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a b s t r a c t

By means of a monotone iterative technique, we establish the existence and uniqueness of
the positive solutions for a class of higher conjugate-type fractional differential equation
with onenonlocal term. In addition, the iterative sequences of solution and error estimation
are also given. In particular, this model comes from economics, financial mathematics and
other applied sciences, since the initial value of the iterative sequence can begin from an
known function, this is simpler and helpful for computation.
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1. Introduction

In this paper, we are concerned with the existence and uniqueness of positive solutions for the following singular
nonlinear (n − 1, 1) conjugate-type fractional differential equation with one nonlocal term

Dα
0+x(t) + f (t, x(t)) = 0, 0 < t < 1, n − 1 < α ≤ n,

x(k)(0) = 0, 0 ≤ k ≤ n − 2, x(1) =

∫ 1

0
x(s)dA(s),

(1.1)

where α ≥ 2,Dα
0+ is the standard Riemann–Liouville derivative, A is a function of bounded variation and

 1
0 u(s)dA(s)

denotes the Riemann–Stieltjes integral of uwith respect to A, dA can be a signed measure.
Since

 1
0 u(s)dA(s) denotes the Riemann–Stieltjes integral in BCs (1.1), this implies the case of BCs (1.1) covers the

multi-point BCs and also integral BCs in a single framework. For a comprehensive study of the case when there is a
Riemann–Stieltjes integral boundary condition at both ends, see [1].

As the boundary value problem in economics, financial mathematics and other applied science has a wide range of
applications, in recent years, there have been many papers investigating the existence and uniqueness of the positive
solution for local or nonlocal boundary value problems of the second or higher order ordinary differential equations, we
refer the readers to [2–9] and the references cited therein. For the case where α is an integer, Du and Zhao [9] investigated
the following multi-point boundary problem

−x′′(t) = f (t, x(t)), 0 < t < 1,

x(0) =

m−2−
i=1

αix(ηi), x(1) = 0. (1.2)
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They assumed f is decreasing in u and obtained the existence of C[0, 1] positive solutions w for (1.2) with the property that
w(t) ≥ m(1 − t) for somem > 0. In a recent paper [10], Webb and Zima studied the problemx′′(t) + k2x = f (t, x(t)), 0 < t < 1,

x(0) = 0, x(1) =

∫ 1

0
x(s)dA(s)

(1.3)

when dA is allowed to be a signed measure, and obtained the existence of multiple positive solutions under suitable
conditions on f (t, x). And then, by applying the monotone iterative technique, Mao et al. [8] established the existence and
uniqueness of the positive solution for singular integral boundary value problem (1.3). When α is a fraction, Goodrich [11]
dealt with a problem similar to (1.1) but with local conditions, by deriving properties of the Green’s function and by using
the well-known Guo–Krasnoselskii’s fixed point theorem, the author established some nice existence results of at least
one positive solution provided that f (t, x) satisfies some growth conditions. Similarly, a significant work is developed by
Goodrich [12] to study another fractional problemof nonlocal-type similar to (1.1) by utilizing different techniques from [11]
and here. Recently, the same problem (1.1) is treated by Wang et al. [13] through cone theoretic techniques, where f (t, x)
can be singular at x = 0. Their techniques are also rather different from the ones presented here.

We have found that until now no result has been established for the existence and uniqueness of positive solutions
for the problem (1.1) of a fractional differential equation when f has singularities at t = 0 and (or) 1. This paper thus
aims to establish the existence and uniqueness of positive solutions for the problem (1.1), moreover we also obtain error
estimates and the convergence rate of positive solutions with the property that there exist M > m > 0 such that
mtα−1

≤ w∗
≤ Mtα−1.

2. Preliminaries and lemmas

For the convenience of the reader, we present here the Riemann–Liouville definitions for the fractional integral and
derivative from fractional calculus which are to be used in the later sections.

Definition 2.1 (See [14]). Let α > 0 with α ∈ R. Suppose that x : [a, ∞) → R. Then the αth Riemann–Liouville fractional
integral is defined to be

D−α
0+ x(t) =

1
Γ (α)

∫ t

a
(t − s)α−1x(s)ds

whenever the right-hand side is defined. Similarly, with α > 0 with α ∈ R, we define the αth Riemann–Liouville fractional
derivative to be

Dα
0+x(t) =

1
Γ (n − α)


d
dt

(n) ∫ t

a
(t − s)n−α−1x(s)ds,

where n ∈ N is the unique positive integer satisfying n − 1 ≤ α < n and t > a.

Proposition 2.1 (See [15,14]). Let α > 0, and f (x) is integrable, then

D−α
0+Dα

0+f (x) = f (x) + c1xα−1
+ c2xα−2

+ · · · + cnxα−n

where ci ∈ R (i = 1, 2, . . . , n), n is the smallest integer greater than or equal to α.

Proposition 2.2 (See [15,14]). The equality

Dα
0+D

−α
0+ f (x) = f (x), α > 0

holds for f ∈ L1(a, b).

Lemma 2.1 (See [16]). Given y ∈ L1(0, 1), then the problem
Dα
0+x(t) + y(t) = 0, 0 < t < 1,

x(0) = x′(0) = · · · = x(n−2)
= 0, x(1) = 0, (2.1)

has the unique solution

x(t) =

∫ 1

0
G(t, s)y(s)ds, (2.2)

where G(t, s) is the Green function of BCs (2.1) and is given by

G(t, s) =
1

Γ (α)


[t(1 − s)]α−1, 0 ≤ t ≤ s ≤ 1,

[t(1 − s)]α−1
− (t − s)α−1, 0 ≤ s ≤ t ≤ 1.

(2.3)
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Lemma 2.2 (See [16]). The function G(t, s) has the following properties:

(1)

G(t, s) = G(1 − s, 1 − t), and G(t, s) > 0, for t, s ∈ (0, 1).

(2)

tα−1(1 − t)s(1 − s)α−1
≤ Γ (α)G(t, s) ≤ (α − 1)s(1 − s)α−1, for t, s ∈ [0, 1],

Γ (α)G(t, s) ≤ (α − 1)tα−1(1 − t), for t, s ∈ [0, 1]. (2.4)

By Lemma 2.1, the unique solution of the problem
Dα
0+x(t) = 0, 0 < t < 1,

x(0) = x′(0) = · · · = x(n−2)
= 0, x(1) = 1, (2.5)

is tα−1. Defining GA(s) =
 1
0 G(t, s)dA(t), as in [17], we see the Green function for the nonlocal BCs (1.1) is given by

H(t, s) =
tα−1

1 − C
GA(s) + G(t, s), C =

∫ 1

0
tα−1dA(t). (2.6)

Lemma 2.3. Let 0 ≤ C < 1 and GA(s) ≥ 0 for s ∈ [0, 1], then the Green function defined by (2.6) satisfies:

(1) H(t, s) > 0, for all t, s ∈ (0, 1).
(2) There exist two constants c, d such that

ctα−1GA(s) ≤ H(t, s) ≤ dtα−1
≤ d, t, s ∈ [0, 1]. (2.7)

Proof. (1) is obvious. For (2), by Lemma 2.2 and the definition of H(t, s), we have

H(t, s) =
tα−1

1 − C
GA(s) + G(t, s) ≥

tα−1

1 − C
GA(s) = ctα−1GA(s).

On the other hand, notice A is a function of bounded variation and GA(s) ≥ 0 for s ∈ [0, 1],G(t, s) is continuous on
s, t ∈ [0, 1] and

G(t, s) ≤
(α − 1)(1 − t)tα−1

Γ (α)
≤

tα−1

Γ (α − 1)
,

it is easy to know there exists a constant z > 0 such that GA(s) ≤ z. Consequently, there exists a constant d such that

H(t, s) =
tα−1

1 − C
GA(s) + G(t, s) ≤ dtα−1, t, s ∈ [0, 1],

where d =
z

1−C
+

1
Γ (α−1) . �

3. Main results

In this section, for convenience of presentation, we now present below assumptions to be used in the rest of the paper.

(B0) A is a function of bounded variation such that GA(s) ≥ 0 for s ∈ [0, 1] and 0 ≤ C < 1, where C is defined by (2.6).
(B1) f ∈ C((0, 1) × [0, +∞), [0, +∞)); f (t, x) is nondecreasing in x and for any r ∈ (0, 1), there exists a constant

0 < λ < 1 such that, for any (t, x) ∈ (0, 1) × [0, +∞),

f (t, rx) ≥ rλf (t, x). (3.1)

Remark 3.1. If (B1) holds, then we easily prove, for any r ≥ 1, and for any (t, x) ∈ (0, 1) × [0, +∞), (3.1) becomes

f (t, rx) ≤ rλf (t, x). (3.2)

Remark 3.2. There are many kinds of functions satisfying condition (B1). In fact, let

Ω = {f | The function f (t, x) satisfies condition (B1)},

ai(t) (i = 0, 1, 2, . . . ,m) are nonnegative continuous on (0, 1) which can be singular at t = 0 and (or) 1. Then it is easily
verified directly that the following facts hold:
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(1)
∑m

i=1 ai(t)x
bi ∈ Ω , where 0 < bi < 1 (i = 1, 2, . . . ,m) are constants.

(2) If 0 < µi < +∞(i = 1, 2, . . . ,m) and µ > max1≤i≤m{µi}, then
a0(t) +

m−
i=1

ai(t)xµi

 1
µ

∈ Ω.

(3) If f (t, x) ∈ Ω , then ai(t)f (t, x) ∈ Ω, i = 0, 1, 2, . . . ,m.
(4) If fi(t, x) ∈ Ω (i = 1, 2, . . . ,m), then max1≤i≤m{fi(t, x)} ∈ Ω,min1≤i≤m{fi(t, x)} ∈ Ω,max1≤i≤m{fi(t, x)} +

min1≤i≤m{fi(t, x)} ∈ Ω .

Our discussion is in the space E = C[0, 1], it is a Banach space if it is endowed with the form ‖x‖ = maxt∈[0,1] |x(t)| for
any x ∈ E. Let

P = {x ∈ C[0, 1] : x(t) ≥ 0, t ∈ [0, 1]}.

Clearly P is a normal cone in the Banach space E. Now let us define a sub-cone of P

D = {x(t) ∈ P : there exist two positive numbers Lx ≥ lx such that lxtα−1
≤ x(t) ≤ Lxtα−1, t ∈ [0, 1]}.

Theorem 3.1. Suppose (B0) , (B1) hold. If

0 <

∫ 1

0
f (t, tα−1)dt < +∞. (3.3)

Then the BCs (1.1) have a unique positive solution w∗(t) in D. Moreover for any initial value w0 ∈ D, the sequence of functions
defined by

wn =

∫ 1

0
H(t, s)f (s, wn−1(s))ds, n = 1, 2, . . .

converges uniformly to the unique positive solution w∗(t) on [0, 1] as n → +∞, furthermore we have error estimation

‖wn(t) − w∗(t)‖ ≤ 2(1 − κλn)‖v0‖,

and with the rate of convergence

‖wn − w∗
‖ = o(1 − κλn),

where 0 < κ < 1 is a positive constant which is determined by w0(t).

Proof. Firstly, let us define an operator T : D → E by

(Tx)(t) =

∫ 1

0
H(t, s)f (s, x(s))ds, (3.4)

then a fixed point of the operator T is a solution of the BCs (1.1), moreover T is well defined and T : D → D.
In fact, for any x ∈ D, there exist two positive numbers Lx > 1 > lx such that

lxtα−1
≤ x(t) ≤ Lxtα−1, t ∈ [0, 1]. (3.5)

Thus it follow from (2.7) and (3.2)–(3.5) that∫ 1

0
H(t, s)f (s, x(s))ds ≤ d(Lx)λ

∫ 1

0
f (s, sα−1)ds < +∞.

On the other hand, by (2.7), (3.1), (3.2) and (3.5), we have∫ 1

0
H(t, s)f (s, x(s))ds ≤ d(Lx)λ

∫ 1

0
f (s, sα−1)dstα−1,

and ∫ 1

0
H(t, s)f (s, x(s))ds ≥ c(lx)λ

∫ 1

0
GA(s)f (s, sα−1)dstα−1,

which implies that T is well defined and T (D) ⊂ D.
Now let w0 ∈ D be given, then there exist four positive constants lw0 , Lw0 ,

lw0 ,
Lw0 such that

lw0 t
α−1

≤ w0 ≤ Lw0 t
α−1, lw0 t

α−1
≤ Tw0 ≤Lw0 t

α−1,
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consequently,lw0

Lw0

w0 ≤ Tw0 ≤

Lw0

lw0

w0.

Take

t0 ≤ min


lw0

Lw0

 1
1−λ

,


lw0Lw0

 1
1−λ

 ,

then t0 ∈ (0, 1) and

t1−λ
0 w0 ≤ Tw0 ≤


1
t0

1−λ

w0. (3.6)

Let

u0 = t0w0, v0 =
1
t 0

w0, t0 ∈ (0, 1). (3.7)

Then u0 ≤ v0. Now we define

un = Tun−1, vn = Tvn−1, (n = 1, 2, . . .),

then notice that T is a increasing operator by (B1) and

T (rx) =

∫ 1

0
H(t, s)f (s, rx(s))ds ≥ rλ

∫ 1

0
H(t, s)f (s, x(s))ds = rλTx, 0 < r < 1, (3.8)

T (rx) =

∫ 1

0
H(t, s)f (s, rx(s))ds ≤ rλ

∫ 1

0
H(t, s)f (s, x(s))ds = rλTx, r ≥ 1. (3.9)

One can obtain by (3.6)–(3.8)

Tu0 ≥ tλ0 Tw0 ≥ t0w0 = u0, Tv0 ≤


1
t0

λ

Tw0 ≤
1
t0

w0 = v0. (3.10)

It follows from induction and (3.10) that

u0 ≤ u1 ≤ · · · ≤ un ≤ · · · ≤ vn ≤ · · · ≤ v1 ≤ v0. (3.11)

Notice that u0 = t20v0, by induction it is easy to obtain

un ≥ (t20 )
λnvn, (n = 0, 1, 2, . . .). (3.12)

Since P is a normal cone with normality constant 1, and un+p − un ≤ vn − un for any p ∈ N , we have

‖un+p − un‖ ≤ ‖vn − un‖ ≤ (1 − (t20 )
λn)‖v0‖ → 0, as n → +∞. (3.13)

This implies that {un} is a Cauchy sequence, so un converges to some w∗
∈ D, from (3.13) and

‖vn − w∗
‖ ≤ ‖vn − un‖ + ‖un − w∗

‖,

we also have vn → w∗. Thus w∗
∈ D is a fixed point of T , and w∗

∈ [u0, v0]. For any initial value w0 ∈ D, it follows from
u0 ≤ w0 ≤ v0 that un ≤ wn ≤ vn, (n = 1, 2, . . .). So

‖wn − w∗
‖ ≤ ‖wn − un‖ + ‖un − w∗

‖ ≤ 2‖vn − un‖ ≤ 2(1 − (t20 )
λn)‖v0‖,

which implies the sequence of functions defined by

wn =

∫ 1

0
H(t, s)f (s, wn−1(s))ds, n = 1, 2, . . .

converges uniformly to the positive solution w∗(t) on [0, 1] as n → +∞. Furthermore we have error estimation

‖wn − w∗
‖ ≤ 2(1 − κλn)‖v0‖,

and with the rate of convergence

‖wn − w∗
‖ = o(1 − κλn),

where 0 < κ = t20 < 1 is a positive constant which is determined by w0(t).
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Next we shall prove the uniqueness of positive solution for BCs (1.1). In fact, for any fixed point w ∈ D of T , since
w, w∗

∈ D and the definition of D, let

t1 = sup{t > 0 : w ≥ tw∗
},

then 0 < t1 < +∞. Now we prove t1 ≥ 1. Otherwise, if 0 < t1 < 1, then

w = Tw ≥ T (t1w∗) ≥ tλ1 Tw∗
= tλ1w∗,

which contradicts the definition of t1 since tλ1 > t1. Thus t1 ≥ 1 and w ≥ w∗, in the same way we also have w ≤ w∗, thus
w = w∗, i.e., w∗ is a unique fixed point of T in D. Of course, it also is a unique positive solution of BCs (1.1). �

Remark 3.3. In Theorem 3.1, we not only give the condition of the existence of a unique positive solution, but also establish
an iterative sequence of solution and error estimation. In particular, since tα−1

∈ D, and the initial value of the iterative
sequence can begin from w0 = tα−1, this is simpler and helpful for computation.

Remark 3.4. Theorem 3.1 still holds if (B1) is replaced by the following condition:

(B∗1) f ∈ C((0, 1)×[0, +∞), [0, +∞)); there exist constants 0 < λ1 ≤ λ2 < 1 such that, for any t ∈ (0, 1), x ∈ [0, +∞),

cλ2 f (t, x) ≤ f (t, cx) ≤ cλ1 f (t, x), 0 < c < 1.

(B∗1) is adopted byWei [2–5] to prove the necessary and sufficient condition for the existence of positive solutions for some
nonlinear integer order differential equation with two-point or multi-point boundary conditions. It follows from (B∗1) that
f (t, x) is nondecreasing in x, then (B1) is weaker than (B∗1). In fact, for any t ∈ (0, 1), u, v ∈ [0, ∞), without loss of the
generality, let 0 ≤ u ≤ v. If v = 0, obviously f (t, u) ≤ f (t, v) holds. If v ≠ 0, let c0 = u/v, then 0 ≤ c0 ≤ 1. It follows from
(B∗1) that

f (t, u) = f (t, c0v) ≤ cλ1
0 f (t, v) ≤ f (t, v).

Thus f (t, x) is increasing on x in [0, ∞). So our main result extends some recent works of Wei [2–5]. In addition, we also
establish the iterative sequence of the solution and error estimation; these are not done in [2–5], this implies our result is
better than those of [2–5].

Acknowledgments

The research was supported financially by the National Natural Science Foundation of China (11071141) and the Natural
Science Foundation of Shandong Province of China (ZR2010AM017), China Postdoctoral Science Foundation (20090461378)
and Natural Science Foundation of Zhejiang province (Y6100081).

References

[1] J. Webb, G. Infante, Positive solutions of nonlocal boundary value problems: a unified approach, J. Lond. Math. Soc. 74 (2006) 673–693.
[2] Z. Wei, A necessary and sufficient condition for the existence of positive solutions of singular super-linear m-point boundary value problems, Appl.

Math. Comput. 179 (2006) 67–78.
[3] Z. Wei, C. Pang, The method of lower and upper solutions for fourth order singularm-point boundary value problems, J. Math. Anal. Appl. 322 (2006)

675–692.
[4] Z. Wei, A class of fourth order singular boundary value problems, Appl. Math. Comput. 153 (2004) 865–884.
[5] Z. Wei, Positive solutions of some singularm-point boundary value problems at nonresonance, Appl. Math. Comput. 171 (2005) 433–449.
[6] Z. Hao, L. Liu, L. Debnath, A necessary and sufficient condition for the existence of positive solutions of fourth-order singular boundary value problems,

Appl. Math. Lett. 16 (2003) 279–285.
[7] X. Zhang, L. Liu, A necessary and sufficient condition for positive solutions for fourth-order multi-point boundary value problems with p-Laplacian,

Nonlinear Anal. 68 (2008) 3127–3137.
[8] J. Mao, Z. Zhao, N. Xu, On existence and uniqueness of positive solutions for integral boundary value problems, Electron. J. Qual. Theory Differ. Equ.

(16) (2010) 1–8.
[9] X. Du, Z. Zhao, Existence and uniqueness of positive solutions to a class of singularm-point boundary value problems, Appl. Math. Comput. 198 (2008)

487–493.
[10] J. Webb, M. Zima, Multiple positive solutions of resonant and non-resonant nonlocal boundary value problems, Nonlinear Anal. 71 (2009) 1369–1378.
[11] C.S. Goodrich, Existence of a positive solution to a class of fractional differential equations, Appl. Math. Lett. 23 (2010) 1050–1055.
[12] C.S. Goodrich, Existence of a positive solution to systems of differential equations of fractional order, Comput. Math. Appl. 62 (2011) 1251–1268.
[13] Y. Wang, et al., Positive solutions for a nonlocal fractional differential equation, Nonlinear Anal. 74 (2011) 3599–3605.
[14] I. Podlubny, Fractional Differential Equations, in: Mathematics in Science and Engineering, Academic Press, New York, London, Toronto, 1999.
[15] A. Kilbas, H. Srivastava, J. Nieto, Theory and Applicational Differential Equations, Elsevier, Amsterdam, 2006.
[16] C. Yuan,Multiple positive solutions for (n−1, 1)-type semipositone conjugate boundary value problems of nonlinear fractional differential equations,

Electron. J. Qual. Theory Differ. Equ. (36) (2010) 12 p..
[17] J. Webb, Nonlocal conjugate type boundary value problems of higher order, Nonlinear Anal. 71 (2009) 1933–1940.


	Existence and uniqueness of positive solutions for higher order nonlocal fractional differential equations
	Introduction
	Preliminaries and lemmas
	Main results
	Acknowledgments
	References


