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Using elementary methods, we establish several new Ramanujan type identities and
congruences for certain pairs of partition functions.
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1. Introduction and statement of main results

Let p(n) denote the number of unrestricted partitions of a non-negative integer n, then

p(5n + 4) ≡ 0 (mod 5), (1.1a)
p(7n + 5) ≡ 0 (mod 7), (1.1b)
p(11n + 6) ≡ 0 (mod 11). (1.1c)

These are commonly known as the Ramanujan congruences. Ramanujan gave several proofs of (1.1). (A detailed account can
be found in [6, Ch. 2].) In particular, he deduced (1.1a) and (1.1b) from the following exact identities [29]

∞
n=0

p(5n + 4)qn = 5
(q5; q5)5

∞

(q; q)6
∞

, (1.2a)

∞
n=0

p(7n + 5)qn = 7
(q7; q7)3

∞

(q; q)4
∞

+ 49q
(q7; q7)7

∞

(q; q)8
∞

, (1.2b)

where we adopted the standard notation

(a; q)∞ =

∞
j=1

(1 − aqj) and (a1, . . . , am; q)∞ = (a1; q)∞ · · · (am; q)∞.

For brevity we shall also use E(n) to denote (qn; qn)∞.
By imposing certain restrictions on the parts of the partitions, one can obtain variants of the partition function. For

example, an overpartition of n is a partition of n where we may overline the first occurrence of a part. We define in the
following, seven variants of the partition function. Let

• po(n) denote the number of partitions of n into odd parts;
• pe(n) denote the number of partitions of n into even parts;
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• p(n) denote the number of overpartitions of n;
• po(n) denote the number of overpartitions of n into odd parts;
• pe(n) denote the number of overpartitions of n into even parts;
• pod(n) denote the number of partitions of n where the odd parts are distinct;
• ped(n) denote the number of partitions of nwhere the even parts are distinct.

The eight corresponding generating functions are
∞
n=0

p(n)qn =
1

(q; q)∞
=

1
E(1)

, (1.3a)

∞
n=0

po(n)qn =
1

(q; q2)∞
=

E(2)
E(1)

, (1.3b)

∞
n=0

pe(n)qn =
1

(q2; q2)∞
=

1
E(2)

, (1.3c)

∞
n=0

p(n)qn =
(−q; q)∞
(q; q)∞

=
E(2)
E(1)2

, (1.3d)

∞
n=0

po(n)qn =
(−q; q2)∞
(q; q2)∞

=
E(2)3

E(1)2E(4)
, (1.3e)

∞
n=0

pe(n)qn =
(−q2; q2)∞
(q2; q2)∞

=
E(4)
E(2)2

, (1.3f)

∞
n=0

pod(n)qn =
(−q; q2)∞
(q2; q2)∞

=
E(2)

E(1)E(4)
, (1.3g)

∞
n=0

ped(n)qn =
(−q2; q2)∞
(q; q2)∞

=
E(4)
E(1)

. (1.3h)

Properties of these partition functions, as well as identities and congruences satisfied by them, have been the subject of
many recent studies [3,4,11,15,19–21,25,28]. For example, Hirschhorn and Sellers [19] proved that the overpartition function
p(n) satisfies the following analogue of (1.2)

∞
n=0

p(2n + 1)qn = 2
E(2)2E(8)2

E(1)4E(4)
. (1.4)

Apart from studying a single partition function, one may also consider a partition pair formed from partition functions
p1(n) and p2(n). Let Q(p1,p2)(n) denote the number of partitions of n into two colors (say, red and blue), where the parts
colored red satisfy restrictions of partitions counted by p1(n), while the parts colored blue satisfy restrictions of partitions
counted by p2(n). The generating function for Q(p1,p2)(n) is then the product of the generating functions of p1(n) and p2(n).

For example, partitions into two colors with no restrictions on the red parts, but where the blue parts must be even, are
counted by Q(p,pe)(n). Chan [8] recently showed that such partitions satisfy the following remarkable identity

∞
n=0

Q(p,pe)(3n + 2)qn = 3
E(3)3E(6)3

E(1)4E(2)4
. (1.5)

Pairs of partition functions have been studied recently in [7,9,12,13,17,22–24,35].
We shall use elementary methods to prove several new identities and congruences that are analogous to (1.2) and (1.1).

In Section 3, we prove the following two theorems

Theorem 1.1.
∞
n=0

Q(po,ped)(3n + 1)qn = 3
E(2)4E(3)5

E(1)8E(6)
, (1.6a)

∞
n=0

Q(po,ped)(3n + 2)qn = 6
E(2)3E(3)2E(6)2

E(1)7
. (1.6b)

Theorem 1.2.
∞
n=0

Q(p,pod)(3n + 1)qn = 3
E(2)6E(3)6

E(1)11E(4)3
. (1.7)
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In Section 4, we shall establish the following congruences

Theorem 1.3.
∞
n=0

Q(p,po)(5n + 4)qn ≡ 0 (mod 5), (1.8a)

∞
n=0

Q(p,ped)(5n + 2)qn ≡ 0 (mod 5), (1.8b)

∞
n=0

Q(po,pod)(5n + 2)qn ≡ 0 (mod 5), (1.8c)

∞
n=0

Q(pe,ped)(5n + 3)qn ≡ 0 (mod 5) (1.8d)

and
∞
n=0

Q(po,p)(7n + 2)qn ≡ 0 (mod 7). (1.8e)

We end the introduction with a brief discussion on modular forms. All of the partition functions that we consider have
generating functions that are (up to a factor of q) either modular forms, reciprocals of modular forms or are congruent to
some modular forms. If we let f (n) denote their Fourier coefficients, then it has been shown [1,2,16,27,30,33] that there
exists infinitely many congruences of the form

f (An + B) ≡ 0 (mod M),

but for certain types of partition functions, there exists only finitely many Ramanujan type congruences, which are of the
form

f (ℓn + b) ≡ 0 (mod ℓ),

where ℓ is a prime. For instance, (1.1) are the only Ramanujan type congruences for p(n) and the only Ramanujan type
congruence for p(n) is for the prime 2.

For this reason, we concentrate on Ramanujan type congruences. A computer search was carried out on all pairs of
partition functions formed from the list in (1.3) for congruences modulo primes up to 101. The only ones found are for
primes 2, 3, 5 and 7. Our aim is to explain all of these Ramanujan type congruences and identities in an elementary manner.
In the next sectionwewill prove some preliminary results. Ramanujan type congruencesmodulo 3 are discussed in Section 3
while Section 4 is devoted to the remaining congruences.

2. Preliminaries

In this section, we will state several key results needed in our proofs. We begin with three crucial 3-dissection results for
Ramanujan’s theta function ψ , and the generating functions for p(n) and pod(n)

Lemma 2.1.

E(2)2

E(1)
=

E(6)E(9)2

E(3)E(18)
+ q

E(18)2

E(9)
, (2.1a)

E(2)
E(1)2

=
E(6)4E(9)6

E(3)8E(18)3
+ 2q

E(6)3E(9)3

E(3)7
+ 4q2

E(6)2E(18)3

E(3)6
, (2.1b)

E(2)
E(1)E(4)

=
E(18)9

E(3)2E(9)3E(12)2E(36)3
+ q

E(6)2E(18)3

E(3)3E(12)3
+ q2

E(6)4E(9)3E(36)3

E(3)4E(12)4E(18)3
. (2.1c)

Proof. Eq. (2.1a) is Corollary (ii) on page 49 of [5]. Eq. (2.1b) is the 3-dissection of the overpartition generating function and
an elementary proof of which can be found in [19, Th. 1]. Finally to obtain (2.1c), the 3-dissection of the generating function
for partitions with odd parts distinct, we replace q by −q in [21, Lem. 2] and use Jacobi’s triple product identity [6, Th. 1.3.3]
to write the various sums as products. �
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Our second lemma comes from [31, Eq. 5.1]

Lemma 2.2.

E(2)4E(3)8

E(1)8E(6)4
= 1 + 8q

E(2)E(6)5

E(1)5E(3)
. (2.2)

The next result is named after Winquist [34] who used it to obtain an elementary proof of (1.1c)

Theorem 2.3 (Winquist).

F1(x)F2(y)− F1(y)F2(x) = −
2
x


xq,

q
x
, yq,

q
y
, xy,

q2

xy
,
x
y
,
yq2

x
, q2, q2; q2


∞

,

where

F1(x) =

∞
n=−∞

(−1)nq3n
2
(x3n + x−3n),

F2(x) =

∞
n=−∞

(−1)nq3n
2
+2n(x3n+1

+ x−3n−1).

We remark that the above result is not exactly the identity found in [34] but one of the four variants of it [32, Eq. 3.1].
In his landmark paper [26], Macdonald introduced and classified affine root systems and associated each root system to an
identity that equates infinite series to products. Winquist’s identity corresponds to the B2 root system as can be seen from
the factors x, y, xy, x/y in the infinite product. An easy consequence of Winquist’s identity is

Corollary 2.4.

E(2)14

E(1)4E(4)4
=

E(4)10

E(8)4
+ 4q

E(2)4E(8)4

E(4)2
. (2.3)

Proof. Apply the differential operator x d
dx twice to Theorem 2.3 and substitute the value of −1 for both x and y to get

∞
m,n=−∞


(3m + 1)2 − (3n)2


q3m

2
+2m+3n2

=
E(2)14

E(1)4E(4)4
.

Now replace (m, n) by
 i+j

2 ,
i−j
2


to obtain


i≡j (mod 2)

(3i + 1)(3j + 1)q
3i2+2i

2 +
3j2+2j

2 =


∞

i=−∞

(6i + 1)q
4(3i2+i)

2

2

+


∞

i=−∞

(6i + 2)q6i
2
+4i+ 1

2

2

and use Entries 8(ix) and 8(x) in page 114 of [5] to convert the last line into a sum of two products. Incidentally these two
entries correspond to the BC1 identities in the Macdonald system. �

Corollary 2.5.

1 − q
E(1)E(12)3

E(3)3E(4)
=

E(1)E(4)3E(6)2

E(2)2E(3)3E(12)
, (2.4a)

1 + 2q
E(1)E(12)3

E(3)3E(4)
=

E(2)7E(12)
E(1)2E(3)2E(4)3E(6)

, (2.4b)

1 − 2q
E(1)E(12)3

E(3)3E(4)
=

E(1)2E(4)E(6)9

E(2)3E(3)6E(12)3
. (2.4c)

Proof. Specialize (x, y) in Theorem 2.3 to (e2π i/3,−q) and use Jacobi’s triple product to get

−4q−1 E(3)
2E(4)E(6)

E(2)E(12)
+ 4

E(1)E(6)E(12)2

E(2)E(3)
= −4q−1 E(1)E(4)4E(6)3

E(2)3E(3)E(12)2
.

Simplifying the result yields (2.4a). Similarly, set (x, y) to (1,−q) for (2.4b) and set (x, y) to (1,−1) for (2.4c). �
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3. Identities and congruences modulo 3

In this section we prove Theorems 1.1 and 1.2 and survey other results in the literature.

Proof of Theorem 1.1. It is easy to check that the generating function for Q(po,ped)(n) is

E(2)3

E(1)3
.

Hence the theorem is a simple consequence of the following identity

E(2)3

E(1)3
=

E(6)
E(3)

+ 3q
E(6)4E(9)5

E(3)8E(18)
+ 6q2

E(6)3E(9)2E(18)2

E(3)7
+ 12q3

E(6)2E(18)5

E(3)6E(9)
. (3.1)

Multiply (2.1a) by (2.1b) to obtain

E(2)3

E(1)3
=

E(6)5E(9)8

E(3)9E(18)4
+ 4q3

E(6)2E(18)5

E(3)6E(9)
+ 3q

E(6)4E(9)5

E(3)8E(18)
+ 6q2

E(6)3E(9)2E(18)2

E(3)7
.

It suffices to prove

E(6)5E(9)8

E(3)9E(18)4
=

E(6)
E(3)

+ 8q3
E(6)2E(18)5

E(3)6E(9)
.

By replacing q3 by q and after some rearrangement, we can see that the above result is equivalent to (2.2). �

As a corollary of (3.1), we record the following attractive identity, although it does not lead to a Ramanujan type
congruence

∞
n=0

Q(po,ped)(3n)qn =
E(2)
E(1)

+ 12q
E(2)2E(6)5

E(1)6E(3)
. (3.2)

Proof of Theorem 1.2. The generating function for Q(p,pod)(n) is

E(2)2

E(1)3E(4)
.

Multiply (2.1b) by (2.1c) and collect the terms with exponent congruent to 1 modulo 3. Now replace q3n+1 with qn to get

E(2)6E(3)6

E(1)11E(4)3
+ 2

E(2)3E(6)9

E(1)9E(4)2E(12)3
+ 4q

E(2)6E(3)3E(12)3

E(1)10E(4)4
.

It remains to prove

2
E(2)6E(3)6

E(1)11E(4)3
= 2

E(2)3E(6)9

E(1)9E(4)2E(12)3
+ 4q

E(2)6E(3)3E(12)3

E(1)10E(4)4
.

Some simplification shows that the above is equivalent to (2.4c). �

We now consider other modulo 3 Ramanujan type identities that have recently been discovered. In [22], Kim proved the
following identity using the theory of modular forms

∞
n=0

Q(p,pe)(3n + 2)qn = 6
E(3)6E(4)3

E(1)8E(2)3
. (3.3)

One can obtain an elementary proof of Kim’s result with (2.1b) and (2.4c).
By squaring (2.1c) and (2.1b) respectively, Chen and Lin [12,13] showed that

∞
n=0

Q(pod,pod)(3n + 2)qn = 3
E(2)4E(6)6

E(1)6E(4)6
, (3.4)

∞
n=0

Q(p,p)(3n + 2)qn = 12
E(2)6E(3)6

E(1)14
. (3.5)

A computer search yielded no other modulo 3 Ramanujan type identities for pairs of partition functions arising from the
list (1.3). However, several congruences of the type

f (3αn + bα) ≡ 0 (mod 3),
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for infinitely many values of α, α ≠ 1, have been found in [4,12,13,18,20,21,25]. Chan [8] has also found that

Q(p,pe)(3jn + cj) ≡ 0 (mod 32⌊j/2⌋+1),

where cj = 1/8 (mod 3j) for all positive integers j.
We end this section with some new exact identities for Q(ped,ped)(n), that do not lead to Ramanujan type congruences

Theorem 3.1.
∞
n=0

Q(ped,ped)(3n)qn =
E(2)10E(3)4

E(1)10E(4)2E(6)2
, (3.6a)

∞
n=0

Q(ped,ped)(3n + 1)qn = 2
E(2)9E(3)E(6)
E(1)9E(4)2

, (3.6b)

∞
n=0

Q(ped,ped)(3n + 2)qn = 2
E(2)2E(3)3E(4)3E(12)

E(1)7E(6)2
+ 3

E(2)E(4)E(6)5

E(1)6E(12)
. (3.6c)

Proof. Multiply (2.1b) by (2.1a)with q replaced by q2. Collect termswith the same exponentsmodulo 3 and use Corollary 2.5
to simplify the resulting expressions. �

4. Identities and congruences modulo other primes

We first discuss Ramanujan type congruences modulo 2. All of the results that we have found are due to one of the
following 2-dissections

E(2)
E(1)2

=
E(8)5

E(2)4E(16)2
+ 2q

E(4)2E(16)2

E(2)4E(8)
, (4.1)

E(2)2

E(1)4
=

E(4)14

E(2)12E(8)4
+ 4q

E(4)2E(8)4

E(2)8
. (4.2)

An elementary proof of (4.1) can be found in [19, Th. 1]. If we square the identity, we obtain

E(2)2

E(1)4
= 4q

E(4)2E(8)4

E(2)8
+

E(8)10

E(2)8E(16)4
+ 4q2

E(4)4E(16)4

E(2)8E(8)2
.

Thus (4.2) follows from establishing

E(4)14

E(2)12E(8)4
=

E(8)10

E(2)8E(16)4
+ 4q2

E(4)4E(16)4

E(2)8E(8)2
,

which is equivalent to (2.3).
Using (4.2) and some straightforward manipulation, it follows that we have the following Ramanujan type identity

∞
n=0

Q(p,po)(2n + 1)qn = 4
E(2)E(4)4

E(1)6
. (4.3)

Similar results can be obtained for another 12 partition pairs.
We now turn to congruences modulo 5 and 7. We first note that for any prime p, we have

E(n)p ≡ E(pn) (mod p).

Using this fact, one explanation for all five congruences stated in Theorem 1.3 is that the respective generating functions are
congruent to some modular forms modulo 5 or 7. All we require are known series representations for these modular forms
which can be found in [14].

Proof of Theorem 1.3. We shall only prove (1.8a)
∞
n=0

Q(p,po)(n)qn =
E(2)3

E(1)3E(4)

≡
E(1)2E(4)4

E(2)2
×

E(10)
E(5)E(20)

(mod 5)

=
E(1)2E(4)2

E(2)
×

E(4)2

E(2)
×

E(10)
E(5)E(20)

.
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Using Jacobi’s triple product and Entry 8(x) of [5, Pg. 114], the first two infinite products have the following series
representation 

α≡1 (mod 3)

αq
α2−1

3

 
β≡1 (mod 4)

q
β2−1

4


=


α≡1 (mod 3)
β≡1 (mod 4)

αq
4α2+3β2−7

12 .

If the exponent of q is congruent to 4 modulo 5, we have

(2α)2 + 3β2
≡ 12(4)+ 7 ≡ 0 (mod 5).

Since −3 is a quadratic nonresidue modulo 5, 5 must divide both α and β . Thus we have shown that
∞
n=0

Q(p,po)(5n + 4)qn ≡ 0 (mod 5).

The proofs for congruences (1.8b) to (1.8e) are similar. �

A computer calculation for all possible pairs of partitions arising from the list (1.3) has shown that there are no other
Ramanujan type congruences for primes between 5 and 101, besides those given in Theorem 1.3, trivial congruences arising
from (1.1) and the well known

∞
n=0

Q(p,p)(5n + b)qn ≡ 0 (mod 5) for b = 2, 3, 4.

Analogous to the modulo 3 case, Chen and Lin [12,13] have proved congruences of the type
f (5αn + bα) ≡ 0 (mod 5),

for infinitely many values of α, α ≠ 1, while it was shown in [10] that

Q(p,pe)(5jn + dj) ≡ 0 (mod 5


j
2


),

where dj = 1/8 (mod 5j) for all positive integers j.
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