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Abstract

Oscillation criteria are established for the second order neutral delay differential equation with distributed deviating argument

(r(t)�(x(t))Z′(t))′ +
∫ b

a
q(t, �)f [x(g(t, �))] d�(�) = 0, t � t0,

where Z(t) = x(t) + p(t)x(t − �). These results are extensions of the integral averaging techniques due to Coles and Kamenev, and
improve some known oscillation criteria in the existing literature.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we are concerned with the oscillation problem for the second order neutral delay differential equation
with distributed deviating argument

(r(t)�(x(t))Z′(t))′ +
∫ b

a

q(t, �)f [x(g(t, �))] d�(�) = 0, t � t0, (1.1)

where Z(t)=x(t)+p(t)x(t − �), ��0, and the following conditions are assumed to hold without further mentioning:

(A1) r , p ∈ C(I, R) and 0�p(t)�1, r(t) > 0 for t ∈ I ,
∫∞ 1/r(s) ds = ∞, I = [t0, ∞);

(A2) � ∈ C1(R, R), �(x) > 0 for x �= 0;

(A3) f ∈ C(R, R), xf (x) > 0 for x �= 0;
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(A4) q ∈ C(I × [a, b], [0, ∞)) and q(t, �) is not eventually zero on any half-linear [tu, ∞) × [a, b], tu � t0;

(A5) g ∈ C(I × [a, b], [0, ∞)), g(t, �)� t for � ∈ [a, b], g(t, �) has a continuous and positive partial derivative on
I ×[a, b] with respect to the first variable t and nondecreasing with respect to the second variable �, respectively,
and lim inf t→∞ g(t, �) = ∞ for � ∈ [a, b];

(A6) � ∈ C([a, b], R) is nondecreasing, and the integral of Eq. (1.1) is in the sense of Riemann–Stieltijes.

We restrict our attention to those solutions x(t) of Eq. (1.1) which exist on some half linear [tx, ∞) with sup{x(t) :
t �T } �= 0 for any T � tx , and satisfy Eq. (1.1). As usual, a solution x(t) of Eq. (1.1) is called oscillatory if the set of
its zeros is unbounded from above, otherwise, it is called nonoscillatory. Eq. (1.1) is called oscillatory if all solutions
are oscillatory.

We note that second order neutral delay differential equations have various applications in problems dealing with
vibrating masses attached to an elastic bar and in some variational problems. For further applications and questions
concerning existence and uniqueness of solutions of neutral delay differential equations, see [8].

In the last decades, there has been an increasing interest in obtaining sufficient conditions for the oscillation and/or
nonoscillation of solutions of second order linear and nonlinear neutral delay differential equations with distributed
deviating arguments (see, for example, [4,10,15] and the references therein). Very recently, in [12,13], the results of
Philos [11] for second order linear ordinary differential equation have been extended to the neutral delay differential
equations

(r(t)�(x(t))Z′(t))′ + q(t)f (x(�(t))) = 0 (1.2)

and

(r(t)Z′(t))′ +
∫ b

a

q(t, �)x[g(t, �))] d�(�) = 0, (1.3)

which are not applicable to Eq. (1.1). Therefore it will be of great interest to improve the results of Sahiner [12] and
Wang [13].

In this paper, by using a generalized Riccati technique and the integral averaging technique and following the results
of Coles [5] and Wong [14], we establish some oscillation criteria for Eq. (1.1), which complement and extend the
results in [13,15]. The relevance of our results becomes clear due to some carefully selected examples. The obtained
oscillation criteria are essentially new even for Eq. (1.3). Our methodology is somewhat different from that of previous
authors. We believe that our approach is simpler and also providers a more unified account for study of Coles and
Kamenev type oscillation theorems.

For other oscillation results of various neutral functional differential equation we refer the reader to the monographs
[1–3,6,7].

2. Notations and lemmas

For the simplicity of the proofs of the main results we present the following notations and lemmas.
Let �(t0, t) denote the class of positive and locally integrable functions, but not integrable, which contains all the

bounded functions for t � t0. For arbitrary functions � ∈ �(t0, t), h ∈ C(I, R+ = (0, ∞) ) and � ∈ C(I, R). For
t �T � t0, we define

	( T , t) =
∫ t

T

�(s) ds, 
(h; T , t) = 1

�(t)

∫ t

T

h(s)�2(s) ds

and

A(�; T , t) = 1

	(T , t)

∫ t

T

�(s)

∫ s

T

�(u) du ds.

Following Philos [11], we introduce a class of functions I as follows. Let

D0 = {(t, s) : t > s� t0} and D = {(t, s) : t �s� t0}.
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A kernel function k ∈ C(D, R) is said to belong to the function class I (written by k ∈ I) if

(H1) k(t, t) = 0 for t � t0, k(t, s) > 0 on D0;
(H2) k has a continuous and nonpositive partial derivative on D0 with respect to the second variable such that the

condition

−�k

�s
(t, s) = �(t, s)k(t, s) for all (t, s) ∈ D0

is satisfied for some � ∈ C(D, R).

Let � ∈ C(I, R), we define an integral operator B, which is defined in [14] in terms of k(t, s) and �(s) as

B(�; T , t) =
∫ t

T

k(t, s)�(s)�(s) ds for t � t � t0,

where � ∈ C(I, R).
Let us state three sets of conditions commonly used as in [12] which we rely on:

(S1) f ′(x) exists, f ′(x)�k1 and �(x)�L−1 for x �= 0;

(S2) f ′(x) exists, f ′(x)/�(x)�k2 for x �= 0;

(S3) f (x)/x�k3 and �(x)�L−1 for x �= 0,

where k1, k2, k3 and L are positive real numbers.
It is clear that assumption (S1) implies (S2), but not converse. For example, the functions f (x) = x3 and �(x) = x2

do not satisfy (S1), but (S2) holds. In (S1) and (S2), we need f to be differentiable. Clearly this condition is not required
in (S3). The above facts force us to study Eq. (1.1) under conditions (S1), (S2) and (S3) separately.

In addition, we will make use of the following conditions:

(N1) There exists a positive real number M such that ±f (±uv)�Mf (u)f (v) for uv > 0;
(N2) u�′(u) > 0 for u �= 0.

The following three lemmas will be useful for establishing oscillation criteria for Eq. (1.1).

Lemma 2.1. Suppose that (S1) and (N1) are satisfied. Let x(t) be an eventually positive solution of Eq. (1.1); then
there exists a T0 � t0 such that

Z(t) > 0, Z′(t) > 0 and (r(t)�(x(t))Z′(t))′ �0, t �T0. (2.1)

Moreover,

(r(t)�(x(t))Z′(t))′ + Mf [Z(g(t, a))]
∫ b

a

q(t, �)f [1 − p(g(t, �))] d�(�)�0, t �T0. (2.2)

Proof. Let x(t) be an eventually positive solution of Eq. (1.1). Note that in view of (A5), there exists a T0 � t0 such
that

x(t) > 0, x(t − �) > 0 and x[g(t, �)] > 0, t �T0, � ∈ [a, b]. (2.3)

From (1.1), we also have Z(t) > 0 and (r(t)�(x(t))Z′(t))′ �0 for t �T0.
Next, we show that Z′(t) > 0 for t �T0. In fact, if there exists a t1 �T0 with Z′(t1) < 0, then, noting that r(t)�(x(t))

Z′(t) is decreasing, we have, for t � t1,

r(t)�(x(t))Z′(t)�r(t1)�(x(t1))Z
′(t1) =:  < 0 for t � t1.
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Dividing both sides by r(t)�(x(t)) > 0, we obtain

Z′(t)� 

�(x(t))

1

r(t)
. (2.4)

Integrating (2.4) from t1 to t leads to

Z(t)�Z(t1) + L
∫ t

t1

ds

r(s)
. (2.5)

In view of (A1), it follows from (2.5) that Z(t) takes on negative values for sufficiently large values of t. Since this
contradicts the fact that Z(t) is eventually positive, we must have Z′(t) > 0 for t �T0. Using this fact together with
x(t)�Z(t), we see that

x(t)�[1 − p(t)]Z(t), t �T0. (2.6)

In view of (S1), (N1) and (2.6), we also see that

f [x(g(t, �))]�Mf [1 − p(g(t, �))]f [Z(g(t, �))], t �T0,

thus, from (1.1), we get

0 = (r(t)�(x(t))Z′(t))′ +
∫ b

a

q(t, �)f [x(g(t, �))] d�(�)

�(r(t)�(x(t))Z′(t))′ + M

∫ b

a

q(t, �)f [1 − p(g(t, �))]f [Z(g(t, �))] d�(�). (2.7)

Further, observing that g(t, �) is nondecreasing with respect to � and Z′(t) > 0 for t �T0, we have

Z[g(t, �)]�Z[g(t, a)], t �T0, � ∈ [a, b]. (2.8)

So, f [Z(g(t, �))]�f [Z(g(t, a))] for t �T0 and � ∈ [a, b]. Thus (2.7) implies that (2.2) holds. This completes the
proof of Lemma 2.1. �

Lemma 2.2. Suppose that (S2) and (N1) are satisfied. Let x(t) be an eventually positive solution of Eq. (1.1); then
there exists a T0 � t0 such that (2.1) and (2.2) hold.

Proof. Let x(t) be an eventually positive solution of Eq. (1.1). As in the proof of Lemma 2.1, there exists a T0 � t0
such that (2.3) holds. Further, we also see that Z(t) > 0, (r(t)�(x(t))Z′(t))′ �0 and (2.4) hold for t �T0. Now we may
claim Z′(t) > 0 for t �T0. In fact, in view of x(t)�Z(t) for t �T0, multiplication of (2.4) by f ′(Z(t)) > 0 gives

f ′(Z(t))Z′(t)� k2 

r(t)
.

Clearly,

f (Z(t))�f (Z(T0)) + k2
∫ t

T0

ds

r(s)
for t �T0.

Letting t → ∞ in the above inequality and using (A1), f (Z(t)) → −∞. Since this contradicts (A3) we must have
Z′(t) > 0 for t �T0. Next, by following the same steps in the proof of Lemma 2.1, we get that (2.2) holds. This completes
the proof. �

Lemma 2.3. Suppose that (S3) is satisfied. Let x(t) be an eventually positive solution of Eq. (1.1); then there exists a
T0 � t0 such that (2.1) holds. Moreover,

(r(t)�(x(t))Z′(t))′ + k3Z[g(t, a)]
∫ b

a

q(t, �)[1 − p(g(t, �))] d�(�)�0, t �T0. (2.9)
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Proof. Let x(t) be an eventually positive solution of Eq. (1.1). As in the proof of Lemma 2.1, there exists a T0 � t0
such that (2.1) and (2.3) hold. Thus, from (1.1) and (S3), we have

0 = (r(t)�(x(t))Z′(t))′ +
∫ b

a

q(t, �)f [x(g(t, �))] d�(�)

�(r(t)�(x(t))Z′(t))′ + k3

∫ b

a

q(t, �)x[(g(t, �))] d�(�)

�(r(t)�(x(t))Z′(t))′ + k3

∫ b

a

q(t, �){Z[g(t, �)] − p[g(t, �)]x[g(t, �) − �]} d�(�). (2.10)

Note that

Z[g(t, �)]�Z[g(t, �) − �]�x[g(t, �) − �].
Thus, (2.10) implies that

(r(t)�(x(t))Z′(t))′ + k3

∫ b

a

q(t, �)[1 − p(g(t, �))]Z[g(t, �)] d�(�)�0, t �T0. (2.11)

Observing (2.8), it follows from (2.11) that (2.9) holds. This completes the proof. �

3. Main results

In this section, we will give and show the main results of this paper. First of all, we establish Coles-type oscillation
criteria for Eq. (1.1).

Theorem 3.1. Let assumptions (S1) and (N1) hold. If there exist functions � ∈ �(t0, t), � ∈ C1(I, R+) and R ∈
C1(I, R) such that

l1(t)�0 for t � t0, (3.1)∫ ∞

t0

	�(T , s)


(h1; T , s)
ds = ∞, 0�� < 1, T � t0, (3.2)

and

lim
t→∞ A(�1 − 1

4h1l
2
1; T , t) = ∞, T � t0, (3.3)

where

l1(t) = �′(t)
�(t)

+ 2k1Lg′(t, a)R(t)

r[g(t, a)] , h1(t) = r[g(t, a)]�(t)

k1Lg′(t, a)
,

and

�1(t) = �(t)

{
M

∫ b

a

q(t, �)f [1 − p(g(t, �))] d�(�) + k1Lg′(t, a)R2(t)

r[g(t, a)] − R′(t)
}

,

then Eq. (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of Eq. (1.1) on I. Without loss of generality we assume that x(t) �= 0
for t � t0. Furthermore, we suppose that x(t) > 0 for t � t0, since the substitution u = −x transforms Eq. (1.1) into an
equation of the same form subject to the assumptions of the theorem. Then, by Lemma 2.1, there exists a T0 � t0 such
that (2.1) and (2.2) hold for t �T0. Define

v(t) = �(t)

[
r(t)�(x(t))Z′(t)
f [Z(g(t, a))] + R(t)

]
for all t �T0. (3.4)
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Then, differentiating (3.4) and using (2.2), it follows that

v′(t)� �′(t)
�(t)

v(t) − �(t)

[
M

∫ b

a

q(t, �)f [1 − p(g(t, �))] d�(�)

+ r(t)�(x(t))Z′(t)
f 2[Z(g(t, a))] f ′[Z(g(t, a))]Z′[g(t, a)]g′(t, a) − R′(t)

]
.

Since g(t, a)� t and (r(t)�(x(t))Z′(t))′ �0 for t �T0, we have

r(t)�(x(t))Z′(t)�r[g(t, a)]�[x(g(t, a))]Z′[g(t, a)].
Therefore, we have

v′(t)� �′(t)
�(t)

v(t) − �(t)

[
M

∫ b

a

q(t, �)f [1 − p(g(t, �))] d�(�) − R′(t)
]

− k1�(t)g′(t, a)

r[g(t, a)]�[x(g(t, a))]
(

r(t)�(x(t))Z′(t)
f [Z(g(t, a))]

)2

� �′(t)
�(t)

v(t) − �(t)

[
M

∫ b

a

q(t, �)f [1 − p(g(t, �))] d�(�) − R′(t)
]

− k1L�(t)g′(t, a)

r[g(t, a)]
(

v(t)

�(t)
− R(t)

)2

= − �1(t) + l1(t)v(t) − 1

h1(t)
v2(t), (3.5)

that is,

v′(t)� − �1(t) + 1

4
h1(t)l

2
1(t) − 1

h1(t)

[
v(t) − 1

2
h1(t)l1(t)

]2

. (3.6)

Hence, for t �T �T0,

v(t) +
∫ t

T

1

h1(s)

[
v(s) − 1

2
h1(s)l1(s)

]2

ds�v(T ) −
∫ t

T0

[
�1(s) − 1

4
h1(s)l

2
1(s)

]
ds. (3.7)

Multiplying relation (3.7) by �(t) and integrating from T to t, we get

∫ t

T

�(s)v(s) ds +
∫ t

T

�(s)

∫ s

T

1

h1(u)

[
v(u) − 1

2
h1(u)l1(u)

]2

du ds

�	(T , t)

[
v(T ) − A

(
�1 − 1

4
h1l

2
1; T , t

)]
.

From condition (3.3), there exists a T1 �T such that

v(T ) − A(�1 − 1
4 h1l

2
1; T , t) < 0 for all t �T1.

Then, for every t �T1,

F(t) =
∫ t

T

�(s)

∫ s

T

1

h1(u)

[
v(u) − 1

2
h1(u)l1(u)

]2

du ds

� −
∫ t

T

�(s)v(s) ds,
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and by condition (3.1), we obtain

F(t)�F(t) +
∫ t

T

1

2
�(s)h1(s)l1(s) ds

< −
∫ t

T

�(s)

[
v(s) − 1

2
h1(s)l1(s)

]
ds.

Since F is nonnegative, we have

F 2(t)�
{∫ t

T

�(s)

[
v(s) − 1

2
h1(s)l1(s)

]
ds

}2

, t �T1.

By the Schwarz inequality, we obtain, for t �T1,

F 2(t)�
{∫ t

T

√
h1(s)�(s)

(
1√

h1(s)

[
v(s) − 1

2
h1(s)l1(s)

])
ds

}2

�
(∫ t

T

h1(s)�
2(s) ds

)∫ t

T

1

h1(s)

[
v(s) − 1

2
h1(s)l1(s)

]2

ds

= 
(h1; T , t)F ′(t). (3.8)

Note that

F(t) =
∫ t

T

�(s)

∫ s

T

1

h1(u)

[
v(u) − 1

2
h1(u)l1(u)

]2

du ds

�
∫ t

T

�(s)

∫ T1

T

1

h1(u)

[
v(u) − 1

2
h1(u)l1(u)

]2

du ds

= C	(T , t), (3.9)

where C = ∫ T1
T

(1/h1(u))[v(u) − 1
2h1(u)l1(u)]2 du. From (3.8) and (3.9), for all t �T1 and some �, 0�� < 1, we get

C� 	�(T , t)


(h1; T , t)
�F �−2(t)F ′(t). (3.10)

Integrating (3.10) from T1 to t, we obtain

C�
∫ t

T1

	�(T , s)


(h1; T , s)
ds� 1

1 − �

1

F 1−�(T1)
< ∞,

and this contradicts (3.2). Hence, we complete the proof of Theorem 3.1. �

Theorem 3.2. Let assumptions (S2), (N1) and (N2) hold. If there exist functions � ∈ �(t0, t), � ∈ C1(I, R+) and
R ∈ C1(I, R) such that

l2(t)�0 for t � t0, (3.11)∫ ∞

t0

	�(T , s)


(h2; T , s)
ds = ∞, 0�� < 1, T � t0, (3.12)

and

lim
t→∞ A(�2 − 1

4 h2l
2
2; T , t) = ∞, T � t0, (3.13)

where

l2(t) = �′(t)
�(t)

+ 2k2 g′(t, a)R(t)

r[g(t, a)] , h2(t) = r[g(t, a)]�(t)

k2 g′(t, a)
,
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and

�2(t) = �(t)

{
M

∫ b

a

q(t, �)f [1 − p(g(t, �))] d�(�) + k2 g′(t, a)R2(t)

r[g(t, a)] − R′(t)
}

.

Then Eq. (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of Eq. (1.1) on I, say x(t) > 0 for t � t0. Then, by Lemma 2.2, there exists
a T0 � t0 such that (2.1) and (2.2) hold. We consider the function v(t) defined by (3.4), and obtain

v′(t)� �′(t)
�(t)

v(t) − �(t)

[
M

∫ b

a

q(t, �)f [1 − p(g(t, �))] d�(�) − R′(t)
]

− �(t)g′(t, a)

r[g(t, a)]
f ′[Z(g(t, a))]
�[x(g(t, a))]

(
r(t)�(x(t))Z′(t)
f [Z(g(t, a))]

)2

.

Now, we use x[g(t, a)]�Z[g(t, a)] and (N2) to obtain that

f ′[Z(g(t, a))]
�[x(g(t, a))] � f ′[Z(g(t, a))]

�[Z(g(t, a))] �k2.

Therefore, we have

v′(t)� �′(t)
�(t)

v(t) − �(t)

[
M

∫ b

a

q(t, �)f [1 − p(g(t, �))] d�(�) − R′(t)
]

− k2�(t)g′(t, a)

r[g(t, a)]
(

r(t)�(x(t))Z′(t)
f [g(t, a)]

)2

= − �2(t) + l2(t)v(t) − 1

h2(t)
v2(t). (3.14)

The rest of the proof runs as in Theorem 3.1. �

Theorem 3.3. Let assumption (S3) hold. If there exist functions � ∈ �(t0, t), � ∈ C1(I, R+) and R ∈ C1(I, R) such
that

l3(t)�0 for t � t0, (3.15)∫ ∞

t0

	�(T , s)


(h3; T , s)
ds = ∞, 0�� < 1, T � t0, (3.16)

and

lim
t→∞ A(�3 − 1

4h3l
2
3; T , t) = ∞, T � t0, (3.17)

where

l3(t) = �′(t)
�(t)

+ 2 Lg′(t, a)R(t)

r[g(t, a)] , h3(t) = r[g(t, a)]�(t)

L g′(t, a)
,

and

�3(t) = �(t)

{
k3

∫ b

a

q(t, �){1 − p[g(t, �)]} d�(�) + Lg′(t, a)R2(t)

r[g(t, a)] − R′(t)
}

,

then Eq. (1.1) is oscillatory.
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Proof. Let x(t) be a nonoscillatory solution of Eq. (1.1) on I, say x(t) > 0 for t � t0. Then, by Lemma 2.3, there exists
a T0 � t0 such that (2.1) and (2.9) hold. We define the function v(t) by

v(t) = �(t)

[
r(t)�(x(t))Z′(t)

Z[g(t, a)] + R(t)

]
for all t �T0. (3.18)

Differentiating (3.18) and using (2.9), we obtain

v′(t)� �′(t)
�(t)

v(t) − �(t)

[
k3

∫ b

a

q(t, �){1 − p(g(t, �))} d�(�) − R′(t)
]

− �(t)g′(t, a)

r[g(t, a)]�[x(g(t, a))]
(

r(t)�(x(t))Z′(t)
Z(g(t, a))

)2

� �′(t)
�(t)

v(t) − �(t)

[
k3

∫ b

a

q(t, �){1 − p(g(t, �))} d�(�) − R′(t)
]

− L�(t)g′(t, a)

r[g(t, a)]
(

v(t)

�(t)
− R(t)

)2

= − �3(t) + l3(t)v(t) − 1

h3(t)
v2(t). (3.19)

Inequality (3.19) is of the same type as inequality (3.5). Hence, we can use a similar procedure to complete the proof
of Theorem 3.3. �

Next, we present some new oscillation results for Eq. (1.1), by using integral average conditions of Philos-type.

Theorem 3.4. Let assumptions (S1) and (N1) hold. If there exist functions � ∈ C1(I, R+), R ∈ C1(I, R), � ∈
C1(I, R+) and k ∈ I such that

lim sup
t→∞

1

k(t, t0)
B

(
�1 − 1

4
h1(� − l1 − �−1�′)2; t0, t

)
= ∞, (3.20)

then Eq. (1.1) is oscillatory.

Proof. Proceeding as in the proof of Theorem 3.1, we see that (3.5) holds for all t �T �T0. Applying the operator
B(·; t, T ) to (3.5), we have

B(�1; T , t) + B((� − l1 − ��′)v; T , t) + B(h−1
1 v2; T , t)�k(t, T )�(T )v(T ). (3.21)

Completing squares of v in (3.21) yields

B(h−1
1 (v + 1

2h1(� − l1 − �−1�′))2; T , t)

+ B(�1 − 1
4h1(� − l1 − �−1�′)2; T , t)�k(t, T )�(T )v(T ). (3.22)

Note that the first term is nonnegative, so

B(�1 − 1
4h1(� − l1 − �−1�′)2; T , t)�k(t, T )�(T )v(T ). (3.23)

Thus, we have, for t � t0,

B

(
�1 − 1

4
h1(� − l1 − �−1�′)2; t0, t

)

= B

(
�1 − 1

4
h1(� − l1 − �−1�′)2; t0, T0

)
+ B

(
�1 − 1

4
h1(� − l1 − �−1�′)2; T0, t

)

�k(t, t0)

[∫ T0

t0

|�1(s)|�(s) ds + �(T0)|v(T0)|
]

.
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Dividing both sides of the above inequality and taking limsup in it as t → ∞, we obtain a contradiction to condition
(3.20). This completes the proof of Theorem 3.4. �

Theorem 3.5. Let assumptions (S2), (N1) and (N2) hold. If there exist functions � ∈ C1(I, R+), R ∈ C1(I, R),
� ∈ C1(I, R+) and k ∈ I such that

lim sup
t→∞

1

k(t, t0)
B

(
�2 − 1

4
h2(� − l2 − �−1�′)2; t0, t

)
= ∞, (3.24)

then Eq. (1.1) is oscillatory.

Proof. Starting with inequality (3.14), we proceed as in the proof of Theorem 3.4. �

Theorem 3.6. Let assumption (S3) hold. If there exist functions � ∈ C1(I, R+), R ∈ C1(I, R), � ∈ C1(I, R+) and
k ∈ I such that

lim sup
t→∞

1

k(t, t0)
B

(
�3 − 1

4
h3(� − l3 − �−1�′)2; t0, t

)
= ∞, (3.25)

then Eq. (1.1) is oscillatory.

Proof. The proof follows the same lines as that of Theorem 3.4 with the only difference that we start with inequality
(3.19). �

Remark 3.1. For Eq. (1.3), Theorem 3.6 improves Theorem 1 in [13].

The following three oscillation criteria (Theorems 3.7–3.9) treat the cases when it is not possible to verify easily
conditions (3.20), (3.24) and (3.25).

Theorem 3.7. Let assumptions (S1) and (N1) hold. If there exist functions � ∈ C1(I, R+), R ∈ C1(I, R), � ∈
C1(I, R+), �1, �2 ∈ C(I, R) and k ∈ I such that for all T � t0,

lim sup
t→∞

1

k(t, T )
B(�1; T , t)��1(T ) (3.26)

and

lim sup
t→∞

1

k(t, T )
B(h1(� − l1 − �−1�′)2; T , t)��2(T ), (3.27)

where �1 and �2 satisfy

lim inf
t→∞

1

k(t, T )
B

(
h−1

1 �−2
(

�1 − 1

4
�2

)2

+
; T , t

)
= ∞, (3.28)

where �+ = max{�, 0}, then Eq. (1.1) is oscillatory.

Proof. We proceed as in the proof of Theorem 3.4 and obtain (3.21) and (3.23) hold. Dividing (3.23) through k(t, T ),
we obtain, by (3.26) and (3.27), that

�1(T ) − 1
4�2(T )��(T )v(T ), T �T0,

from which it follows that

1

h1(T )�2(T )

(
�1(T ) − 1

4
�2(T )

)2

+
� 1

h1(T )
v2(T ). (3.29)
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On the other hand, by (3.21),

1

k(t, T )
B(h−1

1 v2 + (� − l1 − �−1�′)v; T , t)��(T )v(T ) − 1

k(t, T )
B(�1; T , t),

this and (3.26) imply that

lim inf
t→∞

1

k(t, T )
B(h−1

1 v2 + (� − l1 − �−1�′)v; T , t)

��(T )v(T ) − �1(T )�M0, t �T �T0, (3.30)

where M0 is a constant.
Now, we claim that

lim inf
t→∞

1

k(t, T )
B(h−1

1 v2; T , t) < ∞. (3.31)

If (3.31) does not hold, there exists a sequence {tn}∞n=1 ⊂ [t0, ∞) with limn→∞ tn = ∞ such that

lim
n→∞

1

k(tn, T )
B(h−1

1 v2; T , tn) = ∞. (3.32)

Note that, by (3.30), for n large enough,

1

k(tn, T )
B(h−1

1 v2; T , tn) + 1

k(tn, T )
B((� − l1 − �−1�′)v; T , tn)�M0 + 1.

This and (3.22) give, for n large enough, that

1 + B((� − l1 − �−1�′)v; T , tn)

B(h−1
1 v2; T , tn)

<
1

2
,

that is,

|B((� − l1 − �−1�′)v; T , tn)|
B(h−1

1 v2; T , tn)
>

1

2
. (3.33)

The Schwarz inequality follows

[B((� − l1 − �−1�′)v; T , tn)]2

�B(h−1
1 v2; T , tn)B(h1(� − l1 − �−1�′)2; T , tn). (3.34)

From (3.33) and (3.34), we obtain

B(h−1
1 v2; T , tn)�4B(h1(� − l1 − �−1�′)2; T , tn). (3.35)

By (3.27), the right-hand side of (3.35) is bounded, which contradicts (3.32). Thus (3.31) holds. Hence, by (3.29), we
obtain

lim inf
t→∞

1

k(t, T )
B

(
h1

1�
−2
(

�1 − 1

4
�2

)2

+
; T , t

)

� lim inf
t→∞

1

k(t, T )
B(h−1

1 v2; T , t) < ∞,

which contradicts (3.28). This completes the proof. �

By using the same procedure of the proof of Theorem 3.7, we may obtain two analogous theorems to Theorem 3.7,
which we state here for completeness.
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Theorem 3.8. Let assumptions (S2), (N1) and (N2) hold. If there exist functions � ∈ C1(I, R+), R ∈ C1(I, R),
� ∈ C1(I, R+), �1, �2 ∈ C(I, R) and k ∈ I such that for all T � t0,

lim sup
t→∞

1

k(t, T )
B(�2; T , t)��1(T ) (3.36)

and

lim sup
t→∞

1

k(t, T )
B(h2(� − l2 − �−1�′)2; T , t)��2(T ), (3.37)

where �1 and �2 satisfy

lim inf
t→∞

1

k(t, T )
B

(
h−1

2 �−2
(

�1 − 1

4
�2

)2

+
; T , t

)
= ∞, (3.38)

then Eq. (1.1) is oscillatory.

Theorem 3.9. Let assumption (S3) hold. If there exist functions � ∈ C1(I, R+), R ∈ C1(I, R), � ∈ C1(I, R+), �1,
�2 ∈ C(I, R+) and k ∈ I such that for all T � t0,

lim sup
t→∞

1

k(t, T )
B(�3; T , t)��1(T ) (3.39)

and

lim sup
t→∞

1

k(t, T )
B(h3(� − l3 − �−1�′)2; T , t)��2(T ), (3.40)

where �1 and �2 satisfy

lim inf
t→∞

1

k(t, T )
B

(
h−1

3 �−2
(

�1 − 1

4
�2

)2

+
; T , t

)
= ∞, (3.41)

then Eq. (1.1) is oscillatory.

Remark 3.2. For Eq. (1.3), Theorem 3.9 improves and unifies Theorems 2 and 3 of Wang [13].

4. Corollaries and examples

As Theorems 3.1–3.9 are rather general, it is convenient for applications to derive a number of oscillation criteria
with the appropriate choice of the functions �, �, R, � and k.

Corollary 4.1. Let assumptions (S1) and (N1) hold. If there exist functions � ∈ C1(I, R+) and R ∈ C1(I, R) such
that (3.1) holds, and∫ ∞

t0

1

h1(s)
ds =

∫ ∞

t0

[
�1(s) − 1

4
h1(s)l

2
1(s)

]
ds = ∞, (4.1)

then Eq. (1.1) is oscillatory.

Proof. Let �(s) = 1/h1(s). Then, for 0 < � < 1 and t �T � t0, we have

lim
t→∞

∫ t

T

	�(T , s)


(h1; T , s)
ds = lim

t→∞

∫ t

T

1

h1(s)

(∫ s

T

1

h1(u)
du

)�−1

ds

= 1

�
lim

t→∞

(∫ t

T

1

h1(s)
ds

)�

= ∞
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and

lim
t→∞ A

(
�1 − 1

4
h1l

2
1; T , t

)

= lim
t→∞

(∫ t

T

1

h1(s)
ds

)−1 ∫ t

T

1

h1(s)

∫ s

T

[
�1(u) − 1

4
h1(u)l2

1(u)

]
du ds

= lim
t→∞

∫ t

t0

[
�1(s) − 1

4
h1(s)l

2
1(s)

]
ds = ∞.

By Theorem 3.1, Eq. (1.1) is oscillatory. �

Remark 4.1. If r(t) = 1, �(x) = 1 and f (x) = x, then Corollary 4.1 improves the results of Yu and Fu [15].

Corollary 4.2. Let assumptions (S1) and (N1) hold. If there exist functions � ∈ C1(I, R+) and R ∈ C1(I, R) such
that (3.1) holds, and

lim
t→∞

1

t2

∫ t

T0

h1(s) ds = 0 (4.2)

and

lim
t→∞

1

t

∫ t

t0

∫ s

t0

[
�1(u) − 1

4
h1(u)l2

1(u)

]
du ds = ∞, (4.3)

then Eq. (1.1) is oscillatory.

Proof. Let �(s) = 1. It follows from Theorem 3.1 that Eq. (1.1) is oscillatory. �

Corollary 4.3. Let assumptions (S1) and (N1) hold. Suppose that limt→∞ �(t) = ∞ and

lim inf
t→∞ �(t)

∫ ∞

t

{∫ b

a

q(s, �)f [1 − p(g(s, �))] d�(�)

}
ds� 1

4M
, (4.4)

where

�(t) =
∫ t

t0

k1Lg′(s, a)

r[g(s, a)] ds.

Then Eq. (1.1) is oscillatory.

Proof. By (4.4), there exist two numbers T � t0 and � > 1/(4M) such that

�(t)

∫ ∞

t

{∫ b

a

q(s, �)f [1 − p(g(s, �))] d�(�)

}
ds��, t �T .

Let

k(t, s) = [�(t) − �(s)]2 and �(t) = 1, R(t) = − 1

2�(t)
.

Then

�(t, s) = 2�′(t)
�(t) − �(s)

and h1(t) = �(t)

�′(t)
, l1(t) = 0.
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Then, for all t �T ,

B

(
�1 − 1

4
h1(� − l1 − �−1�′)2; T , t

)

=
∫ t

T

[�(t) − �(s)]2�(s)

{
M

∫ b

a

q(s, �)f [1 − p(g(s, �))] d�(�) − �′(s)
4�2(s)

}
ds − 1

2
[�2(t) − �2(T )].

Define

w(t) = M

∫ ∞

t

∫ b

a

q(s, �)f [1 − p(g(s, �))] d�(�) ds.

Then, for all t �T ,

B

(
�1 − 1

4
h1(� − l1 − �−1�′)2; T , t

)

=
∫ t

T

[�(t) − �(s)]2�(s) d

(
−w(s) + 1

4�(s)

)
− 1

2
[�2(t) − �2(T )]

= [�(t) − �(T )]2�(T )

(
w(T ) − 1

4�(T )

)
− 1

2
[�2(t) − �2(T )]

+
∫ t

T

[
�(s)w(s) − 1

4

] [
−4�(t) + 3�(s) + �2(t)

�(s)

]
�′(s) ds

�
(

� − 1

4

)∫ t

T

[
−4�(t) + 3�(s) + �2(t)

�(s)

]
�′(s) ds − 1

2
[�2(t) − �2(T )]

�
(

� − 1

4

)[
ln

�(t)

�(T )
− 5

2

]
�2(t) − 1

2
[�2(t) − �2(T )].

This implies that

lim
t→∞

1

k(t, T )
B

(
�1 − 1

4
h1(� − l1 − �−1�′)2; T , t

)
= ∞,

which is equivalent to (3.20). It follows from Theorem 3.4 that Eq. (1.1) is oscillatory. �

Corollary 4.4. Let assumptions (S1) and (N1) hold. If there exist a function � ∈ C1(I, R+) and an integer n > 1 such
that

lim sup
t→∞

1

Hn
1 (t)

∫ t

t0

[H1(t) − H(s)]n�1(s) ds = ∞, (4.5)

where

R(t) = − r[g(t, a)]
2k1Lg′(t, a)

�′(t)
�(t)

and H1(t) =
∫ t

t0

ds

h1(s)
, t � t0,

then Eq. (1.1) is oscillatory.

Proof. Let

k(t, s) = [H1(t) − H1(s)]n and �(t) = 1.
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Note that

�(t, s) = n

h1(s)[H1(t) − H1(s)] and l1(t) = 0.

Then

B(h1(� − l1 − �−1�′)2; t0, t) = n2

n − 1
Hn−1

1 (t), t � t0.

This implies that

lim sup
t→∞

1

k(t, t0)
B

(
�1 − 1

4
(� − l1 − �−1�′)2; t0, t

)

= lim sup
t→∞

1

Hn
1 (t)

{∫ t

t0

[H1(t) − H1(s)]n�1(s) − n2

4(n − 1)H1(t)

}
= ∞.

It follows from Theorem 3.4 that Eq. (1.1) is oscillatory. �

Remark 4.2. Similar to the proof of Corollaries 4.1–4.4, by Theorems 3.2, 3.3, 3.5 and 3.6, we can establish analogues
oscillation criteria for Eq. (1.1), here we omit the details.

Let the function k(t, s) be defined by

k(t, s) = (t − s)n, n > 1, (4.6)

we can easily check k ∈ I. Further, the function

�(t, s) = n

t − s
(4.7)

is continuous and satisfies (H2). Therefore, as the consequences of Theorems 3.4 and 3.7, we obtain the following
oscillation criteria.

Corollary 4.5. Let assumptions (S1) and (N1) hold. If there exist a function � ∈ C1(I, R+) and an integer n > 1 such
that

lim sup
t→∞

1

(t − T )n

∫ t

t0

[
(t − s)n�1(s) − n2

4
(t − s)n−2h1(s)

]
ds = ∞, (4.8)

where R(t) is defined as in Corollary 4.4, then Eq. (1.1) is oscillatory.

Corollary 4.6. Let assumptions (S1) and (N1) hold. If there exist functions � ∈ C1(I, R+), �1, �1 ∈ C(I, R) and an
integer n > 1 such that for all T � t0,

lim sup
t→∞

1

(t − T )n

∫ t

T

(t − s)n�1(s) ds��1(T ) (4.9)

and

lim sup
t→∞

1

(t − T )n

∫ t

T

(t − s)n−2h1(s) ds��2(T ), (4.10)

where �1 and �2 satisfy

lim inf
t→∞

1

(t − T )n

∫ t

T

(t − s)n

h1(s)

(
�1(s) − 1

4
�2(s)

)2

+
ds = ∞, (4.11)

where R(t) is defined as in Corollary 4.4. Then Eq. (1.1) is oscillatory.
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Remark 4.3. We point out that we can deduce corollaries similar to Corollaries 4.5 and 4.6 from Theorems 3.5, 3.6,
3.8 and 3.9 as well. Of course, we are not limited only to the choice of function k and � defined, respectively, by
(4.6) and (4.7), which has become standard and goes back to the well-known paper by Kamenev [9]. With a different
choice of these functions it is possible to derive from Theorems 3.4–3.9 other sets of oscillation criteria. In fact, another
possibility is to choose the functions k and � as follows:

k(t, s) =
(

ln
t

s

)n

and �(t, s) = n

s

(
ln

t

s

)−1

. (4.12)

One may also choose the more general forms for the function k and �:

k(t, s) =
(∫ t

s

du

�(u)

)n

and �(t, s) = n

�(s)

(∫ t

s

du

�(u)

)−1

, (4.13)

where n > 1 is an integer, and � ∈ C(I, R+) satisfying condition limt→∞
∫ t

t0
1/�(u) du = ∞. It is a simple matter to

check that in both cases assumptions (H1) and (H2) are verified.

Finally, we will give several examples to illustrate our results. To the best of our knowledge, no previous criteria for
oscillation can be applied to these examples.

Example 4.1. Consider the equation

(
1

1 + x2(t)

(
x(t) + 1

t + 1
x(t − 1)

)′)′
+
∫ 1

0

�(t + � + 1)

t2(t + �)
x(t + �) d� = 0, t �1, (4.14)

where

r(t) = 1, �(x) = 1

1 + x2 , p(t) = 1

t + 1
,

q(t, �) = � (t + � + 1)

t2(t + �)
, � >

1

4
, g(t, �) = t + �, f (x) = x.

If we take L = k1 = M = 1, �(t) = t , R(t) = −1/(2t), then

l1(t) = 0, h1(t) = t, �1(t) = 4� − 1

4t
.

Hence, by Corollary 4.1, Eq. (4.14) is oscillatory if � > 1
4 .

Example 4.2. Consider the equation(
1

et (1 + x2(t))

(
x(t) + (1 − e−(1/2)t )x(t − 1)

)′)′
+
∫ 1

0
e−(1/2)(t+�)x(t + �) d� = 0, t �1, (4.15)

where

r(t) = e−t , �(x) = 1

1 + x2 , p(t) = 1 − e−(1/2)t ,

q(t, �) = e−(1/2)(t+�), g(t, �) = t + �, f (x) = x.

For Corollary 4.3, we take L = k1 = M = 1, then

�(t) = et − e and
∫ 1

0
q(t, �)f [1 − p(g(t, �))] d�(�) = e−t (1 − e−1).
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Then

lim inf
t→∞ �(t)

∫ ∞

t

∫ 1

0
q(s, �)f [1 − p(g(s, �))] d�(�) ds

=
(

1 − 1

e

)
lim inf
t→∞

et − e

et
= 1 − 1

e
>

1

4
.

Therefore, Eq. (4.15) is oscillatory by Corollary 4.3.

Example 4.3. Consider the equation(
1

t2(1 + x2(t))

(
x(t) + 1

2
x(t − 1)

)′)′
+
∫ 1

0

x(t + �)

(t + �)2 d� = 0, t �1, (4.16)

where

r(t) = 1

t2 , �(x) = 1

1 + x2 , p(t) = 1

2
,

q(t, �) = 1

(t + �)2 , g(t, �) = t + �, f (x) = x.

For Corollary 4.6, we take L = k1 = M = 1, and �(t) = 1, then

R(t) = 0, h1(t) = 1

t2 , �1(t) = 1

t (t + 1)
>

1

(t + 1)2 .

Now, for all t �T �1,

lim sup
t→∞

1

(t − T )2

∫ t

T

(t − s)2�1(s) ds

� 1

2
lim sup

t→∞
1

(t − T )2

∫ t

T

(t − s)2

(s + 1)2 ds = 1

2(T + 1)

and

lim sup
t→∞

1

(t − T )2

∫ t

T

(t − s)2h1(s) ds

= lim sup
t→∞

1

(t − T )2

∫ t

T

(t − s)2

s2 ds = 1

T
.

Set

�1(T ) = 1

2(T + 1)
, �2(T ) = 1

T
.

It is clear that

lim inf
t→∞

1

(t − T )2

∫ t

T

(t − s)2

h1(s)

(
�1(s) − 1

4
�2(s)

)2

+
ds

= 1

16
lim inf
t→∞

1

(t − T )2

∫ t

T

(t − s)2
(

s − 1

s + 1

)2

ds = ∞.

Hence, Eq. (4.16) is oscillatory by Corollary 4.6.

Remark 4.4. Additional examples may readily be given to illustrate the oscillation criteria of the other results. We
leave this to the interested reader.
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