + |y| ,

due to the facts that |x ∩ y ∩ z| ≤ |x ∩ z| and |x ∩ y ∩ z̄| + |x ∩ y ∩ z| + |x̄ ∩ y ∩ z| ≤ |y|. Without the presence of |y|, one
cannot say that |x ∩ z| alone is enough to bound all the terms on the other side of the inequality. A simple example is when
|x ∩ z| = ∅while |x ∩ y| 6= ∅ and |y ∩ z| 6= ∅.
For general quantification, the similarity between x and ymay be expressed as

k× |x ∩ y| − k′ × (|x ∩ ȳ| + |y ∩ x̄|)

where both common and non-common contributions are taken into account. In this scenario, we are concerned with the
inequality:

k× (|x ∩ y| + |y ∩ z|)− k′ × (|x ∩ ȳ| + |y ∩ x̄| + |y ∩ z̄| + |z ∩ ȳ|) ≤ k× (|x ∩ z| + |y|)− k′ × (|x ∩ z̄| + |z ∩ x̄|).

From the results in the non-negative quantification, if we can show the validity of the following inequality then the validity
of the above inequality follows:

|x ∩ ȳ| + |y ∩ x̄| + |y ∩ z̄| + |z ∩ ȳ| ≥ |x ∩ z̄| + |z ∩ x̄| .
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As shown in the following, this is indeed true:

|x ∩ ȳ| + |y ∩ x̄| + |y ∩ z̄| + |z ∩ ȳ| ≥ |x ∩ ȳ ∩ z̄| + |x̄ ∩ y ∩ z| + |x ∩ y ∩ z̄| + |x̄ ∩ ȳ ∩ z|
= (|x ∩ y ∩ z̄| + |x ∩ ȳ ∩ z̄|)+ (|x̄ ∩ y ∩ z| + |x̄ ∩ ȳ ∩ z|)
= |x ∩ z̄| + |z ∩ x̄| .

Now consider condition 5. The ‘‘if’’ part is clear. The ‘‘only-if’’ part, which states that if s(x, x) = s(y, y) = s(x, y) then
x = y, is justified by Lemma 1.

Lemma 1. Let s(x, y) be a real function satisfying similarity metric conditions 1, 2, 3 and 4. If s(x, x) = s(y, y) = s(x, y) then for
any z, s(x, z) = s(y, z).

Proof. From s(x, y)+ s(y, z) ≤ s(x, z)+ s(y, y), we have s(y, z) ≤ s(x, z). From s(y, x)+ s(x, z) ≤ s(y, z)+ s(x, x), we have
s(x, z) ≤ s(y, z). This means that for any z, s(x, z) = s(y, z). �

From the definitions, the negation of a distance metric is a similarity metric. Therefore the similarity metric is a more
general notion. The next two lemmas consider the result of adding or multiplying two similarity metrics.

Lemma 2. Let s1(x, y) ≥ 0 and s2(x, y) ≥ 0 be two similarity metrics, then s1(x, y)+ s2(x, y) is a similarity metric.

Proof. Trivial. �

Lemma 3. Let s1(x, y) ≥ 0 and s2(x, y) ≥ 0 be two similarity metrics, then s1(x, y)× s2(x, y) is a similarity metric.

Proof. We only show the proof for condition 4 as the other conditions can be proved trivially.
Condition 4: Let dxz = max{s2(x, y) + s2(y, z) − s2(y, y), 0}, then dxz ≤ s2(x, z), dxz ≤ s2(y, y) and s2(x, y) + s2(y, z) ≤
s2(y, y)+ dxz . Without loss of generality, we assume that s1(x, y) ≥ s1(y, z). Then,

s1(x, y)× s2(x, y)+ s1(y, z)× s2(y, z) = (s1(x, y)− s1(y, z))× s2(x, y)+ s1(y, z)× (s2(x, y)+ s2(y, z))
≤ (s1(x, y)− s1(y, z))× s2(y, y)+ s1(y, z)× (s2(y, y)+ dxz)
= s1(x, y)× (s2(y, y)− dxz)+ (s1(x, y)+ s1(y, z))× dxz
≤ s1(y, y)× (s2(y, y)− dxz)+ (s1(y, y)+ s1(x, z))× dxz
≤ s1(y, y)× s2(y, y)+ s1(x, z)× s2(x, z). �

Following the definitions of distance and similarity, the normalized metrics are defined as follows.

Definition 3 (Normalized Distance Metric). A distance metric d(x, y) is a normalized distance metric if d(x, y) ≤ 1.

Definition 4 (Normalized Similarity Metric). A similarity metric s(x, y) is a normalized similarity metric if |s(x, y)| ≤ 1.

Corollary 1. If s(x, y) is a normalized similarity metric and for any x, s(x, x) = 1, then 12 × (1− s(x, y)) is a normalized distance
metric. If, in addition, s(x, y) ≥ 0, then 1− s(x, y) is a normalized distance metric. If d(x, y) is a normalized distance metric, then
1− d(x, y) is a normalized similarity metric.

Proof. The statements follow directly from the basic definitions. �

Therefore, if di(x, y) ≥ 0, 1 ≤ i ≤ n, are normalized distance metrics, then
∏n
i (1 − di(x, y)) is a normalized similarity

metric and 1−
∏n
i (1− di(x, y)) is a normalized distance metric.

In the following, we discuss some properties of concave and convex functions that will be useful later.

Definition 5. A function f is concave over an interval [a, b] if for every x1, x2 ∈ [a, b] and 0 ≤ λ ≤ 1,

λ× f (x1)+ (1− λ)× f (x2) ≤ f (λ× x1 + (1− λ)× x2). (1)

Definition 6. A function f is convex over an interval [a, b] if for every x1, x2 ∈ [a, b] and 0 ≤ λ ≤ 1,

λ× f (x1)+ (1− λ)× f (x2) ≥ f (λ× x1 + (1− λ)× x2).

Lemma 4. If a function f is concave over interval (−∞,∞), then for any a, b ≥ 0 and c ≥ 0,

f (a)+ f (a+ b+ c) ≤ f (a+ b)+ f (a+ c).

Proof. Let a + b = λ × a + (1 − λ) × (a + b + c) and a + c = λ′ × a + (1 − λ′) × (a + b + c). Consequently λ = c
b+c ,

λ′ = b
b+c , and λ+ λ

′
= 1. From Eq. (1), we have{

λ× f (a)+ (1− λ)× f (a+ b+ c) ≤ f (λ× a+ (1− λ)× (a+ b+ c)) = f (a+ b),
λ′ × f (a)+ (1− λ′)× f (a+ b+ c) ≤ f (λ′ × a+ (1− λ′)× (a+ b+ c)) = f (a+ c).

Hence, f (a)+ f (a+ b+ c) ≤ f (a+ b)+ f (a+ c). �
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Lemma 5. If a function f is convex over interval (−∞,∞), then for any a, b ≥ 0 and c ≥ 0,

f (a)+ f (a+ b+ c) ≥ f (a+ b)+ f (a+ c).

Proof. Symmetric to Lemma 4. �

Lemma 6. Let f be a non-negative concave function over [0,∞). Then x
f (b+x) ≤

y
f (b+y) where 0 ≤ x ≤ y and 0 ≤ b.

Proof. Let 0 ≤ λ ≤ 1 such that λ× b+ (1− λ)× (b+ y) = b+ x. Then (1− λ)× y = x and

f (b+ x)
x

≥
λ× f (b)+ (1− λ)× f (b+ y)

x
=
λ× f (b)
x

+
f (b+ y)
y

≥
f (b+ y)
y

.

Hence x
f (b+x) ≤

y
f (b+y) . �

The next lemma states the consequence of setting a similarity metric as an argument of a convex function.

Lemma 7. Let s(x, y) be a similarity metric, and f a convex function such that f (0) ≥ 0, and f (x) < f (y) if x < y. Then f (s(x, y))
is a similarity metric.

Proof.
Condition 1, 2 and 3: Trivial.
Condition 4: Let a = s(x, y) + s(y, z) − s(y, y), b = s(y, y) − s(x, y) and c = s(y, y) − s(y, z). Then it is straightforward to
verify this condition with the help of Lemma 5.
Condition 5: If x = y then clearly f (s(x, x)) = f (s(y, y)) = f (s(x, y)). Conversely, f (s(x, x)) = f (s(y, y)) = f (s(x, y)) implies
s(x, x) = s(y, y) = s(x, y) due to the condition that f (x) < f (y) if x < y, hence x = y. �

Note. If the functional condition in Lemma 7 becomes ‘‘f (x) ≤ f (y) if x < y’’, then by partitioning the set into equivalence
classes such that x and y are in the same class if and only if f (s(x, x)) = f (s(y, y)) = f (s(x, y)), f (s(x, y)) is still a similarity
metric on the quotient set.

Corollary 2. Given a similarity metric s(x, y) on X, we define s+(x, y) as follows.

s+(x, y) =
{
s(x, y), s(x, y) ≥ 0,
0, s(x, y) < 0.

Then s+(x, y) is a similarity metric on X ′ where all x ∈ X such that s(x, x) = 0 correspond to a single element in X ′.

Proof. The result follows directly from the preceding note. �

3. Relationship between similarity metric and distance metric

We consider the relationship between the similarity metric and the distance metric. In particular, we establish
transformations that transform a given similarity metric to a distance metric and vice versa.
We first consider transformations from similarity metric to distance metric. Given a similarity metric s(x, y), we define

two transformations, Fp(s) = dp and Fm(s) = dm, as follows:

Fp(s(x, y)) =
s(x, x)+ s(y, y)

2
− s(x, y),

Fm(s(x, y)) = max{s(x, x), s(y, y)} − s(x, y).

In the following, we prove that these transformations produce distance metrics.

Lemma 8. Let s(x, y) be a similarity metric. Then,

dp(x, y) =
s(x, x)+ s(y, y)

2
− s(x, y)

is a distance metric.

Proof.
Condition 1:

dp(x, y) =
s(x, x)+ s(y, y)

2
− s(x, y) =

s(x, x)− s(x, y)+ s(y, y)− s(x, y)
2

≥ 0.

The inequality is due to similarity metric condition 3.
Condition 2: Trivial.
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Condition 3:

dp(x, z) =
s(x, x)+ s(z, z)− 2× s(x, z)

2

≤
s(x, x)+ s(z, z)+ 2× s(y, y)− 2× s(x, y)− 2× s(y, z)

2

=
s(x, x)+ s(y, y)− 2× s(x, y)

2
+
s(y, y)+ s(z, z)− 2× s(y, z)

2
= dp(x, y)+ dp(y, z).

Condition 4: If x = y then clearly dp(x, y) = 0. Conversely, dp(x, y) = 0 means s(x, x) + s(y, y) − 2 × s(x, y) = 0. Since
s(x, x) ≥ s(x, y) and s(y, y) ≥ s(x, y), wemust have s(x, x) = s(x, y) and s(y, y) = s(x, y) for s(x, x)+s(y, y)−2×s(x, y) = 0
to hold, that is, s(x, x) = s(y, y) = s(x, y). Hence, x = y. �

Lemma 9. Let s(x, y) be a similarity metric. Then,
dm(x, y) = max{s(x, x), s(y, y)} − s(x, y)

is a distance metric.
Proof.
Condition 1 and 2: Trivial.
Condition 3:

dm(x, z) = max{s(x, x), s(z, z)} − s(x, z)
≤ max{s(x, x), s(z, z)} + s(y, y)− s(x, y)− s(y, z)
≤ max{s(x, x), s(y, y)} − s(x, y)+max{s(y, y), s(z, z)} − s(y, z)
= dm(x, y)+ dm(y, z).

Condition 4: If x = y, then clearly dm(x, y) = 0. Conversely, dm(x, y) = 0 means max{s(x, x), s(y, y)} − s(x, y) = 0. Since
s(x, x) ≥ s(x, y) and s(y, y) ≥ s(x, y), this implies s(x, x) = s(y, y) = s(x, y), hence x = y. �

Next, we consider transformations from distance metric to similarity metric. Given a distance metric d(x, y) on X , we
define, for any fixed o ∈ X , transformations Gkp(d) = s

k
p with k ≥ 1, and G

k
m(d) = s

k
m with k > 0, as follows:

Gkp(d(x, y)) =
d(x, o)+ d(y, o)

k
− d(x, y),

Gkm(d(x, y)) = k×min{d(x, o), d(y, o)} − d(x, y).

In the following, we prove that these transformations produce similarity metrics.
Lemma 10. Let d(x, y) be a distance metric on X. Then for k ≥ 1, and any fixed o ∈ X,

skp(x, y) =
d(x, o)+ d(y, o)

k
− d(x, y)

is a similarity metric.
Proof.
Condition 1, 2, 3 and 4: Trivial.
Condition 5: If x = y then skp(x, x) = skp(y, y) = skp(x, y) holds trivially. Conversely, s

k
p(x, x) = skp(y, y) = skp(x, y)

implies 2 × d(x, o) = 2 × d(y, o) = d(x, o) + d(y, o) − k × d(x, y). This means that d(x, o) = d(y, o) and therefore
2× d(x, o) = 2× d(x, o)− k× d(x, y). This yields d(x, y) = 0, hence x = y. �

Lemma 11. Let d(x, y) be a distance metric on X. Then for k > 0, and any fixed o ∈ X,
skm(x, y) = k×min{d(x, o), d(y, o)} − d(x, y)

is a similarity metric.
Proof.
Condition 1, 2 and 3: Trivial.
Condition 4:

skm(x, y)+ s
k
m(y, z) = k×min{d(x, o), d(y, o)} − d(x, y)+ k×min{d(y, o), d(z, o)} − d(y, z)

≤ k×min{d(x, o), d(y, o)} − d(x, z)+ k×min{d(y, o), d(z, o)} − d(y, y)
≤ k×min{d(x, o), d(z, o)} − d(x, z)+ k×min{d(y, o), d(y, o)} − d(y, y)
= skm(x, z)+ s

k
m(y, y).

Condition 5: If x = y then skm(x, x) = s
k
m(y, y) = s

k
m(x, y) clearly holds. Conversely, s

k
m(x, x) = s

k
m(y, y) = s

k
m(x, y) implies

k× d(x, o) = k× d(y, o) = k×min {d(x, o), d(y, o)} − d(x, y). This means d(x, y) = 0, hence x = y. �
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Note. Given a distance metric d, we have Fp(Gkp(d)) = d. Given a similarity metric s, in general G
k
p(Fp(s)) 6= s. Only when

there exists a fixed o ∈ X , such that (k− 1)× (s(x, x)+ s(y, y)) = 2× (s(o, o)− s(x, o)− s(y, o)), we have Gkp(Fp(s)) = s.
The following lemma states a result involving transformation via exponential function.

Lemma 12. If d(x, y) is a distance metric, then e−d(x,y) is a normalized similarity metric and 1− e−d(x,y) is a normalized distance
metric.

Proof. From (1− e−d(x,y))× (1− e−d(y,z)) ≥ 0, we have e−d(x,y)+ e−d(y,z) ≤ e−(d(x,y)+d(y,z))+1. Therefore e−d(x,y)+ e−d(y,z) ≤
e−d(x,z) + e−d(y,y). Other properties are trivial. �

4. Normalized similarity metric

We first present several similarity metrics with a normalized appearance but which may not be strictly normalized
according to Definition 4. Following these, we strengthen the functional condition so as to normalize these metrics.

Theorem 1. Let s(x, y) be a similarity metric, and f a concave function over [0,∞) satisfying f (0) ≥ 0, f (x) > 0 if x > 0, and
f (x) ≤ f (y) if x < y. Then

s̄(x, y) =
s(x, y)

f (s(x, x)+ s(y, y)− s(x, y))

is a similarity metric.

Proof.
Condition 1, 2, and 3: Trivial.
Condition 4: Let

f1 = f (s(x, x)+ s(y, y)+ s(z, z)− s(x, y)− s(y, z)),
f2 = f (s(x, x)+ s(y, y)− s(x, y)),
f3 = f (s(y, y)+ s(z, z)− s(y, z)),
f4 = f (s(y, y)).

Consequently, f1 ≥ {f2, f3} ≥ f4. Further, let a = s(y, y), b = s(x, x)− s(x, y), and c = s(z, z)− s(y, z). Therefore,

s̄(x, y)+ s̄(y, z)− s̄(y, y)− s̄(x, z) = s̄(x, y)+ s̄(y, z)− s̄(y, y)−
s(x, z)

f (s(x, x)+ s(z, z)− s(x, z))
≤ s̄(x, y)+ s̄(y, z)− s̄(y, y)

−
s(x, y)+ s(y, z)− s(y, y)

f (s(x, x)+ s(z, z)− (s(x, y)+ s(y, z)− s(y, y)))
(2)

=
1
f1
×

(
s(x, y)× (f1 − f2)

f2
+
s(y, z)× (f1 − f3)

f3
−
s(y, y)× (f1 − f4)

f4

)
≤
s(y, y)
f1 × f4

× (f1 + f4 − f2 − f3)

=
s(y, y)
f1 × f4

× (f (a+ b+ c)+ f (a)− f (a+ b)− f (a+ c))

≤ 0. (3)

The inequality in (2) clearly holds for s(x, z) ≥ 0. When s(x, z) < 0, this relation also holds due to Lemma 6. The last
inequality in (3) holds due to Lemma 4.
Condition 5: If x = y, clearly s̄(x, x) = s̄(y, y) = s̄(x, y). Conversely, if s̄(x, x) = s̄(y, y) = s̄(x, y), then s(x,x)

f (s(x,x)) =

s(y,y)
f (s(y,y)) =

s(x,y)
f (s(x,x)+s(y,y)−s(x,y)) . Since s(y, y) ≥ s(x, y) and f (s(y, y)) ≤ f (s(x, x) + s(y, y) − s(x, y)), in order for

s(y,y)
f (s(y,y)) =

s(x,y)
f (s(x,x)+s(y,y)−s(x,y)) to hold we must have s(y, y) = s(x, y). Similarly we must have s(x, x) = s(x, y). This means s(x, x) =
s(y, y) = s(x, y), hence x = y. �

Theorem 2. Let f be a function satisfying f (0) ≥ 0, f (x) > 0 if x > 0, and f (x) ≤ f (y) if x < y. Then, given a similarity metric
s(x, y) ≥ 0,

s̄(x, y) =
s(x, y)

f (max{s(x, x), s(y, y)})

is a similarity metric.
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Proof.
Condition 1, 2, and 3: Trivial.
Condition 4: To show s̄(x, y)+ s̄(y, z) ≤ s̄(x, z)+ s̄(y, y), there are three cases to consider.
1. s(z, z) ≤ s(x, x) ≤ s(y, y):

s̄(x, y)+ s̄(y, z) =
s(x, y)
f (s(y, y))

+
s(y, z)
f (s(y, y))

≤
s(x, z)
f (s(y, y))

+
s(y, y)
f (s(y, y))

≤
s(x, z)
f (s(x, x))

+
s(y, y)
f (s(y, y))

= s̄(x, z)+ s̄(y, y).

2. s(z, z) ≤ s(y, y) ≤ s(x, x):

s̄(x, y)+ s̄(y, z) =
f (s(y, y))× (s(x, y)+ s(y, z))+ (f (s(x, x))− f (s(y, y)))× s(y, z)

f (s(x, x))× f (s(y, y))

≤
f (s(y, y))× (s(x, z)+ s(y, y))+ (f (s(x, x))− f (s(y, y)))× s(y, y)

f (s(x, x))× f (s(y, y))
= s̄(x, z)+ s̄(y, y).

3. s(y, y) ≤ s(z, z) ≤ s(x, x):

s̄(x, y)+ s̄(y, z) =
f (s(z, z))× (s(x, y)+ s(y, z))+ (f (s(x, x))− f (s(z, z)))× s(y, z)

f (s(x, x))× f (s(z, z))

≤
f (s(z, z))× (s(x, z)+ s(y, y))+ (f (s(x, x))− f (s(z, z)))× s(y, y)

f (s(x, x))× f (s(z, z))

≤
s(x, z)
f (s(x, x))

+
s(y, y)
f (s(y, y))

= s̄(x, z)+ s̄(y, y).

Condition 5: It is clear that s̄(x, x) = s̄(y, y) = s̄(x, y) if x = y. Conversely, if s̄(x, x) = s̄(y, y) = s̄(x, y), then
s(x,x)
f (s(x,x)) =

s(y,y)
f (s(y,y)) =

s(x,y)
f (max{s(x,x),s(y,y)}) . Since s(y, y) ≥ s(x, y) and f (s(y, y)) ≤ f (max{s(x, x), s(y, y)}), in order for

s(y,y)
f (s(y,y)) =

s(x,y)
f (max{s(x,x),s(y,y)}) to hold we must have s(y, y) = s(x, y). Similarly we must have s(x, x) = s(x, y). This means

s(x, x) = s(y, y) = s(x, y), hence x = y. �

Theorem 3. Let f be a concave function over [0,∞) satisfying f (0) ≥ 0, f (x) > 0 if x > 0, and f (x) ≤ f (y) if x < y. Then,
given a similarity metric s(x, y) ≥ 0, for 0 ≤ k ≤ 1,

s̄(x, y) =
s(x, y)

f (max{s(x, x), s(y, y)} + k× (min{s(x, x), s(y, y)} − s(x, y)))
is a similarity metric.
Proof. We only prove that s̄(x, y)+ s̄(y, z) ≤ s̄(y, y)+ s̄(x, z) as the rest is similar to the above theorems. Let

f1 = f (max{s(x, x), s(z, z)} + k× (min{s(x, x), s(z, z)} − s(x, y)− s(y, z)+ s(y, y))),
f ′1 = f (max{s(x, x), s(z, z)} + k× (min{s(x, x), s(z, z)} − s(x, z))),
f2 = f (max{s(x, x), s(y, y)} + k× (min{s(x, x), s(y, y)} − s(x, y))),
f3 = f (max{s(y, y), s(z, z)} + k× (min{s(y, y), s(z, z)} − s(y, z))),
f4 = f (s(y, y)).

It is straightforward to verify that all the above terms are non-negative. As will be clear soon, it is useful to sort out the
relative magnitudes for {f1, f ′1} and {f1, f2, f3, f4}. For {f1, f

′

1}, we have f1 ≥ f
′

1 since s(x, y)+ s(y, z) ≤ s(x, z)+ s(y, y). Using
the fact that s(x, z) ≥ 0, we have

s̄(x, y)+ s̄(y, z)− s̄(y, y)− s̄(x, z) =
s(x, y)
f2
+
s(y, z)
f3
−
s(y, y)
f4
−
s(x, z)
f ′1

≤
s(x, y)
f2
+
s(y, z)
f3
−
s(y, y)
f4
−
s(x, z)
f1

≤
s(x, y)× (f1 − f2)

f1 × f2
+
s(y, z)× (f1 − f3)

f1 × f3
−
s(y, y)× (f1 − f4)

f1 × f4
.
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Table 1
A comparison of metric conditions.
Formula k s(x, y) f

s(x,y)
f (s(x,x)+s(y,y)−s(x,y)) 1 Any Concave

s(x,y)
f (max{s(x,x),s(y,y)}+k×(min{s(x,x),s(y,y)}−s(x,y))) 0 < k < 1 ≥ 0 Concave

s(x,y)
f (max{s(x,x),s(y,y)}) 0 ≥ 0 Any

For {f1, f2, f3, f4}, we have {f2, f3} ≥ f4. The full order for {f1, f2, f3, f4} depends on the relative magnitudes of
{s(x, x), s(y, y), s(z, z)}. Since x and z are symmetric in the formula, we can assume that s(x, x) ≥ s(z, z). Therefore there
are three cases to consider, namely s(x, x) ≥ s(z, z) ≥ s(y, y), s(x, x) ≥ s(y, y) ≥ s(z, z), and s(y, y) ≥ s(x, x) ≥ s(z, z).
The cases s(x, x) ≥ s(z, z) ≥ s(y, y) and s(x, x) ≥ s(y, y) ≥ s(z, z) give rise to the partial order: f1 ≥ {f2, f3} ≥ f4. The
case s(y, y) ≥ s(x, x) ≥ s(z, z) results in multiple possibilities: f1 ≥ {f2, f3} ≥ f4, f2 ≥ f1 ≥ f3 ≥ f4, f3 ≥ f1 ≥ f2 ≥ f4,
{f2, f3} ≥ f1 ≥ f4, and {f2, f3} ≥ f4 ≥ f1. We first derive the following result for f1 ≥ {f2, f3} ≥ f4 as it is relevant in all three
cases:

s̄(x, y)+ s̄(y, z)− s̄(y, y)− s̄(x, z) ≤
s(x, y)× (f1 − f2)

f1 × f2
+
s(y, z)× (f1 − f3)

f1 × f3
−
s(y, y)× (f1 − f4)

f1 × f4

≤
s(y, y)
f1 × f4

× (f1 + f4 − f2 − f3).

Since s(y,y)f1×f4
≥ 0, in the following when f1 ≥ {f2, f3} ≥ f4, it suffices to prove f1 + f4 − f2 − f3 ≤ 0.

1. s(x, x) ≥ s(z, z) ≥ s(y, y): Let a = s(y, y), b = s(x, x) − s(y, y) + k × (s(y, y) − s(x, y)), c = s(z, z) − s(y, y) + k ×
(s(y, y)− s(y, z)), and c ′ = k× (s(z, z)− s(y, z)). From c − c ′ = (1− k)× (s(z, z)− s(y, y)) ≥ 0, we have c ≥ c ′. Then,
f1 + f4 − f2 − f3 = f (a+ b+ c ′)+ f (a)− f (a+ b)− f (a+ c) ≤ f (a+ b+ c)+ f (a)− f (a+ b)− f (a+ c) ≤ 0.

2. s(x, x) ≥ s(y, y) ≥ s(z, z): Let a = s(y, y), b = s(x, x)− s(y, y)+ k× (s(y, y)− s(x, y)), and c = k× (s(z, z)− s(y, z)).
Then, f1 + f4 − f2 − f3 = f (a+ b+ c)+ f (a)− f (a+ b)− f (a+ c) ≤ 0.

3. s(y, y) ≥ s(x, x) ≥ s(z, z):
• f1 ≥ {f2, f3} ≥ f4: Similar as above.
• f2 ≥ f1 ≥ f3 ≥ f4: Using the fact that s(y, y) ≥ s(y, z), we have

s̄(x, y)+ s̄(y, z)− s̄(y, y)− s̄(x, z) ≤
s(x, y)× (f1 − f2)

f1 × f2
+
s(y, z)× (f1 − f3)

f1 × f3
−
s(y, y)× (f1 − f4)

f1 × f4

≤
s(x, y)× (f1 − f2)

f1 × f2
+
s(y, y)× (f1 − f4)
f1 × f3 × f4

× (f4 − f3)

≤ 0.

• f3 ≥ f1 ≥ f2 ≥ f4: Similar as above.
• {f2, f3} ≥ f1 ≥ f4 or {f2, f3} ≥ f4 ≥ f1: Using the fact that min{f2, f3} ≥ max{f1, f4}, we have

s̄(x, y)+ s̄(y, z)− s̄(y, y)− s̄(x, z) ≤
s(x, y)
f2
+
s(y, z)
f3
−
s(y, y)
f4
−
s(x, z)
f1

≤
s(x, y)+ s(y, z)− s(y, y)− s(x, z)

max{f1, f4}
≤ 0.

Therefore, we have proved that s̄(x, y)+ s̄(y, z) ≤ s̄(y, y)+ s̄(x, z). �

Note.Wemay define s̄(x, y) = 0 if both the numerator and the denominator are 0.

Corollary 3. In the above theorems, we obtain normalized similarity metrics with an additional condition, f (x) ≥ x.

Proof. Trivial. �

Remark.We see that s(x,y)
f (max{s(x,x),s(y,y)}+k×(min{s(x,x),s(y,y)}−s(x,y))) can reduce to

s(x,y)
f (s(x,x)+s(y,y)−s(x,y)) or

s(x,y)
f (max{s(x,x),s(y,y)}) with k = 1

or k = 0, respectively. A comparison of their respective metric conditions is listed in Table 1. When k is in between 0 and 1
the condition requirement is more stringent than when k takes on the limits, i.e. 0 or 1. When k = 0 the condition for f is
relaxed, whereas when k = 1 the condition for s(x, y) is relaxed.
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5. Normalized distance metric

Theorem 4. Let d(x, y) be a distance metric on X. Let f be a concave function on [0,∞) such that f (0) ≥ 0, f (x) > 0 if x > 0,
and f (x) ≤ f (y) if x < y. Then for any fixed o ∈ X,

d̄(x, y) =
d(x, y)

f (d(x, y)+ d(x,o)+d(y,o)
k )

is a distance metric, where k ≥ 1.

Proof. We prove that d̄(x, y) ≤ d̄(x, z)+ d̄(y, z) as the rest is trivial.

d̄(x, y) =
d(x, y)

f (d(x, y)+ d(x,o)+d(y,o)
k )

≤
d(x, z)+ d(y, z)

f (d(x, z)+ d(y, z)+ d(x,o)+d(y,o)
k )

(4)

≤
d(x, z)

f (d(x, z)+ d(x,o)+d(z,o)
k )

+
d(y, z)

f (d(y, z)+ d(y,o)+d(z,o)
k )

= d̄(x, z)+ d̄(y, z).

The inequality in (4) is due to Lemma 6. �

Corollary 4. With an additional condition that f (x) ≥ k
k+1 × x,

d(x, y)

f (d(x, y)+ d(x,o)+d(y,o)
k )

is a normalized distance metric.

Proof. Trivial. �

Theorem 5. Let d(x, y) be a distance metric on X. Let f be a function such that f (0) ≥ 0, f (x) > 0 if x > 0, and f (x) ≤ f (y) if
x < y. Then for any fixed o ∈ X,

d̄(x, y) =
d(x, y)−min{d(x, o), d(y, o)}
f (max{d(x, o), d(y, o)})

+
min{d(x, o), d(y, o)}
f (min{d(x, o), d(y, o)})

is a distance metric.

Proof. Let s(x, y) = d(x, o)+ d(y, o)− d(x, y), then from Lemma 10, s(x, y) is a non-negative similarity metric. Since f ( x2 )
satisfies the conditions of Theorem 2, the following is a similarity metric

s̄(x, y) =
d(x, o)+ d(y, o)− d(x, y)
f (max{d(x, o), d(y, o)})

.

Applying Lemma 8 to s̄(x, y), we have that

d(x, o)
f (d(x, o))

+
d(y, o)
f (d(y, o))

−
d(x, o)+ d(y, o)− d(x, y)
f (max{d(x, o), d(y, o)})

is a distance metric. Therefore

d̄(x, y) =
d(x, y)−min{d(x, o), d(y, o)}
f (max{d(x, o), d(y, o)})

+
min{d(x, o), d(y, o)}
f (min{d(x, o), d(y, o)})

is a distance metric.
Note that from the formula, d̄(x, o) needs special definition. We can define d̄(o, o) = 0 and d̄(x, o) = d(x,o)

f (d(x,o)) . �

Corollary 5. With an additional condition that f (x) ≥ 2× x,

d(x, y)−min{d(x, o), d(y, o)}
f (max{d(x, o), d(y, o)})

+
min{d(x, o), d(y, o)}
f (min{d(x, o), d(y, o)})

is a normalized distance metric.

Proof. Trivial. �
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Table 2
Summary: Set similarity metrics
and distance metrics.
Similarity Distance

|A ∩ B| |A− B| + |B− A|
max{|A− B|, |B− A|}

|A∩B|
|A∪B|

|A−B|+|B−A|
|A∪B|

|A∩B|
max{|A|,|B|}

max{|A−B|,|B−A|}
max{|A|,|B|}

Corollary 6. With an additional condition that f (x) is concave,
d(x, y)−min{d(x, o), d(y, o)} +max{d(x, o), d(y, o)}

f (max{d(x, o), d(y, o)})
is a distance metric.

Proof. In the last step of the proof of the theorem, applying Lemma 9 instead of Lemma 8 and using the following fact

max
{
d(x, o)
f (d(x, o))

,
d(y, o)
f (d(y, o))

}
=

max{d(x, o), d(y, o)}
f (max{d(x, o), d(y, o)})

,

the result follows. �

6. Examples

In specific problem settings, several similarity and distancemetrics have been proposed, for example, in findingmaximal
common subgraph between two graphs, in defining information distance based on the notion of Kolmogorov complexity,
and in evaluating the importance of attributes. These are special solutions, each ofwhich is only suitable for a specific context
fromwhich it is derived. In the following,we show that by casting the solutions in previous sections to each of these contexts,
these metrics readily follow.

6.1. Set similarity and distance

Given sets A and B, we denote by A− B the relative complement of B in A, i.e. A− B = A ∩ B̄ = {x ∈ A | x /∈ B}.
Graph distance: An example of graph distance metric [2], based on the notion of maximal common subgraph, is 1 −
|G1∩G2|

max{|G1|,|G2|}
=

max{|G1−G2|,|G2−G1|}
max{|G1|,|G2|}

where G1 ∩ G2 represents the maximal common subgraph between the graphs G1 and
G2 and |G1 ∩ G2| is a similarity metric.
Attributed tree distance: An attributed tree is a tree of which every node is associated with a vector of attributes. A way of
defining a distance metric between two attributed trees is based onmaximum similarity subtree isomorphism [24]. Examples
are

• |T1| + |T2| − 2× |T1 ∩ T2| = |T1 − T2| + |T2 − T1|,
• max{|T1|, |T2|} − |T1 ∩ T2| = max{|T1 − T2|, |T2 − T1|},
• 1− |T1∩T2|

|T1∪T2|
=
|T1−T2|+|T2−T1|
|T1∪T2|

,

• 1− |T1∩T2|
max{|T1|,|T2|}

=
max{|T1−T2|,|T2−T1|}

max{|T1|,|T2|}

where T1 ∩ T2 represents a maximum similarity subtree between two attributed trees T1 and T2 and |T1 ∩ T2| is a similarity
metric.
The formulation of the metrics in the above examples is essentially based on the notion of set similarity and distance.

Therefore, we now cast the general solution in this context.
Given finite sets A, B and C , we have |A ∩ B| + |B ∩ C | − |A ∩ C | ≤ |B|. Note that this inequality is the equivalent of

that in similarity condition 4. It is easy to verify that |A ∩ B| is a similarity metric. From Lemmas 8 and 9 it follows that
both |A − B| + |B − A| and max{|A − B|, |B − A|} are distance metrics. From Theorem 1, it follows that |A∩B|

|A∪B| is a similarity

metric and consequently |A−B|+|B−A|
|A∪B| is a distance metric. From Theorem 2, it follows that |A∩B|

max{|A|,|B|} is a similarity metric and

consequently max{|A−B|,|B−A|}max{|A|,|B|} is a distance metric.
We summarize the results in Table 2.

Remark. Note that these are a subset of the metrics that may derive from the general solution. Evidently they encompass
themetrics in the examples. For the formulae in fractional forms, we have chosen a simple concave function f (x) = x. There
are many other functions to choose, so long as they meet the functional conditions specified in previous sections. It is, in
general, easier to determine whether a given functionmeets a set of conditions than to prove that a given formula involving
this function is a metric.



S. Chen et al. / Theoretical Computer Science 410 (2009) 2365–2376 2375

Table 3
Summary: Similarity and distance metrics for
evaluating the importance of attributes.
Similarity Distance

I(X, Y ), [6,9,16] H(X |Y )+ H(Y |X), [10,25]
I(X,Y )
H(X,Y ) , [12]

H(X |Y )+H(Y |X)
H(X,Y ) , [10,17]

I(X,Y )
max{H(X),H(Y )} , [5,7]

Table 4
Summary: Information similarity met-
rics and distance metrics.
Similarity Distance

I(X, Y ) H(X |Y )+ H(Y |X)
max{H(X |Y ),H(Y |X)}

I(X,Y )
H(X,Y )

H(X |Y )+H(Y |X)
H(X,Y )

I(X,Y )
max{H(X),H(Y )}

max{H(X |Y ),H(Y |X)}
max{H(X),H(Y )}

6.2. Information similarity and distance

Kolmogorov complexity: There has been some study on defining the information distance, based on the notion of
Kolmogorov complexity [8]. The Kolmogorov complexity K(x) of a string x is the length of a shortest binary program x∗
to compute x on an appropriate universal computer. The distance between two objects may be defined to be the length of
the shortest program that can transform either object into the other and vice versa. Examples of such information distance
metric are K(x|y

∗)+K(y|x∗)
K(x,y) and max{K(x|y

∗),K(y|x∗)}
max{K(x),K(y)} .

Data mining: An attribute is deemed important in data mining if it partitions the database such that new patterns
are revealed [27]. Several similarity and distance metrics were proposed in the context of evaluating the importance of
attributes. They are listed in Table 3.
The formulation of the metrics in the above examples is essentially based on the notion of information similarity and

distance. We now cast the general solution in this context.
Denote by H(X) the information entropy of a discrete random variable X , H(Y |X) the entropy of Y conditional on X ,

H(X, Y ) the joint entropy of X and Y , and I(X, Y ) the mutual information between X and Y .
From information theory, we have H(X |Y ) ≤ H(X |Z)+ H(Z |Y ). The mutual information between X and Y is defined as

I(X, Y ) = H(X)− H(X |Y ), with I(X, Y ) = I(Y , X). With the above, we have I(X, Y )+ I(Y , Z) ≤ I(X, Z)+ I(Y , Y ). Then, it
is straightforward to verify that I(X, Y ) is a similarity metric. From Lemmas 8 and 9 it follows that both H(X |Y ) + H(Y |X)
and max{H(X |Y ),H(Y |X)} are distance metrics. From Theorem 1, it follows that I(X,Y )H(X,Y ) is a similarity metric where H(X, Y )

is the joint entropy of X and Y defined as H(X, Y ) = H(X) + H(Y |X) with H(X, Y ) = H(Y , X). Consequently, H(X |Y )+H(Y |X)H(X,Y )

is a distance metric. From Theorem 2, it follows that I(X,Y )
max{H(X),H(Y )} is a similarity metric. Consequently,

max{H(X |Y ),H(Y |X)}
max{H(X),H(Y )} is a

distance metric.
We summarize the results in Table 4.

Remark. Note the resemblance between the above metrics and those for the case of set, both constructed from the general
solution. Furthermore, it is evident that the metrics in these examples can all be obtained from the same principle. In the
context of Kolmogorov complexity, basic quantities such as K(x), K(x, y), K(x|y) and I(x : y) are similar to H(X), H(X, Y ),
H(X |Y ) and I(X, Y ), respectively. Their respective formulae take on equivalent forms. Analogous to I(X, Y ), I(x : y) is a
similarity metric. With this, the two distance metrics readily follow from the general solution.

6.3. Sequence edit distance and similarity

It is well known that if the cost for basic operations of insertion, deletion, and substitution is a distance metric, then
the sequence edit distance d(s1, s2), defined between two sequences s1 and s2 and derived from finding the minimum-cost
sequence of operations that transform s1 to s2, is also a distance metric.
Several normalized edit distances have been proposed and studied [13,15]. Examples are d(s1,s2)

|s1|+|s2|
, d(s1,s2)
max{|s1|,|s2|}

, and

n(s1, s2) = min{
d(s1,s2)
|p| | p is a path that changes s1 to s2}. Although these are referred to as normalized edit distance, they

are not distance metric.
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From the results of Section 5, choosing o as the empty sequence, we have two normalized edit distance metrics. If the
indel cost is 1, then the following is a normalized distance metric:

1
2
×

(
d(s1, s2)−min{|s1|, |s2|}

max{|s1|, |s2|}
+ 1

)
.

For sequence similarity, one popular measurement is protein sequence similarity based on BLOSUM matrices using
Smith–Waterman algorithm [20]. In fact, based on the original score without rounding, any BLOSUM-N matrix with
N ≥ 55 is a similaritymetric. Therefore protein sequence similarity based on those BLOSUMmatriceswith Smith–Waterman
algorithm is a similarity metric.
For normalized sequence similarity, an example is s(s1,s2)

|s1|+|s2|+k
where k > 0 [1]. This, however, is not a similarity metric

since condition 4 of the similarity metric is not satisfied.

7. Conclusions

We have given a formal definition for the similarity metric. We have shown the relationship between the similarity
metric and the distance metric. We have given general formulae to normalize a similarity metric or a distance metric. We
have shown, with examples, how the general solutions are useful in constructing metrics suitable for various contexts.
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