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Abstract

Let n be a large integer and Mn be an n by n complex matrix whose entries are independent (but not
necessarily identically distributed) discrete random variables. The main goal of this paper is to prove a gen-
eral upper bound for the probability that Mn is singular. For a constant 0 < p < 1 and a constant positive
integer r , we will define a property p-bounded of exponent r . Our main result shows that if the entries of Mn

satisfy this property, then the probability that Mn is singular is at most (p1/r + o(1))n. All of the results
in this paper hold for any characteristic zero integral domain replacing the complex numbers. In the special
case where the entries of Mn are “fair coin flips” (taking the values +1,−1 each with probability 1/2),
our general bound implies that the probability that Mn is singular is at most ( 1√

2
+ o(1))n, improving on

the previous best upper bound of ( 3
4 + o(1))n, proved by Tao and Vu [Terence Tao, Van Vu, On the sin-

gularity probability of random Bernoulli matrices, J. Amer. Math. Soc. 20 (2007) 603–628]. In the special
case where the entries of Mn are “lazy coin flips” (taking values +1,−1 each with probability 1/4 and
value 0 with probability 1/2), our general bound implies that the probability that Mn is singular is at most
( 1

2 + o(1))n, which is asymptotically sharp. Our method is a refinement of those from [Jeff Kahn, János
Komlós, Endre Szemerédi, On the probability that a random ±1-matrix is singular, J. Amer. Math. Soc.
8 (1) (1995) 223–240; Terence Tao, Van Vu, On the singularity probability of random Bernoulli matrices,
J. Amer. Math. Soc. 20 (2007) 603–628]. In particular, we make a critical use of the structure theorem from
[Terence Tao, Van Vu, On the singularity probability of random Bernoulli matrices, J. Amer. Math. Soc. 20
(2007) 603–628], which was obtained using tools from additive combinatorics.
© 2009 Elsevier Inc. All rights reserved.
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1. Introduction

Let n be a large integer and Mn be an n by n random matrix whose entries are independent (but
not necessarily identically distributed) discrete random variables taking values in the complex
numbers. The problem of estimating the probability that Mn is singular is a basic problem in
the theory of random matrices and combinatorics. The goal of this paper is to give a bound that
applies to a large variety of distributions. The general statement (Theorem 2.2) is a bit technical,
so we will first discuss a few corollaries concerning special cases.

The most famous special case is when the entries of Mn are independent identically distributed
(i.i.d.) Bernoulli random variables (taking values ±1 with probability 1/2). The following con-
jecture has been open for quite some time:

Conjecture 1.1. For M±1,n an n by n matrix with each entry an i.i.d. Bernoulli random variable
taking the values +1 and −1 each with probability 1/2,

Pr(M±1,n is singular) =
(

1

2
+ o(1)

)n

.

It is easy to verify that the singularity probability is at least (1/2)n by considering the proba-
bility that there are two equal rows (or columns).

Even in the case of i.i.d. Bernoulli random variables, proving that the singularity probability is
o(1) is not trivial. It was first done by Komlós in 1967 [5] (see also [6]; [8] generalizes Komlós’s
bound to other integer distributions). The first exponential bound was proven by Kahn, Komlós,
and Szemerédi [4], who showed that Pr(M±1,n is singular) � 0.999n. This upper bound was
improved upon by Tao and Vu in [9] to 0.958n. A more significant improvement was obtained
by the same authors in [10]:

Pr(M±1,n is singular) �
(

3

4
+ o(1)

)n

. (1)

This improvement was made possible through the discovery of a new theorem [10, Theo-
rem 5.2] (which was called the structure theorem in [10]), which gives a complete characteriza-
tion of a set with certain additive properties. The structure theorem (to be more precise, a variant
of it) will play a critical role in the current paper as well.

Our general result has the following corollary in the Bernoulli case:

Pr(M±1,n is singular) �
(

1√
2

+ o(1)

)n

, (2)

which gives a slight improvement over Inequality (1) (since 1/
√

2 ≈ 0.7071 < 0.75).
Let us now discuss a more general class of random matrices. Consider the random variable

γ (μ) defined by

γ (μ) :=
⎧⎨⎩

+1 with probability μ/2,

0 with probability 1 − μ, (3)

−1 with probability μ/2,
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and let M
(μ)
±1,n be an n by n matrix with each entry an independent copy of γ (μ). The random

variable γ (μ) plays an important role in [4,9,10], and the matrices M
(μ)
±1,n are of interest in their

own right. In fact, giving zero a large weight is a natural thing to do when one would like to
(randomly) sparsify a matrix, a common operation used in randomized algorithms (the values
of ±1, as the reader will see, are not so critical). Our general result implies the following upper
bounds:

Pr
(
M

(μ)
±1,n is singular

)
�
(
1 − μ + o(1)

)n for 0 � μ � 1

2
, (4)

Pr
(
M

(μ)
±1,n is singular

)
�
(

2μ + 1

4
+ o(1)

)n

for
1

2
� μ � 1, (5)

Pr
(
M

(μ)
±1,n is singular

)
�
(√

1 − 2μ + 3

2
μ2 + o(1)

)n

for 0 � μ � 1. (6)

Note that Inequality (5) implies Inequality (1) and that Inequality (6) implies Inequality (2)
(in both cases setting μ = 1).

Fig. 1 summarizes the upper bounds from Inequalities (4), (5), and (6) and also includes the
following lower bounds:

(
1 − μ + o(1)

)n � Pr
(
M

(μ)
±1,n is singular

)
for 0 � μ � 1, (7)(

1 − 2μ + 3

2
μ2 + o(1)

)n

� Pr
(
M

(μ)
±1,n is singular

)
for 0 � μ � 1. (8)

These lower bounds can be derived by computing the probability that one row is all zeros (In-
equality (7)) or that there is a dependency between two rows (Inequality (8)). Note that in the
case where μ � 1/2, the upper bound in Inequality (4) asymptotically equals the lower bound in
Inequality (7), and thus our result is the best possible in this case. We also used a Maple program
to derive the formulas for lower bounds resulting from a dependency between three, four, or five
rows; however, these lower bounds were inferior to those in Inequality (7) and Inequality (8).

We will now present another corollary of the main theorem that has a somewhat different
flavor. In this corollary, we treat partially random matrices, which may have many deterministic
rows. Our method allows us to obtain exponential bounds so long as there are still at most c lnn

random rows, where c > 0 is a particular constant.

Corollary 1.2. Let p be a real constant between 0 and 1, let c be any positive constant less
than 1/ ln(1/p), and let S ⊂ C be a set of complex numbers having cardinality |S| � O(1). Let
Nf,n be an n by n complex matrix in which f � c lnn rows contain fixed, non-random elements
of S and where the other rows contain entries that are independent random variables taking
values in S. If the fixed rows are linearly independent and if for every random entry α, we have
maxx Pr(α = x) � p, then

Pr(Nf,n is singular) �
(√

p + o(1)
)n

.

Notice that the case f = 0 and p = 1/2 also implies Inequality (2).
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Asymptotic upper and lower bounds for Pr(M(μ)
±1,n

is singular)1/n for 0 � μ � 1

Fig. 1. Let P(μ) := limn→∞ Pr(M(μ)
±1,n

is singular)1/n , where M
(μ)
±1,n

is the n by n matrix with independent random
entries taking the value 0 with probability 1 − μ and the values +1 and −1 each with probability μ/2. The solid lines
denote the upper bounds on P(μ) given by Inequalities (4), (5), and (6), and the dashed lines denote the lower bounds
given by Inequalities (7) and (8). The upper and lower bounds coincide for 0 � μ � 1

2 , and the shaded area shows the

difference between the best known upper and lower bounds for 1
2 � μ � 1. The straight line segments from the point

(0,1) to (1/2,1/2) and from the point (1/2,1/2) to (1,3/4) represent the best upper bounds we have derived using the
ideas in [10], and the curve 1 − 2μ + 3

2 μ2 for 0 � μ � 1 represents a sometimes-better upper bound we have derived
by adding a new idea. Note that the upper bounds given here also apply to the singularity probability of a random matrix
with independent entries having arbitrary symmetric distributions in a set S of complex numbers, so long as each entry
is 0 with probability 1 − μ and the cardinality of S is |S| � O(1) (see Corollary 3.1).

Remark 1.3 (Other exponential bounds). The focus of this paper is optimizing the base of the
exponent in bounds on the singularity probability for discrete random matrices. One main tool in
this optimization is the use of a structure theorem similar to [10, Theorem 5.2] (see Theorem 6.1
below); however, using such a theorem requires additional assumptions to be placed on the values
that can appear as entries, and in particular, this is why we assume in Corollary 1.2 that the set S

has cardinality |S| � O(1) and that f � c lnn. If one is interested in an exponential bound where
there are no conditions on f or on the set S (at the expense of having an unspecified constant
for the base of the exponential), one can follow the analysis in [9], which does not make use of
a structure theorem, along with ideas in this paper to get a result of the following form:
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Theorem 1.4. For every ε > 0 there exists δ > 0 such that the following holds. Let Nf,n be an n

by n complex matrix in which f rows contain fixed, non-random entries and where the other rows
contain entries that are independent discrete random variables. If the fixed rows have co-rank k

and if for every random entry α, we have maxx Pr(α = x) � 1− ε, then for all sufficiently large n

Pr(Nf,n has co-rank > k) � (1 − δ)n−f.

Note that Theorem 1.4 holds for any f and k, and so in particular, an exponential bound on the
singularity probability is achieved whenever k = 0 and f � cn, where c < 1 is a constant. Also
note that the theorem allows the random entries to have discrete distributions taking infinitely
many values. Corollary 3.6 proves a version of Theorem 1.4 with a much better exponential
bound, given some additional conditions.

The structure of the rest of the paper is as follows. In Section 2 we define p-bounded of
exponent r and state the main theorem of this paper. In Section 3, we discuss some corollaries of
Theorem 2.2. In particular, we will:

(A) prove Inequalities (4), (5), and (6);
(B) prove general bounds on the singularity probability for discrete random matrices with entries

that have symmetric distributions and with entries that have asymmetric distributions;
(C) prove a version of Corollary 1.2 (namely, Corollary 3.5) that holds for up to o(n) fixed rows,

assuming that the entries in the fixed rows take integer values between −C and C for any
positive constant C; and

(D) prove that the probability that random matrices with integer entries have a rational eigen-
value is exponentially small.

In Section 4, we discuss Lemma 4.1, a result that is proved in [12] using standard tools from
algebraic number theory and algebraic geometry. Lemma 4.1 reduces the question of bounding
the singularity probability of a random matrix with entries in C to a question of bounding the sin-
gularity probability of a random matrix with entries in Z/QZ for some large prime Q (in fact, it
is possible to replace C with any characteristic zero integral domain). The proof of Theorem 2.2
is outlined in Section 5, where we also prove some of the easier lemmas needed for the theorem.
In Section 6, we state a structure theorem (Theorem 6.1) that completes the proof of our The-
orem 2.2 and that is very similar to [10, Theorem 5.2] (which is the structure theorem in [10]).
We discuss the proof of Theorem 6.1, which uses discrete Fourier analysis and tools from addi-
tive combinatorics, in Sections 7 and 8. Finally, in Section 9 we show that the entire argument
proving Theorem 2.2 can be generalized to random complex matrices with f rows of the matrix
containing fixed, non-random entries, so long as f � c lnn for a particular constant c > 0 (this
leads to Corollary 1.2).

2. The general theorem

To prove the results in Inequalities (1) and (2) (and also the results in [4] and [9]), one basic
idea is to replace entries of a random matrix with independent copies of the random variable
γ (μ) or 2γ (μ) (see Eq. (3)). One key idea in proving the more general results of the current paper
is replacing the entries of a random matrix with more complicated symmetric discrete random
variables.
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A generalized arithmetic progression of rank r is a set of the form {v0 + m1v1 + · · · +
mrvr: |mi | � Mi/2}, where the vi are elements of a Z-module and the mi and Mi > 0 are
integers. Note that whenever the term “symmetric” is used in this paper, it will apply to the dis-
tribution of a random variable or to a generalized arithmetic progression; in particular, the term
will never apply to matrices. Also, throughout this paper we will use the notation

e(x) := exp(2πix).

The following definition lies at the heart of our analysis.

Definition 2.1 (p-bounded of exponent r). Let p be a positive constant such that 0 < p < 1
and let r be a positive integer constant. A random variable α taking values in the integers (or,
respectively, the integers modulo some large prime Q) is p-bounded of exponent r if

(i) maxx Pr(α = x) � p, and

if there exists a constant q where 0 < q � p and a Z-valued (or, respectively, a Z/QZ-valued)
symmetric random variable β(μ) taking the value 0 with probability 1 − μ = p such that the
following two conditions hold:

(ii) q � minx Pr(β(μ) = x) and maxx Pr(β(μ) = x) � p, and
(iii) the following inequality holds for every t ∈ R:∣∣E(e(αt)

)∣∣r � E
(
e
(
β(μ)t

))
.

Here, if the values of α and β(μ) are in Z/QZ, we view those values as integers in the range
(−Q/2,Q/2) (note that each element in Z/QZ has a unique such integer representation).

We will define p-bounded of exponent r for collections of random variables below, but first we
note that the conditions above are easy to verify in practice. In particular, if we have a symmetric
random variable

β(μ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b� with probability μp�/2,
...

...

b1 with probability μp1/2,

0 with probability 1 − μ,

−b1 with probability μp1/2,
...

...

−b� with probability μp�/2,

(9)

where bs ∈ Z for all s (or, respectively, bs ∈ Z/QZ for all s), then condition (iii) becomes

∣∣E(e(αt)
)∣∣r � E

(
e
(
β(μ)t

))= 1 − μ + μ

�∑
s=1

ps cos 2πbst, (10)

where the equality on the right-hand side is a simple expected value computation.
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We say that a collection of random variables {αjk}nj,k=1 is p-bounded of exponent r if each
αjk is p-bounded of exponent r with the same constants p, q , and r ; and, importantly, the
same value of μ = 1 − p. We also make the critical assumption that the set of all values that
can be taken by the β

(μ)
jk has cardinality O(1) (a relaxation of this assumption is discussed in

Remark 8.5). However, the definition of β
(μ)
jk is otherwise allowed to vary with j and k. Also, we

will use S to denote the set of all possible values taken by the random variables αjk , and we will
assume that the cardinality of S is at most |S| � no(n).

If α takes non-integer values in C, we need to map those values to a finite field of prime order
so that we may use Definition 2.1, and for this task we will apply Lemma 4.1, which was proved
in [12]. We say that α is p-bounded of exponent r if and only if for each prime Q in an infinite
sequence of primes produced by Lemma 4.1, we have φQ(α) is p-bounded of exponent r , where
φQ is the ring homomorphism described in Lemma 4.1 that maps S, the finite set of all possible
values taken by the αjk , into Z/QZ in such a way that for any matrix Nn := (sjk) with entries
in S, the determinant of Nn is zero if and only if the determinant of φQ(Nn) := (φQ(sjk)) is zero.

Theorem 2.2. Let p be a positive constant such that 0 < p < 1, let r be a positive integer
constant, and let S be a generalized arithmetic progression in the complex numbers with rank
O(1) (independent of n) and with cardinality at most |S| � no(n). Let Nn be an n by n matrix
with entries αjk , each of which is an independent random variable taking values in S. If the
collection of random variables {αjk}1�j,k�n is p-bounded of exponent r , then

Pr(Nn is singular) �
(
p1/r + o(1)

)n
.

In the motivating examples of Section 1 (excluding Corollary 1.2), we discussed the case
where the entries of the matrix are i.i.d.; however, in general the distributions of the entries are
allowed to differ (and even depend on n), so long as the entries all take values in the same
structured set S described above. The condition that S has additive structure seems to be an
artifact of the proof (in particular, at certain points in the proof of Theorem 6.1, we need the set
{∑n

j=1 xj : xj ∈ S for all j} to have cardinality at most no(n)). The easiest way to guarantee that
S has the required structure is to assume that the set of values taken by all the αjk has cardinality
at most O(1), and this is the approach we take for the corollaries in Section 3, since it also makes
it easy to demonstrate that the collection of entries is p-bounded of exponent r .

Remark 2.3 (Strict positivity in Inequality (10)). Note that the constants μ,ps, bs must be such
that the right-hand side of Eq. (10) is non-negative. It turns out for the proof of Theorem 2.2
that we will need slightly more. At one point in the proof, we will apply Lemma 7.3, for which
we must assume that there exists a very small constant ε−1 > 0 such that E(e(β

(μ)
jk t)) > ε−1

for all t and for all β
(μ)
jk used in the definition of p-bounded of exponent r . Of course, if the

expectations are not strictly larger than ε−1, we can simply reduce μ by ε−1 > 0. Then, since we
are assuming 1−μ = p, we clearly have that all the αjk are (p+ε−1)-bounded of exponent r (by

using β
(μ−ε−1)

jk instead of β
(μ)
jk ) and we have that E(e(β

(μ−ε−1)

jk t)) > ε−1 > 0. Since Theorem 2.2

would thus yield a bound of ((p + ε−1)
1/r + o(1))n for every ε−1 > 0, we can conclude a bound

of (p1/r + o(1))n by letting ε−1 tend to 0. Thus, without loss of generality, we will assume that
E(e(β

(μ)
jk t)) > ε−1 for all t and for all β

(μ)
jk used in the definition of p-bounded of exponent r .
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3. Some corollaries of Theorem 2.2

In this section, we will state a number of corollaries of Theorem 2.2, starting with short proofs
of Inequalities (4), (5), and (6). The two most interesting results in this section will be more gen-
eral: first (in Section 3.2), we will show an exponential bound on the singularity probability for a
matrix with independent entries each a symmetric random variable taking values in S ⊂ C, where
|S| � O(1) and assuming that each entry takes the value 0 with probability 1 − μ; and second
(in Section 3.3), we will describe a similar (and sometimes better) bound when the condition
that the random variables have symmetric distributions is replaced with the assumption that no
entry takes a value with probability greater than p. In the first case, the bound will depend only
the value of μ, and in the second case, the bound will depend only on the value of p. In Sec-
tion 3.4, we will show an exponential bound on the singularity probability for an n by n matrix
with f = o(n) fixed rows containing small integer values and with the remaining rows contain-
ing independent random variables taking values in S ⊂ C, where |S| � O(1) (this is similar to
Corollary 1.2, which is proved in Section 9). Finally, in Section 3.5, we will prove an exponential
upper bound on the probability that a random integer matrix has a rational eigenvalue.

In each corollary, we will use the definition of p-bounded of exponent 1 and of exponent 2.
The definition of p-bounded of exponent 2 is particularly useful, since then the absolute value
on the left-hand side of Inequality (10) is automatically dealt with; however, when μ is small
(for example whenever μ � 1/2), one can get better bounds by using p-bounded of exponent 1.
We have not yet found an example where the best possible bound from Theorem 2.2 is found by
using p-bounded of an exponent higher than 2.

3.1. Proving Inequalities (4), (5), and (6)

To prove Inequality (4), we note for 0 � μ � 1
2 that (using the definition in Eq. (3) of γ (μ))

∣∣E(e(γ (μ)t
))∣∣= 1 − μ + μ cos(2πt),

and thus γ (μ) is (1 − μ)-bounded of exponent 1 (i.e., take β(μ) := γ (μ)), and so Inequality (4)
follows from Theorem 2.2.

To prove Inequality (5), we note for 1
2 � μ � 1 that

∣∣E(e(γ (μ)t
))∣∣= ∣∣1 − μ + μ cos(2πt)

∣∣� (
2μ + 1

4

)
+ (1 − μ) cos(2πt) +

(
2μ − 1

4

)
cos(4πt)

(the inequality above may be checked by squaring both sides and expanding as polynomials in
cos(2πt)). Thus, we can take

β(μ) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

+2 with probability 2μ−1
8 ,

−2 with probability 2μ−1
8 ,

+1 with probability 1−μ
2 ,

−1 with probability 1−μ
2 ,

0 with probability 2μ+1

4
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to see that γ (μ) is (
2μ+1

4 )-bounded of exponent 1, and so Inequality (5) follows from Theo-
rem 2.2.

To prove Inequality (6), we note for 0 � μ � 1 that

∣∣E(e(γ (μ)t
))∣∣2 = ∣∣1 − μ + μ cos(2πt)

∣∣2 = 1 − 2μ + 3

2
μ2 + 2(1 − μ)μ cos(2πt)

+
(

μ2

2

)
cos(4πt).

Thus, we can take

β(μ) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

+2 with probability μ2

4 ,

−2 with probability μ2

4 ,

+1 with probability (1 − μ)μ,

−1 with probability (1 − μ)μ,

0 with probability 1 − 2μ + 3
2μ2,

to see that γ (μ) is (1 − 2μ + 3

2
μ2)-bounded of exponent 2, and so Inequality (6) follows from

Theorem 2.2.

3.2. Matrices with entries having symmetric distributions

In this subsection, we will prove a singularity bound for an n by n matrix N
(μ)
n for which each

entry is a symmetric discrete random variable taking the value 0 with probability 1 − μ.

Corollary 3.1. Let S be a set of complex numbers with cardinality |S| � O(1). If N
(μ)
n is an n

by n matrix in which each entry is an independent symmetric complex random variable taking
values in S and taking the value 0 with probability 1 − μ, then

Pr
(
N(μ)

n is singular
)
�

⎧⎪⎪⎨⎪⎪⎩
(1 − μ + o(1))n for 0 � μ � 1

2 ,( 2μ+1
4 + o(1)

)n
for 1

2 � μ � 1,(√
1 − 2μ + 3

2μ2 + o(1)
)n

for 0 � μ � 1.

In particular, the same upper bounds as in Inequalities (4), (5), and (6) (which are shown in
Fig. 1) apply to the singularity probability for N

(μ)
n .

Proof. Let αij be an entry of N
(μ)
n . Since αij is symmetric and takes the value 0 with probability

1 − μ, we may write αij = γ
(μ)
ij ηij , where γ

(μ)
ij is an independent copy of γ (μ) as defined in

Eq. (3) and ηij is a random variable that shares no values with −ηij . This description of αij was
inspired by [1], and it allows us to condition on ηij and then use the remaining randomness in

γ
(μ)
ij to get a bound on the singularity probability. In particular,

Pr
(
N(μ)

n is singular
)=

∑
(c )

Pr
(
N(μ)

n is singular
∣∣ {ηij = cij }

)
Pr
({ηij = cij }

)
,

ij
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where the sum runs over all (n2)-tuples (cij )1�i,j�n of possible values taken by random vari-
ables ηij . Since

∑
(cij ) Pr({ηij = cij }) = 1, we can complete the proof by proving an exponential

bound on Pr(N(μ)
n is singular | {ηij = cij }), and we will use Theorem 2.2 for this task.

Consider the random matrix N
(μ)
n |{ηij =cij }, where the i, j entry is the random variable cij γ

(μ)
ij

for some constant cij . Note that the entries of N
(μ)
n |{ηij =cij } take values in S, a set with cardinality

O(1), and let φQ be the map from Lemma 4.1, which lets us pass to the case where N
(μ)
n |{ηij =cij }

has entries in Z/QZ. Defining θij := 2πφQ(cij ), we compute∣∣Ee
(
φQ

(
cij γ

(μ)
ij

)
t
)∣∣

= ∣∣1 − μ + μ cos(θij t)
∣∣

�

⎧⎪⎪⎨⎪⎪⎩
1 − μ + μ cos(θij t) for 0 � μ � 1

2 ,

2μ+1
4 + (1 − μ) cos(θij t) + ( 2μ−1

4

)
cos(2θij t) for 1

2 � μ � 1, and(
1 − 2μ + 3

2μ2 + 2(1 − μ)μ cos(θij t) + μ2

2 cos(2θij t)
)1/2 for 0 � μ � 1.

We have thus shown that the entries of N
(μ)
n |{ηij =cij } are

(1 − μ)-bounded of exponent 1 for 0 � μ � 1

2
,(

2μ + 1

4

)
-bounded of exponent 1 for

1

2
� μ � 1, and(

1 − 2μ + 3

2
μ2
)

-bounded of exponent 2 for 0 � μ � 1.

Applying Theorem 2.2 completes the proof. �
Corollary 3.1 is tight for 0 � μ � 1

2 , since the probability of a row of all zeroes occurring
is (1 − μ + o(1))n; however, for any specific case, Theorem 2.2 can usually prove better upper
bounds than those given by Corollary 3.1.

For example, consider the case of a matrix M
(μ)
{±2,±1},n with each entry an independent copy

of the symmetric random variable

α(μ) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

+2 with probability μ
4 ,

−2 with probability μ
4 ,

+1 with probability μ
4 ,

−1 with probability μ
4 ,

0 with probability 1 − μ.

Corollary 3.2. For M
(μ)
{±2,±1},n as defined above, we have

Pr
(
M

(μ)
{±2,±1},n is singular

)
�

⎧⎨⎩ (1 − μ + o(1))n for 0 � μ � 16
25 ,(√

1 − 2μ + 5
4μ2 + o(1)

)n
for 0 � μ � 1.
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Proof. By the definition of α(μ) we have∣∣Ee
(
α(μ)t

)∣∣= 1 − μ + μ

2
cos(2πt) + μ

2
cos(4πt), for 0 � μ � 16

25

(i.e., the right-hand side of the equation above is non-negative for such μ), which proves the first
bound.

Also, we have

∣∣Ee
(
α(μ)t

)∣∣2 = 1 − 2μ + 5

4
μ2 +

(
μ − 3

4
μ2
)

cos(2πt) +
(

μ − 7

8
μ2
)

cos(4πt)

+ μ2

4
cos(6πt) + μ2

8
cos(8πt)

for 0 � μ � 1, which proves the second bound. �
We also have the following lower bounds for the singularity probability of M

(μ)
{±2,±1},n:(

1 − μ + o(1)
)n

(from one row of all zeroes), (11)(
1 − 2μ + 5μ2/4 + o(1)

)n
(from a two-row dependency). (12)

The results of Corollary 3.2 and the corresponding lower bounds are shown in Fig. 2, and one
should note that the upper bounds are substantially better than those guaranteed by Corollary 3.1.

3.3. Random matrices with entries having arbitrary distributions

A useful feature of the definition of p-bounded of exponent 2 is that it lets one bound the sin-
gularity probability of matrices with independent discrete random variables that are asymmetric.

Corollary 3.3. Let p be a constant such that 0 < p � 1 and let S ⊂ C be a set with cardinality
|S| � O(1). If Nn is an n by n matrix with independent random entries taking values in S such
that for any entry α, we have maxx Pr(α = x) � p, then

Pr(Nn is singular) �
(√

p + o(1)
)n

.

We will need the following slightly more general corollary in Section 3.4. For a set A and an
integer m, we will use the notation mA := {∑m

j=1 aj : aj ∈ A} and Am := {∏m
j=1 aj : aj ∈ A}.

Corollary 3.4. Let p be a constant such that 0 < p � 1, let S ⊂ C be a set with cardinality |S| �
O(1), and let Xn be an n by n matrix with fixed, non-random entries in no(n)(S ∪{−1,0,1})O(1).
If Nn is an n by n matrix with independent random entries taking values in S such that for any
entry α, we have maxx Pr(α = x) � p, then

Pr(Xn + Nn is singular) �
(√

p + o(1)
)n

.

Note that Corollary 3.4 implies Corollary 3.3 by taking Xn to be the matrix of all zeroes.
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Asymptotic Upper and Lower Bounds for Pr(M(μ)
{±2,±1},n is singular)1/n for 0 � μ � 1

Fig. 2. Let P(μ) := limn→∞ Pr(M(μ)
{±2,±1},n is singular)1/n , where M

(μ)
{±2,±1},n is the n by n matrix with independent

random entries taking the value 0 with probability 1 −μ and the values +2,−2,+1,−1 each with probability μ/4. This
figure summarizes the upper bounds on P(μ) from Corollary 3.2 and the lower bounds from Displays (11) and (12). The
best upper bounds (shown in thick solid lines) match the best lower bounds (thick dashed lines) for 0 � μ � 16

25 ; and it is
not hard to improve the upper bound a small amount by finding a bound (of exponent 1) to bridge the discontinuity. One
should note that even as stated above, the upper bounds are substantially better than those given by Corollary 3.1 (which
are shown in Fig. 1). The shaded area represents the gap between the upper and lower bounds.

Proof of Corollary 3.4. Let αij be an entry in Nn. Our goal is to describe αij in a two-step
random process, condition on one of the steps, and then use the randomness in the other step
to bound the singularity probability. The conditioning approach is the same as that used in the
symmetric case (Corollary 3.1) and was inspired by [1]. The conditioning argument is useful
since some entries of the random matrix may take some values with very small probability (i.e.
probability less than any constant); recall that while the entries of the random matrix always take
values in a fixed set S of cardinality O(1), the distributions of those random variables within S

are allowed to vary with n. (Note that making use of Remark 8.5 would provide an alternate way
of dealing with entries that take some values with very small probability.)

Say that αij takes the values v1, . . . , vt with probabilities �1, . . . , �t , respectively, where �1 �
�2 � · · · � �t . Define new random variables ηijk such that for some i0 and i1, the values taken by
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ηijk are vi0, vi0+1, . . . , vi0+i1 with corresponding probabilities �i0/pk,�i0+1/pk, . . . , �i0+i1/pk ,

where pk :=∑i1
i=1 �i0+i . Thus, we can write

αij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ηij1 with probability p1,

ηij2 with probability p2,
...

...

ηij� with probability p�.

(13)

Furthermore, the ηijk can be constructed so that pk � p for every k, so that p/2 � pk for 1 �
k � � − 1, and so that no two ηijk with different k’s ever take the same value.

There are two cases to consider for the technical reason that p� is not necessarily bounded
below by a constant. Let ε > 0 be a very small constant, so for example p/2 > ε. Case 1 is when
ε � p�, and in this case each pk is bounded below by ε and above by p. We will consider case 1
first and then discuss the small changes needed to deal with case 2.

As in the proof of Corollary 3.1, we will condition on the values taken by the ηijk in order to
prove a bound on the singularity probability. We have that

Pr(Xn + Nn is singular) =
∑
(cijk)

Pr
(
Xn + Nn is singular

∣∣ {ηijk = cijk}
)

Pr
({ηijk = cijk}

)
,

where the sum runs over all possible values (cijk) that the ηijk can take. Thus, it is sufficient to
prove a bound on the singularity probability for the random matrix Xn +Nn|{ηijk=cijk} which has
random entries

xij + α̃ij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
xij + cij1 with probability p1,

xij + cij2 with probability p2,
...

...

xij + cij� with probability p�,

where xij and the cijk are constants.
Note the entries of Xn + Nn|{ηijk=cijk} take values in no(n)(S ∪ {−1,0,1})O(1), a generalized

arithmetic progression with rank O(1) and cardinality at most no(n), and let φQ be the map
from Lemma 4.1, which lets us pass to the case where Xn + Nn|{ηijk=cijk} has entries in Z/QZ.
Defining θijk := 2πφQ(cijk) and letting α̃′

ij be an i.i.d. copy of α̃ij , we compute

∣∣Ee
(
φQ(xij + α̃ij )t

)∣∣2 = Ee
(
φQ

(
xij + α̃ij − xij − α̃′

ij

)
t
)= Ee

(
φQ

(
α̃ij − α̃′

ij

)
t
)

=
�∑

k=1

p2
k + 2

∑
1�k1<k2��

pk1pk2 cos
(
(θijk1 − θijk2)t

)
.

Thus, xij + α̃ij is (
∑�

k=1 p2
k)-bounded of exponent 2 (using the constant q = ε2 in Defini-

tion 2.1, so q does not depend on n). Given that 0 < pk � p for every k, it is not hard
to show that

∑�
k=1 p2

k � p < p + ε, and so from Definition 2.1, we see that the collection
{xij + α̃ij : α̃ij has corresponding probability p� � ε} is (p + ε)-bounded of exponent 2. We
are thus finished with case 1.
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Case 2 is when the decomposition of αij given in Eq. (13) has p� < ε. In this case we need
to modify Eq. (13) slightly, deleting ηij� and replacing ηij (�−1) with a new variable η′

ij (�−1) that
takes all the values previously taken by ηij� and by ηij (�−1) with the appropriate probabilities.
Thus, in case 2, we have that p/2 � pk < p + ε for all 1 � k � � − 1, showing that each pk is
bounded below by a constant and is bounded above by p + ε (here we are using p�−1 to denote
the probability that αij draws a value from the random variable η′

ij (�−1)).
For case 2, we use exactly the same reasoning as in case 1 above to show that such entries

of Xn + Nn|{ηijk=cijk} are (
∑�−1

k=1 p2
k)-bounded of exponent 2 (using the constant q = ε2 < p2/4

in Definition 2.1, so q does not depend on n). Noting that
∑�−1

k=1 p2
k < p + ε and using Def-

inition 2.1, we see that the collection {xij + α̃ij : α̃ij has corresponding probability p� < ε} is
(p + ε)-bounded of exponent 2.

Combining case 1 and case 2, we have that the collection {xij + α̃ij } is (p + ε)-bounded of
exponent 2, and so by and by Theorem 2.2 we have that Pr(Xn + Nn|{ηijk=cijk} is singular) �
(
√

p + ε + o(1))n.
The constant ε > 0 was chosen arbitrarily, and so letting ε tend to zero, we get that

Pr
(
Xn + Nn is singular

∣∣ {ηijk = cijk}
)
�
(√

p + o(1)
)n

. �
3.4. Partially random matrices

In this subsection, we prove a bound on the singularity probability for partly random matrices
where many rows are deterministic.

Corollary 3.5. Let p be a real constant between 0 and 1, let K be a large positive constant, and
let S ⊂ C be a set of complex numbers having cardinality |S| � K . Let Nf,n be an n by n matrix
in which f rows contain fixed, non-random integers between −K and K and where the other rows
contain entries that are independent random variables taking values in S. If f � o(n), if the f fixed
rows are linearly independent, and if for every random entry α, we have maxx Pr(α = x) � p,
then

Pr(Nf,n is singular) �
(√

p + o(1)
)n−f

.

Corollary 3.5 applies to partly random matrices with f = o(n) fixed, non-random rows con-
taining integers bounded by a constant and with random entries taking at most O(1) values in
the complex numbers. Corollary 1.2, on the other hand, holds with the fixed entries also allowed
to take values in the complex numbers and gives a slightly better bound, but additionally requires
f � O(lnn) (which is far smaller in general than o(n)). Proving Corollary 1.2 requires mirroring
the entire argument used to prove the main theorem (Theorem 2.2) in the case where f rows con-
tain fixed, non-random entires, and we discuss this argument in Section 9. Proving Corollary 3.5,
however, can be done directly from Theorem 2.2, as we will show below. First, we will state a
generalization of Corollary 3.5.

Corollary 3.6. Let p be a real constant between 0 and 1, let K be a large positive constant, and
let S ⊂ C be a set of complex numbers having cardinality |S| � K . Let Nf,n be an n by n matrix
in which f rows contain fixed, non-random integers between −K and K and where the other
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rows contain entries that are independent random variables taking values in S. If f � o(n), if the
fixed rows have co-rank k, and if for every random entry α, we have maxx Pr(α = x) � p, then

Pr(Nf,n has co-rank > k) �
(√

p + o(1)
)n−f

.

To obtain Corollary 3.6 from Corollary 3.5, find a collection C of f − k linearly independent
rows among the deterministic rows. Replace the rest of the deterministic rows with a collection
C′ of rows containing integer values between −K and K such that C′ is linearly independent
from C . Finally, apply Corollary 3.5 to the new partially random matrix whose deterministic
rows are from C ∪ C′, thus proving Corollary 3.6.

Proof of Corollary 3.5. By reordering the rows and columns, we may write

Nf,n =
(

A B

C D

)
,

where A is an f by f non-random invertible matrix, B is an f by n− f non-random matrix, C is an
n − f by f random matrix, and D is an n − f by n − f random matrix. Note that Nf,n is singular if
and only if there exists a vector v such that Nf,nv = 0. Let v1 be the first f coordinates of v and
let v2 be the remaining n − f coordinates. Then Nf,nv = 0 if and only if{

Av1 + Bv2 = 0, and

Cv1 + Dv2 = 0.

Since A is invertible, these two equations are satisfied if and only if (−CA−1B + D)v2 = 0, that
is, if and only if the random matrix −CA−1B + D is singular.

We want to show that every entry that can appear in −CA−1B is an element of no(n) ×
(S ∪ {−1,0,1})O(1). By the cofactor formula for A−1, we know that the i, j entry of A−1 is
(−1)i+j (detAij )/detA, where Aij is the f − 1 by f − 1 matrix formed by deleting the ith row
and j th column of A. Thus, A−1 = 1

detAÃ, where the i, j entry of Ã is (−1)i+j detAij . By the
volume formula for the determinant, we know that |detA| is at most the product of the lengths of
the row vectors of A; and thus |detA| � no(n) (here we need that A has integer entries between
−K and K , where K is a constant, and that f � o(n)). Similarly, we have |detAij | � no(n).
Every entry of Ã is thus in no(n){−1,0,1}, every entry of C is in S, and every entry of B is in
O(1){−1,0,1}; thus, every entry of −CÃB is an element of no(n)(S ∪ {−1,0,1}).

Conditioning on the values taken by all the entries in C, we have

Pr(Nf,n is singular) = Pr
(−CA−1B + D is singular

)
=
∑
(cij )

Pr
(−CA−1B + D is singular

∣∣ C = (cij )
)

Pr
(
C = (cij )

)
, (14)

where the sum runs over all possible matrices (cij ) that C can produce. Considering the entries
in C = (cij ) to be fixed (note that A and B are fixed by assumption), we now need to bound

Pr
(−(cij )A

−1B + D is singular
)= Pr

(−(cij )ÃB + (detA)D is singular
)
.
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Note that every entry of −(cij )ÃB is an element of no(n)(S ∪{−1,0,1})O(1) and that the random
matrix (detA)D has entries that take values in the fixed set {(detA)s: s ∈ S} having cardinal-
ity O(1). Thus, by Corollary 3.4, we have that

Pr
(−(cij )ÃB + (detA)D is singular

)
�
(√

p + o(1)
)n−f

.

Plugging this bound back into Eq. (14) completes the proof. �
3.5. Integer matrices and rational eigenvalues

Let ηk be the random variable taking the values −k,−k + 1, . . . , k − 1, k each with equal
probability, and let Mn be the n by n matrix where each entry is an independent copy of ηk .
In [7], Martin and Wong show that for any ε > 0,

Pr(Mn has a rational eigenvalue) � c(n, ε)

k1−ε
,

where c(n, ε) is a constant depending on n and ε. (One goal in [7] is to study this bound as k

goes to ∞ while n is fixed, which is why c(n, ε) is allowed to depend on n.)
Below, we prove a similar result for random integer matrices with entries between −k and k

(with k fixed), where we allow each entry to have a different (independent) distribution and we
also allow the distributions to be very general.

Corollary 3.7. Fix a positive integer k, and let Mk,n be a random integer matrix with independent
entries, each of which takes values in the set {−k,−k + 1, . . . , k − 1, k}. Let c be a constant such
that for every entry α, we have max−k�x�k Pr(α = x) � c/k. Then

Pr(Mk,n has a rational eigenvalue) �
(

c

k
+ o(1)

)n/2

,

where the o(1) term goes to zero as n goes to ∞.

For example, in the case where each independent entry has the uniform distribution on
{−k,−k + 1, . . . , k − 1, k} (as in [7]), one can set c = 1/2 in the corollary above.

Proof. The proof given below follows the same outline as the main theorem of [7], with Corol-
lary 1.2 replacing an appeal to [7, Lemma 1].

The characteristic polynomial for Mk,n is monic with integer coefficients, and thus the only
possible rational eigenvalues are integers (by the rational roots theorem). Every eigenvalue
of Mk,n has absolute value at most nk (see [7, Lemma 4]); thus, the only possible integer eigen-
values are between −nk and nk.

The matrix Mk,n has λ as an eigenvalue if and only if Mk,n − λI is singular (where I is the n

by n identity matrix). By Corollary 1.2 (with f = 0), we have

Pr(Mk,n − λI is singular) �
(√

c

k
+ o(1)

)n

.

Using the union bound, we have
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Pr(Mk,n has a rational eigenvalue) = Pr
(
Mk,n − λI is singular, for some λ ∈ {−nk, . . . , nk})

�
nk∑

λ=−nk

Pr(Mk,n − λI is singular)

� (2nk + 1)

(√
c

k
+ o(1)

)n

�
(

c

k
+ o(1)

)n/2

. �
4. Random matrices with complex entries: A reduction technique

The original work on discrete random matrices in [4,5,9,10] is concerned with matrices having
integer entries, which can also be viewed as matrices with entries in Z/QZ where Q is a very
large prime. In this section we show that one can pass from a (random) matrix with entries in C

to one with entries in Z/QZ where Q is an arbitrarily large prime number, all without affecting
the probability that the determinant is zero, thanks to the following lemma.

Lemma 4.1. (See [12].) Let S be a finite subset of C. There exist infinitely many primes Q such
that there is a ring homomorphism φQ : Z[S] → Z/QZ satisfying the following two properties:

(i) the map φQ is injective on S, and
(ii) for any n by n matrix (sij )1�i,j�n with entries sij ∈ S, we have

det
(
(sij )1�i,j�n

)= 0 if and only if det
((

φQ(sij )
)

1�i,j�n

)= 0.

In order to apply this lemma, let us point out that the proof of Theorem 2.2, which is discussed
in Sections 5 through 8, works exclusively in Z/QZ; though at various points, it is necessary to
assume Q is extremely large with respect to n and various constants. For this paper, S will
be the set of all possible values taken by the random variables αjk . Recall that by assumption,
|S| � no(n), so in particular, S is finite.

Remark 4.2 (On the size of Q). When we apply Lemma 4.1, we will take Q > exp(exp(Cn)) for
some constant C in order for Freiman-type theorems such as [10, Theorem 6.3] (which is restated
in Theorem 8.1 below) to apply, and we will also choose Q large enough so that the integral
approximation in Inequality (A.1) holds and so that Q is large with respect to various constants.
One should note that while Q can be taken arbitrarily large with respect to n, we cannot choose
Q so that it is arbitrarily large with respect to φQ(s) for all s ∈ S, where S is the set of all values
that could appear in the given random matrix. For example, if

√
2 ∈ S, then the smallest positive

integer representative for φQ(
√

2) must be larger than
√

Q (since (φQ(
√

2))2 = 2 in Z/QZ).
Finally, if we were in a situation where S ⊂ Q, then we could avoid using Lemma 4.1 altogether
by clearing denominators to pass to Z and then take Q ≈ exp(exp(Cn)), as is done in [10].

Lemma 4.1 is a corollary of the main theorem of [12] and its proof is given in detail in [12, Sec-
tion 6]. The paper [12] also contains further applications of the method used to prove Lemma 4.1,
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for example proving a sum-product result for the complex numbers and proving a Szemerédi–
Trotter-type result for the complex numbers, where the applications follow from the analogous
results for Z/Q where Q is a prime (see [3]). The results in [12], including Lemma 4.1, all go
through with the complex numbers being replaced by any characteristic zero integral domain.
Thus, the results stated in Sections 1, 2, and 3 above for the complex numbers C also all go
through with C replaced by any characteristic zero integral domain. For example, Corollary 3.3
becomes

Corollary 4.3. Let p be a constant such that 0 < p � 1 and let D be a characteristic zero
integral domain. Let S ⊂ D have cardinality |S| � O(1). If Nn is an n by n matrix with
independent random entries, each taking values in S, such that for every entry α, we have
maxx Pr(α = x) � p, then

Pr(Nn is singular) �
(√

p + o(1)
)n

.

5. Proof of the main theorem (Theorem 2.2)

The proof of Theorem 2.2 very closely follows the proof of [10, Theorem 1.2]. Our goal
is to highlight the changes that need to be made to generalize the proof in [10] so that it
proves Theorem 2.2. A reader interested in the details of the proof of Theorem 2.2 should
read this paper alongside of [10]. Throughout the proof, we will assume that n is sufficiently
large, and we will allow constants hidden in the o(·) and O(·) notation to depend on the con-
stants ε−1, ε0, ε1, ε2,p, q, r, cMedDim, cLgDim, cLO, and cm. The constants ε−1, ε0, ε1, ε2 should
be considered very small, and, in fact, we will let them tend to zero to prove the full strength of
Theorem 2.2. The constants p,q, r, cMedDim, cLgDim, cLO, and cm can be thought of as absolute,
except possibly for depending on each other.

5.1. Definitions and preliminaries

Given an n by n matrix Nn with entries αij , we assume that the collection of independent
random variables {αij }1�i,j�n is p-bounded of exponent r for some fixed constants p, q , and r

(here, q is the constant from Definition 2.1 which is independent of n). We also assume that
each αij takes at most no(n) distinct values. Using Lemma 4.1, we may assume without loss of
generality that each αij takes values in Z/QZ for some very large prime Q. The entirety of the
proof will take place over the field Z/QZ, and so terminology such as “linearly independent”,
“span”, “dimension”, “rank” and so forth will always be with respect to the field Z/QZ.

Let Xi := (αi,1, . . . , αi,n) denote the ith row of Nn. We note that Nn has determinant
zero if and only if there is a linear dependency among the rows Xi . It has been shown (see
[9, Lemma 5.1] and also [4]) that the dominant contribution to the singularity probability comes
from the Xi spanning a hyperplane (of dimension n − 1). In particular,

Pr(Nn is singular) = p−o(n)
∑

V a non−trivial
hyperplane in (Z/QZ)n

Pr(AV ), (15)

where AV denotes the event that X1, . . . ,Xn span V , and non-trivial means that V contains the
origin, V is spanned by vectors in Sn (where S is the set of all possible values that can occur
in Nn), and Pr(Xi ∈ V ) > 0 for all i.
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As in [10], we will divide the non-trivial hyperplanes into n2 classes, since it is then sufficient
to show that the sum of Pr(AV ) over all V in a particular class is at most (p1/r + o(1))n.

Definition 5.1 (Combinatorial dimension). Let D := { a
n

: 0 � a � n2, a ∈ Z}. For any d± ∈ D
such that d± � 1

n
, we define the combinatorial Grassmannian Gr(d±) to be the set of all non-

trivial hyperplanes V in (Z/QZ)n such that

pn−d±+1/n < max
1�i�n

Pr(Xi ∈ V ) � pn−d± . (16)

For d± = 0, we define Gr(0) to be the set of all non-trivial hyperplanes such that

max
1�i�n

Pr(Xi ∈ V ) � pn.

We will refer to d± as the combinatorial dimension of V .

Note that Gr(d±) = ∅ for d± � n−1+1/n (by Lemma B.1). We will consider hyperplanes V

with combinatorial dimension in three main regions: d± small, d± medium-sized, and d± large.
The two lemmas and the proposition below suffice to prove Theorem 2.2.

Lemma 5.2 (Small combinatorial dimension [4,9,10]). For any δ > 0 we have∑
d±∈D s.t. pn−d±�δn

∑
V ∈Gr(d±)

Pr(AV ) � nδn.

In proving Theorem 2.2, we will take δ = (p + cMedDimε0)
1/r to take care of all small d± not

covered by Proposition 5.4 below.

Proof. The reasoning here is the same as in [10, Lemma 2.3], making use of fact that
Pr(Xi ∈ V ) � max1�i�n Pr(Xi ∈ V ) � pn−d± � δn. In particular,

Pr(AV ) �
n∑

i=1

Pr
({Xj }1�j�n \ {Xi} spans V

)
Pr(Xi ∈ V ),

which completes the proof since the summing the right-hand side over all V is at most
nmaxi Pr(Xi ∈ V ) (note that an instance of the vectors {Xj }1�j�n \ {Xi} can span at most
one hyperplane). �
Lemma 5.3 (Large combinatorial dimension, [4,9,10]). We have∑

d±∈D s.t.
cLgDim√

n
�pn−d±

∑
V ∈Gr(d±)

Pr(AV ) �
(
p + o(1)

)n

Here we choose the constant cLgDim so that cLgDim � cLOp−1/n
√

2r
q

, where cLO is the constant

from the Littlewood–Offord inequality (see Lemma A.1 in Appendix A) and q is the constant
from Definition 2.1.
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Proof. Our proof is essentially the same as [10, Lemma 2.4]. Fix V ∈ Gr(d±), where
cLgDim√

n
�

pn−d± . Let imax be an index such that Pr(Ximax ∈ V ) = max1�i�n Pr(Xi ∈ V ). By assumption,

Pr(Ximax ∈ V ) � pn−d±+1/n � cLgDim√
n

p1/n � cLO

√
2r

qn
.

Noting that Ximax ∈ V if and only if Ximax is orthogonal to the normal vector for V , we have by
Lemma A.1 that

Pr(Ximax ∈ V ) � cLO

√
r

qk
,

where k is the number of nonzero coordinates in the normal vector to V . Combining the two
inequalities above shows that k � n/2.

Thus, we have

∑
d±∈D s.t.

cLgDim√
n

�pn−d±

∑
V ∈Gr(d±)

Pr(AV ) � Pr

⎛⎝⎧⎨⎩
there exists a vector v with at
most n/2 nonzero coordinates
such that Nn · v = 0

⎫⎬⎭
⎞⎠

�
(
p + o(1)

)n (by Lemma A.2).

(Lemma A.2 is a natural generalization of [4, Section 3.1]; see also [6], [9, Lemma 5.1], and [2,
Lemma 14.10].) �
Proposition 5.4 (Medium combinatorial dimension estimate). Let 0 < ε0 be a constant much

smaller than 1, and let d± ∈ D be such that (p + cMedDimε0)
n/r < pn−d± <

cLgDim√
n

. Then

∑
V ∈Gr(d±)

Pr(AV ) � o(1)n.

Here we choose the constant cMedDim so that cMedDim > ( 1
100 +cm), where cm is some absolute

constant such that 0 < cm < 1 (the 1
100 here comes from μ as defined in Section 5.2 below;

in [10], it happens that the constant cm is also taken to be 1
100 ).

To prove Theorem 2.2, we can simply combine Lemma 5.2 with δ = (p + cMedDimε0)
1/r ,

Lemma 5.3, and Proposition 5.4. Thus, proving Proposition 5.4 will complete the proof of The-
orem 2.2. To prove Proposition 5.4, as in [10, Proposition 2.5], we will separate hyperplanes V

of medium combinatorial dimension into two classes, which we will call exceptional and unex-
ceptional (see Definition 5.5). See [10, Section 3] for motivation. The unexceptional case will be
proved in the remainder of this section, and the exceptional case will be proved in Sections 6, 7,
and 8.

The results in [9] and [4] were derived using the ideas that we will use for the unexceptional
medium combinatorial dimension case. The idea of considering the exceptional case separately
in [10] (and using tools from additive combinatorics in the exceptional case) is what lead to
the improvement of Inequality (1), which gives a bound of asymptotically ( 3

4n ), over the 0.999n

bound in [4].
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5.2. Proof of the medium combinatorial dimension

Before defining exceptional and unexceptional hyperplanes, we will need some new notation.
By assumption, the collection of random variables {αij }1�i,j�n is p-bounded of exponent r

with a constant μ = 1 − p, with random variables β
(μ)
ij corresponding to each αij , and with

a constant 0 < q � p (see Definition 2.1). We also define a constant slightly smaller than μ,

namely μ := μ − ε0

100
. We will let Yi := (yi,1, . . . , yi,n) := (β

(μ)

i,1 , . . . , β
(μ)

i,n ) denote another row

vector that corresponds to the row vector Xi (β
(μ)

i,j comes from the definition of p-bounded of
exponent r). Also, we will let

Z∗
i,k := (

kstart−1
zeroes︷ ︸︸ ︷

0, . . . ,0, yi,kstart , . . . , yi,kend ,

n−kend
zeroes︷ ︸︸ ︷

0, . . . ,0), (17)

where kstart := �(k − 1) n
r
 + 1 and kend := �k n

r
. The vector Z∗

i,k can be thought of as the kth
segment of Yi (out of r roughly equal segments). Note that Yi and Z∗

i,k are both defined using
μ := μ − ε0

100 , not μ. Finally, let ε1 be a positive constant that is small with respect to ε0, cm,
and r .

Definition 5.5 (Exceptional and unexceptional). Consider a hyperplane V of medium combina-
torial dimension (that is, d± satisfies the condition in Proposition 5.4). We say V is unexceptional
if there exists an i0 where 1 � i0 � n and there exists a k0 where 1 � k0 � r such that

max
1�j�n

{
Pr(Xj ∈ V )

}
< ε1 Pr

(
Z∗

i0,k0
∈ V

)
.

We say V is exceptional if for every i where 1 � i � n and for every k where 1 � k � r we
have

ε1 Pr
(
Z∗

i,k ∈ V
)
� max

1�j�n

{
Pr(Xj ∈ V )

}
. (18)

In particular, there exists imax such that Pr(Ximax ∈ V ) = max1�j�n{Pr(Xj ∈ V )}; and so if V is
exceptional, then

ε1 Pr
(
Z∗

imax,k
∈ V

)
� Pr(Ximax ∈ V ) for every k. (19)

We will refer to Ximax as the exceptional row.

Inequality (10) following Definition 2.1 can be used to give another relationship between
Pr(Z∗

imax,k
∈ V ) and Pr(Ximax ∈ V ) that, together with Inequality (19), will be of critical impor-

tance in Section 7.
Proposition 5.4 follows from the two lemmas below, so long as ε1 is chosen suitably small

with respect to ε0, cm, and r .

Lemma 5.6 (Unexceptional space estimate). We have∑
Pr(AV ) � p−o(n)2nε

cmε0n/r

1 .
V ∈Gr(d±): V is unexceptional
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Lemma 5.7 (Exceptional space estimate). We have∑
V ∈Gr(d±): V is exceptional

Pr(AV ) � n− n
2 +o(n).

We will prove Lemma 5.6 in Section 5.3, and we will prove Lemma 5.7 in Section 6.

5.3. The unexceptional medium combinatorial dimension case

The general idea for the case of an unexceptional hyperplane V is to replace some of the
rows Xi in the matrix Nn with rows that concentrate more sharply on the subspace V . In the case

where the exponent r = 1, replacing a row Xi with Yi := (β
(μ)

i,1 , . . . , β
(μ)

i,n ) is successful; however,
in the exponent r = 2 case, for example, replacing the entire row results in a bound that is off by
an exponential factor. We solve this problem by replacing Xi with only half of Yi (with the other
half of the entries being zero). This idea easily extends to any integer r � 2 and is the motivation
for defining the vectors Z∗

i,k to have all zeros except for roughly n/r coordinates, as is done in
Eq. (17). The basic utility of Z∗

i0,k0
(from Definition 5.5) is that it concentrates more sharply on

the unexceptional subspace V than the vector Xi for any i.
Let Z∗

i0,k0
be the vector from the definition of unexceptional (Definition 5.5) such that

Pr(Xi ∈ V ) < ε1 Pr(Z∗
i0,k0

∈ V ) for every i, and set Z := Z∗
i0,j0

. Let m be the closest integer
to cmε0n

r
, where cm is a small positive absolute constant (for example, in [10], cm is taken to

be 1
100 ). Finally, let Z1, . . . ,Zm be copies of Z, independent of each other and of X1, . . . ,Xn.

Lemma 5.8. (See Lemma 4.4 in [10].) Let BV,m be the event that Z1, . . . ,Zm are linearly inde-
pendent and lie in V . Then,

Pr(BV,m) � po(n)

(
max1�i�n Pr(Xi ∈ V )

ε1

)m

.

Proof. The argument follows the same reasoning as [10, Lemma 4.4], however, the quan-
tity 2d±−n in [10] should be replaced by max1�i�n Pr(Xi ∈ V ). Details are provided in
Appendix B. �

To conclude the proof of Lemma 5.6, we follow the “row-swapping” argument at the end of
[10, Section 4], with the small change of bounding Pr(Xi ∈ V ) by max1�i�n Pr(Xi ∈ V ), which
we use in place of the quantity 2d±−n. Details are provided in Appendix B.

6. Analyzing the exceptional medium combinatorial dimension case

The approach for exceptional V in [10] is very different from that used in the unexceptional
case or in the large or small combinatorial dimension cases. Using some powerful tools from
additive combinatorics, the general idea is to put exceptional hyperplanes V in correspondence
with a particular additive structure called a generalized arithmetic progression, and then to show
that the number of the particular generalized arithmetic progression s that arise in this way is
exceedingly small. The key to this approach is a structure theorem—namely, [10, Theorem 5.3].
In this section, we state a slightly modified structure theorem (Theorem 6.1), and then we show
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how to use Theorem 6.1 to prove Lemma 5.7. In the beginning of Section 7, we outline the
changes needed to prove the structure theorem for our current context, and in Sections 7 and 8
we provide details.

Before stating the structure theorem, we need some definitions and notation. A generalized
arithmetic progression of rank r is a set of the form

P = {
v0 + m1v1 + · · · + mr: |mi | � Mi/2

}
,

where the basis vectors v0, v1, . . . , vr are elements of a Z-module (here, Z/QZ) and where the
dimensions M1, . . . ,Mr are positive integers. We say that vi has corresponding dimension Mi .
For a given element a = v0 +m1v1 + · · ·+mr in P , we refer to m1, . . . ,mr as coefficients for a.
A generalized arithmetic progression P is symmetric if v0 = 0, and P is proper if for each a ∈ P ,
the there is a unique r-tuple (m1, . . . ,mr) with |mi | < Mi/2 that gives the coefficients for a. If
P is proper and symmetric, we define the P -norm ‖a‖P of an element a ∈ P to be

‖a‖P :=
(

r∑
i=1

(
mi

Mi

2
))1/2

.

We will use the notation mP , where m is a positive integer, to denote the set {∑m
i=1 xi : xi ∈ P }

and the notation P m, where m is a positive integer, to denote the set {∏m
i=1 xi : xi ∈ P }. If P is

a generalized arithmetic progression of rank r, then so is mP , while P m, on the other hand, is
a generalized arithmetic progression of rank at most rm. Also note that |mP | � mr|P | and that
|P m| � |P |m.

Let V be an exceptional hyperplane of medium combinatorial dimension in Gr(d±) and let
Ximax = (α1, . . . , αn) be the exceptional row (here we are using αj as shorthand for αimax,j ). Let

(β
(μ)
1 , . . . , β

(μ)
n ) be the row of random variables corresponding to Ximax from the definition of p-

bounded of exponent r , and let bj,s with 1 � j � n and 1 � s � �j be the values taken by β
(μ)
j

(see Eq. (9) for the definition of β
(μ)
j ).

Given an exceptional hyperplane V , there exists a representation of the form

V = {
(x1, x2, . . . , xn) ∈ (Z/QZ)n: x1a1 + x2a2 + · · · + xnan = 0

}
for some elements a1, a2, . . . , an ∈ Z/QZ. We will call a1, a2, . . . , an the defining coordinates
of V . Finally, let ãj := bj,1aj . We will refer to (ã1, . . . , ãn) as the scaled defining coordinates
of V . Note that once imax is fixed, so are the elements bj,1. We should also note that the choice

of bj,1 among bj,s for 1 � s � �j is arbitrary—since β
(μ)
j takes the values bj,s each with proba-

bility at least q , any value of s will do; and so we have taken s = 1 for convenience.
Let H denote the highly rational numbers, that is, those numbers in Z/QZ of the form

a/b (mod Q) where a, b are integers such that |a|, |b| � no(n) and b �= 0. The highly rational
numbers were defined in [10, Section 8], and we will need a small extension for the current pa-
per, due to the fact that we are using the scaled defining coordinates of V instead of simply the
defining coordinates of V . If we were to assume that bj,1 was an O(1) integer for all j and that
every possible value taken by αij was an O(1) integer for all i, j , then we could still use the same
definition of highly rational as in [10]. However, if there is a bj,1 or an entry αij in the matrix Nn

that ever takes an irrational value, then when we pass to Z/QZ using Lemma 4.1 we have to ac-
count for values possibly on the order of Q (see Remark 4.2), and the highly rational numbers are



582 J. Bourgain et al. / Journal of Functional Analysis 258 (2010) 559–603
not sufficient for this task. We can overcome this difficulty by extending to the highly T -rational
numbers, which contain the highly rational numbers along with all the values in a structured set
T (described below). We will now give a rigorous definition the highly T -rational numbers.

Let T be a generalized arithmetic progression in Z/QZ with rank O(1) and having cardinality
at most no(n). As in the definition of p-bounded of exponent r (Definition 2.1), we will take S

to be the generalized arithmetic progression containing all possible values in Z/QZ taken by the
random variables αij that are the entries of Nn; thus, by assumption |S| � no(n). By the definition

of p-bounded of exponent r , we know that all of the random variables β
(μ)
ij take values in a set

with cardinality O(1). Thus, there is a symmetric generalized arithmetic progression T with rank
O(1) and cardinality |T | � no(n) such that T contains S, such that T contains the set {−1,0,1},
and such that T contains all the values taken by the β

(μ)
ij . To construct T from S, one can, for

example, add each distinct value taken by a β
(μ)
ij as a new basis vector v′ with corresponding

dimension M ′ := 3 (say).
A highly T -rational number h is any element of Z/QZ of the form a/b, where a, b ∈

no(n)T O(1). Note that therefore, the cardinality of the highly T -rational numbers is at most
(ndo(n)|T |)O(1) = no(n), where d = O(1) is the rank of T (here we used the fact that |T | � no(n)).

Theorem 6.1 (Structure theorem). There is a constant C = C(ε−1, ε0, ε1, ε2, q, r,μ) such that
the following holds. Let V be an exceptional hyperplane and let ã1, . . . , ãn be its scaled defining
coordinates (as described above). Then there exist integers

1 � r � C

and M1, . . . ,Mr � 1 with the volume bound

M1 · · ·Mr � C Pr(Ximax ∈ V )−1

and nonzero elements v1, . . . , vr ∈ Z/QZ such that the following holds

• (i) (Scaled defining coordinates lie in a progression) The symmetric generalized arithmetic
progression

P := {m1v1 + · · · + mrvr: −Mi/2 < mi < Mi/2}

is proper and contains all of the ãj .
• (ii) (Bounded norm) The ãj have small P -norm:

n∑
j=1

‖ãj‖2
P � C.

• (iii) (Rational T -commensurability) The set {v1, . . . , vr} ∪ {ã1, . . . , ãn} is contained in the
set

{hv1: h is highly T -rational}.
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Note that unlike [10], part (iii) above does not necessarily place {v1, . . . , vr} ∪ {ã1, . . . , ãn} in
a simple arithmetic progression.

We will discuss the proof of the structure theorem in Sections 7 and 8. In the remainder of
this section, we will discuss how to use the structure theorem to prove Lemma 5.7.

Fix d± of medium combinatorial dimension (see Proposition 5.4). Using independence of the
rows, we have

∑
V ∈Gr(d±):

V is exceptional

Pr(AV ) �
∑

V ∈Gr(d±):
V is exceptional

n∏
i=1

Pr(Xi ∈ V )

�
∣∣{V ∈ Gr(d±): V is exceptional

}∣∣ · ( max
1�i�n

Pr(Xi ∈ V )
)n

. (20)

In [10, Section 5], it is shown using Theorem 6.1(i) and (ii) and Gaussian-type methods (and
the fact that r is bounded by a constant) that

∣∣{V ∈ Gr(d±): V is exceptional
}∣∣� no(n)

Q − 1

∑
r,{M1,...,Mr}{v1,...,vr}

(
1 + n−1/2M1 · · ·Mr

)n
,

where the sum runs over all possible values for r, for the Mi , and for v1, . . . , vr. By Theorem 6.1,
we know that r � C = O(1) and that Mi � M1M2 · · ·Mr � C Pr(Ximax ∈ V )−1 � O(1/pn);thus,
there are at most no(n) choices for r and the Mi . Furthermore, there are at most Q − 1 choices
for v1 (since v1 �= 0), and once the value for v1 has been fixed, (iii) tells us that there are at most
no(n) choices for {v2, . . . , vr} (since |no(n)T O(1)| � no(n)). Thus, the sum runs over at most no(n)

terms. (This is the point in the proof where it is essential that no(n)T O(1) has cardinality no(n).)
Plugging the volume bound on M1 · · ·Mr into the previous displayed inequality, we have

∣∣{V ∈ Gr(d±): V is exceptional
}∣∣� no(n)

(
1 + n− 1

2 C Pr(Ximax ∈ V )−1)n
= n− n

2 +o(n) Pr(Ximax ∈ V )−n, (21)

using the fact that Pr(Ximax ∈ V ) � cLgDim√
n

, which is a consequence of d± being of medium com-
binatorial dimension. Plugging in Inequality (21) into Inequality (20) and summing over all d± of
medium combinatorial dimension completes the proof of Lemma 5.7 (recall that by assumption
max1�i�n Pr(Xi ∈ V ) = Pr(Ximax ∈ V )).

7. Halász-type arguments

The proof of the structure theorem has two main ingredients: tools from additive combina-
torics, and Halász-type arguments using discrete Fourier analysis. Our proof of Theorem 6.1 will
follow the proof of [10, Theorem 5.2] very closely. We will use results about additive combina-
torics from [10, Section 6] directly, and we will discuss below the extent to which the Halász-type
arguments of [10, Section 7] need to be modified to work for our current context. The proof of
Theorem 6.1 will be given in Section 8 using results from the current section, [10, Section 6],
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[10, Section 7], and [10, Section 8]. Our Section 8 follows [10, Section 8] closely, with a few
modifications to prove rational T -commensurability instead of only rational commensurability.

In this section we discuss modifications to the lemmas in [10, Section 7] that are needed in
order to prove Theorem 6.1.

We will use eQ(·) to denote the primitive character

eQ(x) := exp(2πix/Q).

Let imax be the index of the exceptional row, so for every 1 � k � r we have

ε1 Pr(Z∗
imax,k

∈ V ) � Pr(Ximax ∈ V ), (22)

and recall that by Definition 5.5 we have Pr(Ximax ∈ V ) = maxi Pr(Xi ∈ V ). Let (α1, . . . , αn) :=
Ximax with the corresponding random variables (β

(μ)
1 , . . . , β

(μ)
n ) from the definition of p-bounded

of exponent r (see Definition 2.1 and Eq. (9)), and let (a1, . . . , an) be the defining coordinates
of V . Then, using the Fourier expansion, we can compute

Pr(Ximax ∈ V ) = E(1{Ximax ∈V }) = E

(
1

Q

∑
ξ∈Z/QZ

eQ

(
n∑

j=1

αjaj ξ

))

� 1

Q

∑
ξ∈Z/QZ

n∏
j=1

∣∣E(eQ(αjaj ξ)
)∣∣

� 1

Q

∑
ξ∈Z/QZ

n∏
j=1

E
(
eQ

(
β

(μ)
j aj ξ

))1/r

= 1

Q

∑
ξ∈Z/QZ

n∏
j=1

(
1 − μ + μ

�j∑
s=1

pj,s cos(2πbj,saj ξ/Q)

)1/r

(23)

� 1

Q

∑
ξ∈Z/QZ

n∏
j=1

(
1 − μ + μ

�j∑
s=1

pj,s cos(2πbj,saj ξ/Q)

)1/r

�
r∏

k=1

Pr
(
Z∗

imax,k
∈ V

)1/r
, (24)

where the last line is an application of Hölder’s inequality.
Define

f (ξ) :=
n∏

j=1

(
1 − μ + μ

�j∑
s=1

pj,s cos(2πbj,saj ξ/Q)

)1/r

, (25)

fj (ξ) :=
(

1 − μ + μ

�j∑
pj,s cos(2πbj,saj ξ/Q)

)1/r

, and (26)

s=1
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gk(ξ) :=
∏

(k−1) n
r
<j�k n

r

(
1 − μ + μ

�j∑
s=1

pj,s cos(2πbj,saj ξ/Q)

)1/r

, (27)

where μ := μ − ε0
100 , as defined in Section 5.2. Note that f (ξ) =∏n

j=1 fj (ξ).
We will need the following analog of [10, Lemma 7.1]:

Lemma 7.1. For all ξ ∈ Z/QZ, we have

n∏
j=1

fj (ξ)rμ/μ �
r∏

k=1

gk(ξ).

Proof. This inequality may be proven pointwise (for each j after expanding out the definition
of gk) using the convexity of the log function, just as in the proof of [10, Lemma 7.1] (see also
[9, Lemma 7.1]. �

Let ε2 be sufficiently small compared to ε1 (we will specify how small in Inequal-
ity (33) while proving Lemma 7.2). Following [10], we define the spectrum Λ ⊂ Z/QZ

of {b1,1a1, . . . , bn,1an} = {ã1, . . . , ãn} (the scaled defining coordinates of V ) to be

Λ := {
ξ ∈ Z/QZ: f (ξ) � ε2

}
. (28)

Let ‖x‖R/Z denote the distance from x ∈ R to the nearest integer. Using the elementary inequality
cos(2πx) � 1 − 1

100‖x‖2
R/Z

, we have

f (ξ) � exp

(
− μ

100r

n∑
j=1

�j∑
s=1

pj,s‖bj,saj ξ/Q‖2
R/Z

)

� exp

(
− q

50r

n∑
j=1

‖bj,1aj ξ/Q‖2
R/Z

)
(29)

(μpj,1 � 2q since minx Pr(β(μ)
j = x) � q by Definition 2.1).

Thus, there is a constant C(ε2, q, r) such that(
n∑

j=1

‖ãj ξ/Q‖2
R/Z

)1/2

=
(

n∑
j=1

‖bj,1aj ξ/Q‖2
R/Z

)1/2

� C(ε2, q, r), (30)

for every ξ ∈ Λ. (E.g., the constant C(ε2, q, r) := ( 50r
q

ln( 1
ε2

)
)1/2 suffices.)

Lemma 7.2. There exists a constant C depending on ε−1, ε0, ε1, ε2, q, r , and μ such that

C−1QPr(Ximax ∈ V ) � |Λ| � CQPr(Ximax ∈ V ). (31)

Furthermore, for every integer k � 4 we have

|kΛ| �
(

C + k − 3
)

CQPr(Ximax ∈ V ). (32)

k − 2
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Proof. Our goal is to bound
∑

ξ∈Λ f (ξ) from above and below, and then pass to bounds on |Λ|
using the fact that ε2 � f (ξ) � 1 for all ξ ∈ Λ.

Note that

1

Q

∑
ξ∈Z/QZ

f (ξ) � Pr(Ximax ∈ V )
(
by Eq. (25) and Eq. (23)

)
.

Also,

1

Q

∑
ξ /∈Λ

f (ξ) = 1

Q

∑
ξ /∈Λ

n∏
j=1

fj (ξ) � ε
1−μ/μ

2
1

Q

∑
ξ /∈Λ

n∏
j=1

fj (ξ)μ/μ

� ε
1−μ/μ

2
1

Q

∑
ξ∈Z/QZ

r∏
k=1

gk(ξ)1/r (Lemma 7.1)

� ε
1−μ/μ

2
1

Q

(
r∏

k=1

∑
ξ∈Z/QZ

gk(ξ)

)1/r

(Hölder’s inequality)

� ε
1−μ/μ

2

(
1

ε1

)
Pr(Ximax ∈ V )

(
by Inequality (22)

)
.

For the lower bound, we have∑
ξ∈Λ

f (ξ) =
∑

ξ∈Z/QZ

f (ξ) −
∑
ξ /∈Λ

f (ξ)

� QPr(Ximax ∈ V ) − ε
1−μ/μ

2

ε1
QPr(Ximax ∈ V )

= QPr(Ximax ∈ V )

(
1 − ε

1−μ/μ

2

ε1

)
.

We can choose ε2 sufficiently small with respect to ε1 and 1 − μ/μ so that, for example,

1 − ε
1−μ/μ

2

ε1
� 1

2
. (33)

For the upper bound, we have∑
ξ∈Λ

f (ξ) �
∑

ξ∈Z/QZ

f (ξ)

� Q

r∏
k=1

Pr
(
Z∗

imax,k
∈ V

)1/r (
Inequality (24)

)
� Q

1
Pr(Ximax ∈ V )

(
Inequality (22)

)
.

ε1
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Thus, we have shown that
∑

ξ∈Λ f (ξ) = Θ(QPr(Ximax ∈ V )). Since ε2 � f (ξ) � 1 for all
ξ ∈ Λ, we have proven Inequality (31).

Making use of [10, Lemma 6.4], we can prove Inequality (32) by showing |4Λ| � C|Λ|
for some constant C. Using Lemma 7.3 below (for which we need to assume strict positivity
of E(e(β

(μ)
j t))—see Remark 2.3), we have that there exists a constant c := c(ε−1, ε2) such that

f (ξ) � c(ε−1, ε2),

for every ξ ∈ 4Λ. Thus,

|4Λ| � 1

c(ε−1, ε2)

∑
ξ∈Z/QZ

f (ξ) �
(

1

c(ε−1, ε2)

)
Q

ε1
Pr(Ximax ∈ V ) = C|Λ|,

for some constant C. This completes the proof of Lemma 7.2. �
We now state and prove a lemma showing that f (ξ) is at least a constant for all ξ ∈ 4Λ.

In [10], the lemma below is unnecessary because an inequality following from [10, Inequal-
ity (30)] (which corresponds to Inequality (30)) and the triangle inequality suffices.

Lemma 7.3. Let Λ and f be defined as in Eq. (28) and Eq. (25), respectively. If ξ ∈ 4Λ, then

f (ξ) �
(
ε2ε

ln(1/ε2)

−1

)320000 =: c(ε−1, ε2).

Note that c(ε−1, ε2) is a constant.

Proof. Note that Inequality (29) implies that for any ξ ′ ∈ Λ we have(
n∑

j=1

�j∑
s=1

pj,s‖bj,saj ξ
′/Q‖2

R/Z

)1/2

�
(

100r

μ
ln

(
1

ε2

))1/2

.

Thus, by the triangle inequality, we have for any ξ ∈ 4Λ that(
n∑

j=1

�j∑
s=1

pj,s‖bj,saj ξ/Q‖2
R/Z

)1/2

� 4

(
100r

μ
ln

(
1

ε2

))1/2

. (34)

Fix ξ ∈ 4Λ. Let k0 be the number of indices j such that

100μ

�j∑
s=1

pj,s‖bj,saj ξ/Q‖2
R/Z

>
1

2
,

and without loss of generality, say that these indices are j = 1,2, . . . , k0. Squaring Inequal-
ity (34), we see that k0

200μ
� 1600r

μ
ln( 1

ε2
), and so we have

k0 � 320000r ln

(
1
)

,

ε2
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which is a constant. Thus, for the vast majority of the indices j , namely j = k0 +1, k0 +2, . . . , n,
we have

100μ

�j∑
s=1

pj,s‖bj,saj ξ/Q‖2
R/Z

� 1

2
. (35)

We may now compute that

f (ξ) :=
n∏

j=1

(
1 − μ + μ

�j∑
s=1

pj,s cos(2πbj,saj ξ/Q)

)1/r

� ε
k0/r

−1

n∏
j=k0+1

(
1 − μ + μ

�j∑
s=1

pj,s cos(2πbj,saj ξ/Q)

)1/r

(
since f (ξ ′) � ε−1 for any ξ ′ by the assumption of strict positivity—see Remark 2.3

)
� ε

k0/r

−1

n∏
j=k0+1

(
1 − 100μ

�j∑
s=1

pj,s‖bj,saj ξ/Q‖2
R/Z

)1/r

(
since cos(2πx) � 1 − 100‖x‖2

R/Z
and the factors are all positive by Inequality (35)

)
� ε

k0/r

−1 exp

(
−200μ

r

n∑
j=k0+1

�j∑
s=1

pj,s‖bj,saj ξ/Q‖2
R/Z

) (
1 − x � e−2x for 0 � x � 0.79

)
� ε

320000 ln( 1
ε2

)

−1 exp

(
−320000 ln

(
1

ε2

)) (
by Inequality (34)

)
= (

ε2ε
ln(1/ε2)

−1

)320000
.

This completes the proof. �
We have shown that the spectrum Λ has small doubling, and the next step is to use this fact

to show that a set containing most of the scaled defining coordinates ãj also has small doubling.
Towards that end, we will use the Λ-norm from [10], which is defined as follows: for x ∈ Z/QZ,
let ‖x‖Λ be defined by

‖x‖Λ :=
(

1

|Λ|2
∑

ξ,ξ ′∈Λ

∥∥x(ξ − ξ ′)/Q
∥∥2

R/Z

)1/2

.

Note that 0 � ‖x‖Λ � 1 for all x and that the triangle inequality holds: ‖x+y‖Λ � ‖x‖Λ+‖y‖Λ.
We also have that

‖x‖Λ �
(

1

|Λ|2
∑

ξ,ξ ′∈Λ

‖xξ/Q‖2
R/Z

)1/2

+
(

1

|Λ|2
∑

ξ,ξ ′∈Λ

‖xξ ′/Q‖2
R/Z

)1/2

= 2

(
1

|Λ|
∑

‖xξ/Q‖2
R/Z

)1/2

.

ξ∈Λ



J. Bourgain et al. / Journal of Functional Analysis 258 (2010) 559–603 589
Thus, squaring Inequality (30) and summing over all ξ ∈ Λ, we have

n∑
j=1

‖ãj‖2
Λ � 4C(ε2, q, r) =: C′. (36)

We will now show that the set of all x with small Λ-norm, which by Inequality (36) includes
most of the ãj , has small doubling.

Lemma 7.4. (See [10, Lemma 7.4].) There is a constant C such that the following holds. Let
A ⊆ Z/QZ denote the “Bohr set”:

A :=
{
x ∈ Z/QZ: ‖x‖Λ <

1

100

}
.

Then we have

C−1 Pr(Ximax ∈ V )−1 � |A| � |A + A| � C Pr(Ximax ∈ V )−1.

The proof of Lemma 7.4 is the same as in [10], with the small modification that aj should
be replaced with ãj := bj,1aj and the quantity 2d±−n should be replaced with Pr(Ximax ∈ V )

(and, of course, the field F in [10] should be replaced with Z/QZ). Also, one should note that
[10, Inequality (30)], [10, Inequality (31)], and [10, Inequality (32)] correspond to, respectively,
Inequalities (30), (31), and (32).

In the next section, we will complete the proof of the structure theorem using the lemma
above.

8. Proof of the structure theorem (Theorem 6.1)

The key to proving the structure theorem is an application of Freiman’s Theorem for finite
fields.

Theorem 8.1. (See Lemma 6.3 in [10].) For any constant C there are constants r and δ such
that the following holds. Let A be a non-empty subset of Z/QZ, a finite field of prime order Q,
such that |A + A| � C|A|. Then, if Q is sufficiently large depending on |A|, there is a symmetric
generalized arithmetic progression P of rank r such that A ⊂ P and |A|/|P | � δ.

Note that by Lemma 4.1 we can assume that Q is sufficiently large with respect to |A| �
C Pr(Ximax ∈ V )−1 � C(1/p)n (this follows from V being of medium combinatorial dimension).

The set A from Lemma 7.4 satisfies |A + A| � C2|A|, where C � O(1), and also contains
all but O(1) of the scaled defining coordinates ãj , since ãj /∈ A implies that ‖ãj‖Λ � 1/100 and
Inequality (36) shows that there can be at most 100C′ = O(1) such ãj . By Theorem 8.1, there
exists a symmetric generalized arithmetic progression P = {m1v1 + · · · + mrvr: |mi | < Mi/2}
containing A and satisfying the bounds:

rank(P ) = r � O(1) and (37)

|P | � M1M2 · · ·Mr � O
(
Pr(Ximax ∈ V )−1). (38)
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The symmetric generalized arithmetic progression P is close to what is needed for Theorem 6.1,
since it satisfies the required volume and rank bounds. We will show below that P can be al-
tered in ways that preserve Inequalities (37) and (38) (except possibly for changing the implicit
constants) so that P satisfies conditions (i), (ii), and (iii) of Theorem 6.1.

To show Theorem 6.1(i), we will first add the remaining scaled defining coordinates
{ã1, . . . , ãn} \ P (i.e., those ãj such that ‖ãj‖Λ � 1/100) as new basis vectors v′

k with cor-
responding dimensions M ′

k equal to (say) 3. The resulting generalized arithmetic progression,
which we will continue to call P by abuse of notation, satisfies both Inequalities (37) and (38),
since there are only O(1) of the ãj with ‖ãj‖Λ � 1/100 (by Inequality (36)). Second, we need
to ensure that P is proper, for which we will use the following lemma:

Lemma 8.2. (Cf. Lemma 9.3 in [10].) There is an absolute constant C0 � 1 such that the fol-
lowing holds. Let P be a symmetric progression of rank r in a abelian group G, such that every
nonzero element of G has order at least rC0r

3 |P |. Then there exists a proper symmetric general-
ized arithmetic progression P ′ of rank at most r containing P such that

|P ′| � rC0r
3 |P |.

Furthermore, if P is not proper and r � 2, then P ′ can be chosen to have rank an most r − 1.

One can conclude Lemma 8.2 from the proof of [10, Lemma 9.3] (the only difference is
noting that the rank can be reduced by at least 1 if P is not proper to begin with). Note that we
can always choose Q larger than rC0r

3 |P | � O( 1
p
)n.

Applying Lemma 8.2 gives us a proper symmetric generalized arithmetic progression, which
again we call P by abuse of notation, that contains all the ãj and satisfies both Inequalities (37)
and (38).

The next task is to show that P can be further altered so to meet the condition (ii) in Theo-
rem 6.1. Note that there are only O(1) scaled defining coordinates ãj such that ‖ãj‖Λ � 1/100,
and so these ãj contribute only a constant to the sum

∑n
j=1 ‖ãj‖2

P . On the other hand, for any

ãj with ‖ãj‖Λ < 1/100, we have that kãj ∈ A ⊂ P for every positive integer k < 1
100‖ãj ‖Λ

. We

will exploit this fact, and to do so will need the following notation. Let ΦP : P → Zr be the map
sending a point m1v1 + · · · + mrvr in the proper generalized arithmetic progression P to the
unique r-tuple of coefficients (m1, . . . ,mr).

If the representation for ãj in P is ãj = m1v1 + · · · + mrvr and kãj is in P , we would like
to be able to say that the representation for kãj is km1v1 + · · · + kmrvr; i.e., we hope that
ΦP (kãj ) is equal to kΦP (ãj ). If this were true, then we would have |kmi | � Mi for 1 � i � r,
which, if k is large, would show that ‖ãj‖P is small. However, at this point we may well have
ΦP (kãj ) �= kΦP (ãj ). A priori, changing this to equality would require replacing P with kP and
then applying Lemma 8.2 to get a proper symmetric generalized arithmetic progression, but since
k may be large, this would increase the volume of P too much, violating Inequality (38). Luckily,
the lemma below provides a way around this difficulty. We will say that P is (kj , xj )-proper if
ΦP (kj xj ) = kjΦP (xj ).

Lemma 8.3. There exists an absolute constant C1 such that the following holds. Let P be a
symmetric proper generalized arithmetic progression with rank r containing elements x1, . . . , xm,
and let k1, . . . , km be positive integers such that �jxj ∈ P for every 1 � �j � kj and for every j .
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Then, there exists a proper symmetric generalized arithmetic progression P ′ of rank at most r

such that P ′ contains P ,

|P ′| � rC1r
4 |P |, and P is (kj , xj )-proper for every j .

Furthermore, if r � 2 and if there is some j for which P is not (kj , xj )-proper, then P ′ can be
chosen to have rank at most r − 1.

The proof of this lemma relies on an application of Lemma 8.2 to 2P (which contains P )
along with the fact that if ‖ãj‖Λ < 1/100 then kãj ∈ P for every 1 � k < 1

100‖ãj ‖Λ
.

Proof. We proceed by induction on the rank r. For the base case, let r = 1 and consider xj ∈ P

such that kjxj ∈ P . Since P has rank 1 in this case, we have that xj = ΦP (xj )v1 and kjxj =
ΦP (kjxi)v1. Combining these two equations we have kjΦP (xj )v1 = ΦP (kjxj )v1, and dividing
by v1 (note that we may assume that v1 �= 0), we see that kjΦP (xj ) = ΦP (kjxj ). Thus P is
(kj , xj )-proper for every j .

For r � 2, we may assume that there is some j0 such that kj0ΦP (xj0) �= ΦP (kj0xj0)

(i.e., we assume that P is not (kj0, xj0)-proper). We may assume that P has the form
{m1v1 + · · · + mrvr: |mi | < Mi/2}. Let M := (M1, . . . ,Mr), and let (−M/2,M/2) denote
the box {(m1, . . . ,mr): |mi | < Mi/2}.

Let k be the largest integer such that ΦP (kxj0) = kΦP (xj0), so 1 � k < kj0 and
ΦP ((k + 1)xj0) �= (k + 1)ΦP (xj0). Since kxj0 ∈ P and xj0 ∈ P , we know that ΦP (xj0) ∈
(−M/2,M/2) and ΦP (kxj0) = kΦP (xj0) ∈ (−M/2,M/2); and thus, (k + 1)ΦP (xj0) ∈
(−M,M). This shows that 2P , which has dimensions 2M = (2M1, . . . ,2Mr), is not proper,
since it has two distinct representations for (k + 1)xj0 .

We can now apply Lemma 8.2 to 2P , thus finding a proper symmetric generalized arithmetic
progression P ′ of rank at most r − 1 containing 2P (which contains P ) such that

|P ′| � rC0r
3 |2P | � r2C0r

3 |P |.
Since P ′ has rank at most r − 1, we have by induction that there exists P ′′ a proper symmetric
generalized arithmetic progression of rank at most r − 1 containing P ′ and such that

|P ′′| � (r − 1)C1(r−1)4 |P ′| � rC1(r−1)4
r2C0r

3 |P |,
and such that P ′′ is (kj , xj )-proper for every j . Choosing C1 � 2C0 (for example) guarantees

that rC1(r−1)4
r2C0r

3 � rC1r
4
, which completes the induction. �

Applying Lemma 8.3, we can generate a new proper symmetric generalized arithmetic pro-
gression, which again we will call P by abuse of notation, such that P contains the ãj , satisfies
Inequalities (37) and (38), and is (kj , ãj )-proper for every ãj such that ‖ãj‖Λ < 1/100, where
kj := � 1

200‖ãj ‖Λ
� � 1. We will now show that such P satisfies part (ii) of Theorem 6.1. For ãj

such that P is (kj , ãj )-proper, we have that |kjmi | � Mi for each 1 � i � r, and so

‖ãj‖P =
r∑(

mi

Mi

)2

�
r∑(

1

kj

)2

�
r∑(

200‖ãj‖Λ

)2 = 40000r‖ãj‖2
Λ.
i=1 i=1 i=1
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Thus, part (ii) of Theorem 6.1 follows from Inequality (36), since P is (kj , ãj )-proper for all but
O(1) of the ãj .

The next step is to make further alterations to P so that we can prove part (iii) of Theorem 6.1.
The key property that we will use for (iii) is to have the set of vectors {ΦP (ãj ): 1 � j � n} span
all of Rr, and we will use a rank reduction argument on P to produce a new proper symmetric
generalized arithmetic progression satisfying this full rank property.

Lemma 8.4. (See [10].) Let P be a proper symmetric generalized arithmetic progression of
rank r containing a set B such that the set of vectors ΦP (B) does not span Rr. Then there exists
a symmetric generalized arithmetic progression P ′ containing P such that

rank(P ′) � r − 1 and |P ′| � |P |.

Note that the resulting P ′ is not necessarily proper or (kj , ãj )-proper, even if P had these
properties.

Proof. We use the same proof here as appears in [10, Section 8]. If {ΦP (ãj ): 1 � j � n} does
not have rank r, then it is contained is a subspace of Rr of dimension r − 1. Thus, there exists an
integer vector (α1, . . . , αr) with all the αi coprime such that (α1, . . . , αr) is orthogonal to every
vector in {ΦP (ãj ): 1 � j � n}. Thus, for every w ∈ Z/QZ and any ãj = m1v1 + · · ·+mrvr, we
have that

ãj = m1v1 + · · · + mrvr = m1(v1 − wα1) + · · · + mr(vr − wαr).

Since not all the αi are zero, we may assume that αr �= 0. Setting w = vr/αr so that vr−wαr = 0,
we see that P is contained in the symmetric generalized arithmetic progression

P ′ := {
m′

1v
′
1 + · · · + m′

r−1v
′
r−1: |m′

i | < Mi/2
}

with rank r−1, dimensions M1, . . . ,Mr−1 (which are the same as the corresponding dimensions
for P ), and basis vectors v′

i := vi − αivr/αr. By construction |P ′| � |P |. �
We can now run the following algorithm to create a generalized arithmetic progression with

all the desired properties. As the input, we take the generalized arithmetic progression P that
we arrived at after applying Lemma 8.3, thus the input P contains all the ãj , satisfies Inequali-
ties (37) and (38), and is (kj , ãj )-proper for every ãj such that ‖ãj‖Λ < 1/100; however, we do
not yet know whether ΦP ({ãj : 1 � j � n}) spans Rr.

1. If ΦP ({ãj : 1 � j � n}) spans Rr, then do nothing; otherwise apply Lemma 8.4.
2. If P is proper, then do nothing; otherwise apply Lemma 8.2.
3. If for every ãj with ‖ãj‖Λ < 1/100 we have that P is (kj , ãj )-proper, then do nothing;

otherwise apply Lemma 8.3.
4. If P satisfies the three properties given in steps 1, 2, and 3, halt; otherwise, return to step 1.

Each application of a lemma in the algorithm may disrupt some property that other two lemmas
preserve; however, we also know that each step in the algorithm either does not change P or
reduces the rank of P by at least 1. Since the original input P has rank O(1), the algorithm
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must terminate in O(1) steps, giving us a generalized arithmetic progression of rank r that sat-
isfies Inequalities (37) and (38), satisfies conditions (i) and (ii) of Theorem 6.1, and satisfies the
condition that ΦP ({ãj : 1 � j � n} spans all of Rr.

Thus, all that is left to prove is part (iii), the claim of rational T -commensurability. Though
we will not need it in the current section, one should recall that Theorem 6.1 is only useful when
|no(n)T O(1)| = no(n), where T is the symmetric generalized arithmetic progression containing
{−1,0,1} and all possible values taken by the β

(μ)
ij and the αij (see Section 6).

We say that a set W economically T -spans a set U if each u ∈ U can be represented as a
highly T -rational linear combination of elements in W , where each coefficient may be expressed
as a/b where a, b ∈ no(n)T O(1) and where the implicit constants in the o(·) and O(·) notation
are uniform over U .

Comparing our definitions with those from [10, Section 8], we note that “highly rational”
means the same thing as “highly {−1,0,1}-rational”, and “economically spans” means the same
thing as “economically {−1,0,1}-spans”. Thus, it is clear that any highly rational number is
also highly T -rational for any T containing {−1,0,1}, and also the statement “W econom-
ically spans U” implies “W economically T -spans U” for any set T containing {−1,0,1}.
The remainder of this section paraphrases (with some notational changes) the latter portion
of [10, Section 8].

We know that ΦP ({ãj : 1 � j � n} spans Rr. Thus, there exists a subset U ⊂ {ã1, . . . , ãn}
of cardinality r such that ΦP (U) spans Rr. Renumbering if necessary, we can write U =
{ã1, . . . , ãr}. It will be important later on that U has cardinality O(1).

The set {v1, . . . , vr} of basis vectors for P economically {−1,0,1}-spans {ã1, . . . , ãn} by the
definition of P (note that Mi � O(Pr(Ximax ∈ V )−1) � O(p−n) = no(n)), and so by Cramer’s
rule, the vectors ΦP (U) economically {−1,0,1}-span the standard basis vectors {e1, . . . , er}
for Rr. Applying Φ−1

P (recall that ΦP is a bijection since P is proper) shows that U economically
{−1,0,1}-spans {v1, . . . , vr}.

Following this paragraph, we will show that there exists a single vector vi0 where 1 � i0 � r

such that vi0 economically T -spans U , which will show by transitivity that vi0 economi-
cally T -spans {ã1, . . . , ãn} (since U economically T -spans {v1, . . . , vr} which economically
T -spans {ã1, . . . , ãn}; the relation “economically T -spans” is transitive here since the sets U

and {v1, . . . , vr} have cardinality O(1)).
Let s be the smallest integer such that there exists a subset of cardinality s of {v1, . . . , vr}

(by renumbering, say the set is {v1, . . . , vs}) so that for some nonzero d ∈ no(n)T O(1) and some
cij ∈ no(n)T O(1) we have

dãi =
s∑

j=1

cij vj for every 1 � i � n. (39)

Note that d does not depend on i, and so this statement is slightly stronger than having
{v1, . . . , vs} economically T -span {ã1, . . . , ãn}. Also, note that Eq. (39) holds (for example) with
s = r by the definition of P and since T contains {−1,0,1}.

We now consider two cases:

• The n × s matrix C = (cij ) has rank 1 in Z/QZ. In this case, ãi1/ãi2 is highly T -rational
for all i1, i2 (since all the cij are highly T -rational). We know that U economically T -spans
{v1, . . . , vr}, and so the numbers vi /vi are also highly T -rational (note that it is critical
1 2
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here that U has cardinality O(1)). This means that v1 (for example) economically T -spans
{v1, . . . , vr}, and so by transitivity v1 economically T -spans U .

• The matrix C has rank at least 2. Recall that (a1, . . . , an) is the normal vector for V and that
V is spanned by (n− 1) linearly independent vectors with entries in S (recall that S contains
all possible values taken by the αij ). We can scale the j th coordinate of each of these vectors
by b−1

j,1 to get a set of n − 1 linearly independent vectors each of which is orthogonal to
ã := (ã1, . . . , ãn). Among these (n − 1) linearly independent vectors that are orthogonal to
(ã1, . . . , ãn), we can find at least one, say w = (b−1

1,1w1, . . . , b
−1
n,1wn) that is not orthogonal

to every column of C (since C has column rank at least 2). Let B := {bj,1: 1 � j � n},
and let w̃ := w

∏
b∈B b = (w̃1, . . . , w̃n). Thus w̃ is orthogonal to ã and every coordinate w̃i

of w̃ is an element of T O(1) (since T contains S and B and |B| = O(1) by the definition
of p-bounded of exponent r).

Remark 8.5. Note that the line above is the only place in the proof where we use the assumption
from the definition of p-bounded of exponent r that the β

(μ)
ij take values in a set with cardinal-

ity O(1). As is evidenced here, the following weaker assumption suffices instead: say that for
each 1 � i � n there exists a set Bi such that |Bi | = O(1) and such that β

(μ)
i1 , β

(μ)
i2 , . . . , β

(μ)
in

each take a nonzero value in Bi with probability at least q . In fact, this weaker assumption also
replaces the assumption in the definition of p-bounded of exponent r that q � minx Pr(β(μ)

ij = x)

for every i, j : It suffices for each β
(μ)
ij to take one value in Bi with probability at least q , instead

of taking every value with probability at least q .

We may now compute:

0 = dã · w̃ =
n∑

i=1

dãiw̃i =
n∑

i=1

s∑
j=1

cij vj w̃i =
s∑

j=1

(
n∑

i=1

cij w̃i

)
vj .

Since w̃ is not orthogonal to every column of C = (cij ), we can assume (reordering if necessary),
that the coefficient for vs above is nonzero, and thus we have

vs = −1∑n
�=1 c�sw̃�

s−1∑
j=1

(
n∑

�=1

c�j w̃�

)
vj .

Plugging this last equation into Eq. (39), we arrive at

d

(
n∑

�=1

c�sw̃�

)
ãi =

s−1∑
j=1

(
cij

n∑
�=1

c�sw̃� − cis

n∑
�=1

c�j w̃�

)
vj .

Since the coefficient for ãi on the left is an element of no(n)T O(1) and the coefficient for each vj

on the right is an element of no(n)T O(1), we have contradicted the minimality of s.
Thus, we have completed the proof of the structure theorem (Theorem 6.1).
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9. A generalization: f rows have fixed, non-random values

In this section, we will give a generalization of Theorem 2.2 to the case where the random
matrix Nn has f � O(lnn) rows that are assumed to be linearly independent and contain fixed,
non-random entries. The proof of the generalized result is very similar to the proof of Theo-
rem 2.2, and we will sketch the main differences in the two proofs below.

Definition 9.1 (A random matrix Nf,n with entries in S). Let f be an integer between 1 and n,
let S be a subset of a ring, and let Nf,n be an n by n matrix defined as follows. For 1 � i � f

and 1 � j � n, let the entries sij of Nf,n be fixed (non-random) elements of S such that the rows
(si,1, . . . , si,n) for 1 � i � f are linearly independent. For f + 1 � i � n and 1 � j � n, let the
entries αij of Nf,n be discrete finite random variables taking values in S. Thus,

Nf,n :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s1,1 s1,2 · · · s1,n

... · · · · · · ...

sf,1 · · · · · · sf,n
αf+1,1 αf+1,2 · · · αf+1,n

αf+2,1 αf+2,2 · · · αf+2,n

αf+3,1 αf+3,2 · · · αf+3,n

...
...

. . .
...

αn,1 αn,2 · · · αn,n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎬⎪⎭Fixed rows; assumed to be linearly
independent⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭Random rows

Theorem 9.2. Let p be a positive constant such that 0 < p < 1, let r be a positive integer
constant, and let S be a generalized arithmetic progression in the complex numbers with rank
O(1) (independent of n) and with cardinality at most |S| � no(n). Consider the matrix Nf,n

with entries in S (see Definition 9.1 above), where f � ( r
2 ln(1/p)

− o(1)) lnn. If the collection of
random variables {αjk}f+1�j�n,1�k�n is p-bounded of exponent r , then

Pr(Nf,n is singular) � max
{(

p1/r + o(1)
)n

,
(
p + o(1)

)n−f}
.

Note that the bound on the singularity probability of Nf,n for r � 2 is the same as in Theo-
rem 2.2 (since for r � 2, we have n/r � n − c lnn = n − f). This is a reflection of the fact that
only the large dimension case uses the randomness in all the rows simultaneously, and in that case
the exponential bound does not depend on r . Generally speaking, the best known lower bounds
on the singularity probability of a discrete random matrix come from a dependency among at
most two random rows, and since Nf,n certainly has more than two random rows, the upper
bounds given in Theorem 9.2 seem reasonable.

Theorem 9.2 leads to Corollary 1.2 by following a conditioning argument very similar to that
given in Section 3.3.

9.1. Outline of the proof of Theorem 9.2

The proof of Theorem 9.2 follows the same lines of reasoning as that of Theorem 2.2. In this
subsection, we will state the main lemmas with the necessary modifications, and we will mention
a few important considerations when making the modifications.
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Note that Eq. (15), which reduces the question of singularity to one of the rows spanning
non-trivial hyperplane of dimension n − 1 holds in the current context, using the same definition
of AV and “non-trivial hyperplane” (both are defined after Eq. (15) in Section 5.1).

Definition 9.3 (Combinatorial dimension with f fixed rows). Let D := { a
n

: 0 � a � n2, a ∈ Z}.
For any d± ∈ D, we define the combinatorial Grassmannian Grf(d±) to be the set of all non-
trivial hyperplanes V in (Z/QZ)n such that

pn−d±+1/n < max
f+1�i�n

Pr(Xi ∈ V ) � pn−d± .

For d± = 0, we define Grf(0) to be the set of all non-trivial hyperplanes such that

max
f+1�i�n

Pr(Xi ∈ V ) � pn.

We will refer to d± as the combinatorial dimension of V .

Lemma 9.4 (Small combinatorial dimension, with f fixed rows). For any δ > 0 we have∑
d±∈D s.t. T d±qn�δn

∑
V ∈Grf(d±)

Pr(AV ) � (n − f)δn.

Proof. The proof is the same as that for Lemma 5.2; also see [4,9,10]. �
Lemma 9.5 (Large combinatorial dimension, with f fixed rows). We have∑

d±∈D s.t.
cLgDim
n1/2 �T d±qn

∑
V ∈Grf(d±)

Pr(AV ) �
(
p + o(1)

)n−f
.

Here, cLgDim is the same as in Lemma 5.3.

Proof. The proof is the same as that for Lemma 5.3, except now we appeal to Lemma A.2 with
f > 0. Note that we must assume f � n/2 in order to apply Lemma A.2. See also [4,9,10]. �
Proposition 9.6 (Medium combinatorial dimension estimate, with f fixed rows). Let 0 < ε0 be
a constant much smaller than 1, and let d± ∈ D be such that (p + cMedDimf ε0)

n/r < T d±qn <
cLgDim√

n
. If f � ( r

2 ln(1/p)
− o(1)) lnn, then

∑
V ∈Grf(d±)

Pr(AV ) �
(
p + o(1)

)n/r
.

Here we choose the constant cMedDimf so that cMedDimf > (cm + cf + 1
100 ), where cm and cf

are positive absolute constants (in particular, we need cf such that f � cfε0n

r
, which is true for any

positive constant cf since f � O(lnn)). As before, we will prove this proposition by separating
V with medium combinatorial dimension into two cases: exceptional and unexceptional, which
are defined below using the definition of Z∗ from Eq. (17) (this definition is the same as in
i,k
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Definition 5.5 with the small change that i and j are required to be between f + 1 and n instead
of between 1 and n).

Definition 9.7. Consider a hyperplane V of medium combinatorial dimension (that is, d± sat-
isfies the condition in Proposition 9.6). We say V is unexceptional if there exists an i0 where
f + 1 � i0 � n and there exists a k0 where 1 � k0 � r such that

max
f+1�j�n

{
Pr(Xj ∈ V )

}
< ε1 Pr

(
Z∗

i0,k0
∈ V

)
.

We say V is exceptional if for every i where f + 1 � i � n and for every k where 1 � k � r

we have

ε1 Pr
(
Z∗

i,k ∈ V
)
� max

f+1�j�n

{
Pr(Xj ∈ V )

}
. (40)

In particular, there exists imax such that Pr(Ximax ∈ V ) = maxf+1�j�n{Pr(Xj ∈ V )}; and so if V

is exceptional, then

ε1 Pr
(
Z∗

imax,k
∈ V

)
� Pr(Ximax ∈ V ) for every k. (41)

We will refer to Ximax as the exceptional row.

Lemma 9.8 (Unexceptional space estimate, with f fixed rows). If f � cfε0n

r
for some positive

constant cf, then we have ∑
V ∈Grf(d±): V is unexceptional

Pr(AV ) � p−o(n)2nε
cmε0n/r

1 .

Notice that the bound is the same as in Lemma 5.6, except that we replaced cMedDim with
cMedDimf when defining “unexceptional”.

Proof. The proof follows in the same way as that for Lemma 5.6; however, when replacing
rows Xi of Nf,n with rows Zi that concentrate more sharply on V , we must take care to only
replace random rows of Nf,n (i.e., rows X1, . . . ,Xf must not be replaced by Zi ). See Appendix B
for details. �

In the exceptional case, The same structure theorem (Theorem 6.1) holds, leading to the fol-
lowing lemma.

Lemma 9.9 (Exceptional space estimate, with f fixed rows). If f � ( r
2 ln(1/p)

− o(1)) lnn, then

∑
V ∈Gr(d±): V is exceptional

Pr(AV ) � pn/r . (42)

Note that this upper bound is dramatically worse than the analogous upper bound in
Lemma 5.7 of n− n

2 +o(n).
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Proof. As in Lemma 5.7, the main step in the proof is applying the structure theorem (Theo-
rem 6.1). In the current context, Inequality (20) holds with n − f as the exponent instead of n

(since there are only n − f random rows). If we combine this modified version of Inequality (20)
with Inequality (21), then we have the bound∑

V ∈Grf(d±):
V is exceptional

Pr(AV ) � n− n
2 +o(n) Pr(Ximax ∈ V )−n Pr(Ximax ∈ V )n−f

= n− n
2 +o(n) Pr(Ximax ∈ V )−f,

where by assumption Ximax is the random row such that Pr(Ximax ∈ V ) =
maxf+1�i�n Pr(Xi ∈ V ). In order for this upper bound to achieve the desired bound in Inequal-
ity (42), it is sufficient to have

n− n
2 +o(n) Pr(Ximax ∈ V )−f � pn/r . (43)

Using the assumption that Pr(Ximax ∈ V ) � (p + cMedDimf ε0)
n/r > pn/r (since V is of medium

combinatorial dimension), we see that Inequality (43) holds whenever

f �
(

r

2 ln(1/p)
− o(1)

)
lnn,

which completes the proof. �
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Appendix A. Two background results

A.1. A version of the Littlewood–Offord result in Z/QZ

If S ⊂ Q, then we can clear denominators and prove (as in [10, Lemma 2.4]) the large combi-
natorial dimension estimate in R instead of working in Z/QZ, in which case we can also use the
Littlewood–Offord result over R (see [11, Corollary 7.13]), instead of the version over Z/QZ

given here in Lemma A.1. When working in R, the integral approximation of Inequality (A.1)
can be replaced by a limit going to infinity, and we do not need any extra assumptions on Q. In
particular, we may take Q ≈ exp(exp(Cn)) (see Remark 4.2).

For Q sufficiently large with respect to q , r , and n, it is clear that we have

1

Q

∑
ξ∈Z/QZ

(
1 − 2q + 2q cos(2πξ/Q)

)k/r �
1∫

0

(
1 − 2q + 2q cos(2πt)

)k/r
dt + 1

n
, (A.1)

for all 1 � k � n.
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Lemma A.1. Let Q be sufficiently large to satisfy Inequality (A.1), and let v1, . . . , vn ∈ Z/QZ

be such that v1, . . . , vk are nonzero. Let {αj }nj=1 be a collection of random variables that are
p-bounded of exponent r , and let Xv := α1v1 + · · · + αnvn. Then, for every x ∈ Z/QZ we have

Pr(Xv = x) � cLO
√

r√
qk

= O

(
1√
k

)
,

where cLO is an absolute constant.

Proof. Our proof is closely modeled on the proof of [11, Corollary 7.13]. Let β
(μ)
j be the sym-

metric random variables from the definition of p-bounded of exponent r corresponding to αj

(see Eq. (9)). Then, we can compute

Pr(Xv = x) � 1

Q

∑
ξ∈Z/QZ

k∏
j=1

∣∣E(eQ(αjaj ξ)
)∣∣ (note that aj = 0 for j > k)

�
k∏

j=1

(
1

Q

∑
ξ∈Z/QZ

∣∣E(eQ(αjaj ξ)
)∣∣k)1/k

(Hölder’s inequality)

� 1

Q

∑
ξ∈Z/QZ

∣∣E(eQ(αj0aj0ξ)
)∣∣k (where j0 corresponds to the largest factor in the

previous line)

� 1

Q

∑
ξ∈Z/QZ

(
1 − μ + μ

�j0∑
s=1

pj0,s cos(2πbj0,svj0ξ/Q)

)k/r

(since αj0 is p-bounded
of exponent r)

� 1

Q

∑
ξ∈Z/QZ

(
1 − 2q + 2q cos(2πbj0,1vj0ξ/Q)

)k/r (since μpj0,1 � 2q)

= 1

Q

∑
ξ∈Z/QZ

(
1 − 2q + 2q cos(2πξ/Q)

)k/r
(by reordering the sum).

Combining the above inequalities with Inequality (A.1) and following the proof of [11, Corol-
lary 7.13] to bound the integral, we have

Pr(Xv = x) �
1∫

0

(
1 − 2q + 2q cos(2πt)

)k/r
dt + 1

n
= cLO

√
r√

qk
= O

(
1√
k

)
,

where cLO is an absolute constant. �
A.2. A generalization of a lemma due to Komlós [6]

This lemma is a generalization of the result in [6] (see also [2, Lemma 14.10], [4, Section 3.1],
and [9, Lemma 5.3]).



600 J. Bourgain et al. / Journal of Functional Analysis 258 (2010) 559–603
Lemma A.2. Fix n, and let p be a positive constants such that 0 < p < 1 and let r be a positive
integer constant. Consider the matrix Nf,n taking values in Z/QZ, where f � n/2 and Q is large
enough to satisfy Inequality (A.1). If the collection of random entries in Nf,n is p-bounded of
exponent r , then

Pr(there exists v ∈ Ω1 such that Nf,n · v = 0) �
(
p + o(1)

)n−f
,

where

Ω1 :=
{
(v1, . . . , vn) ∈ Z/QZ: at most (n − f)

(
1 − c

lnn

)
+ 1 of the vi are nonzero

}
\ {0},

where the constant c can be taken to be c � 2 ln(100/p), and where 0 denotes the zero vector.

Proof. Let Ek = {there exists v ∈ Ω1 with at most k nonzero coordinates such that Nf,n ·v = 0}.
Clearly,

Pr(there exists v ∈ Ω1 such that Nf,n · v = 0) �
∑

1�k�(n−f)(1− c
lnn

)+1

Pr(Ek \ Ek−1).

Let S be the set of all possible values that could appear as entries in Nf,n, and let Nf,n|j1,...,jk

be the n by k matrix consisting of columns j1, . . . , jk of Nf,n. Following [6, Lemma 2] (see also
[2, Lemma 14.10] and [9, Lemma 5.3]) we can write

Pr(Ek \ Ek−1) �
∑

1�j1<···
···<jk�n

∑
1�i1<···
···<ik−1�n

∑
H a (k−1)-
dimensional
hyperplane

spanned by Sk

Pr(RwSpni1,...,ik−1,H
)Pr(RwIni1,...,ik−1,H ),

where

RwSpni1,...,ik−1,H
:= {rows i1, . . . , ik−1 of Nf,n|j1,...,jk

span H }, and

RwIni1,...,ik−1,H := {all rows of Nf,n|j1,...,jk
except i1, . . . , ik−1 are in H }.

Let U(k,p, q) be a uniform upper bound for Pr(row i is in H), where f + 1 � i � n and
q is the constant from Definition 2.1 (here, we mean uniform with respect to the index sets
{j1, . . . , jk} and {i1, . . . , ik}). Then we have

Pr(Ek \ Ek−1) � U(k,p, q)n−k−f+1
(

n

k

)(
n

k − 1

)
,

since k − 1 fixed rows of Nf,n|j1,...,jk
can span at most 1 hyperplane H of dimension k − 1.

For k � 28c2
LOr

p2q
(a constant), we can set U(k,p, q) = p by the Weighted Odlyzko Lemma (see

Lemma B.1), giving us a bound of

Pr(Ek \ Ek−1) �
(
p + o(1)

)n−f
. (A.2)
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For
28c2

LOr

p2q
< k � (n − f)(1 − c

lnn
) + 1, we use Lemma A.1 to set U(k,p, q) = cLO

√
r√

qk
. Since(

n
k

)(
n

k−1

)
� 22n

n
we thus have

Pr(Ek \ Ek−1) � 1

n
22n

(
c2

LOr

qk

) n−k−f+1
2

.

As a function of k, this upper bound has strictly positive second derivative; thus, the largest upper

bound will occur at one of the extremal values of k = 28c2
LOr

p2q
or k = (n − f)(1 − c

lnn
) + 1, and

a bit of computation shows that

Pr(Ek \ Ek−1) � 1

n
O
(
pn−f

)
. (A.3)

Summing the bounds in Inequalities (A.2) and (A.3) completes the proof. �
Appendix B. The unexceptional case with f fixed rows

This section is adapted from the proof of [10, Lemma 4.1], and proves Lemma 5.6 by setting
f = 0. Assume that f � cfε0n

r
, and let m be the closest integer to cmεn

r
. Let Z1, . . . ,Zm be i.i.d.

copies of the unexceptional row vector Z∗
i0,k0

from Definition 9.7, so ε1 Pr(Zi ∈ V ) > Pr(Xi ∈ V )

for all f + 1 � i � n. We will need the following version of the Weighted Odlyzko Lemma:

Lemma B.1. (Cf. [10, Lemma 4.3] or [4, Section 3.2].) For 1 � i, let Wi−1 be an (f + i − 1)-
dimensional subspace containing X1, . . . ,Xf (which are fixed, linearly independent row vectors).
Then

Pr(Zi ∈ Wi−1) �
(

p + ε0

100

) n
r
−f−i+1

.

Proof. Since Wi−1 has dimension f + i − 1, there exists a set of f + i − 1 “determining” coordi-
nates such that if a vector V ∈ Wi−1, then the f + i − 1 “determining” coordinates determine the
values of the remaining n− f− i + 1 coordinates. Since the maximum probability that any of the
n/r random coordinates in Zi takes a given value is at most 1 − μ = p + ε0

100 , and since there
are at least n

r
− f − i + 1 of the random coordinates in Zi that are not among the “determining”

coordinates, we have the desired upper bound. �
Let V0 := Span{X1, . . . ,Xf}, the space spanned by the f fixed rows, and for 1 � i � m let BV,i

be the event that Z1, . . . ,Zm are linearly independent in V \ V0. We have the following analog
of Lemma 5.8 (and also [10, Lemma 4.4]):

Lemma B.2. (See Lemma 4.4 in [10].) Let m, f, and BV,m be as defined above. Then,

Pr(BV,m) � po(n)

(
maxf+1�i�n Pr(Xi ∈ V )

ε1

)m

.
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Proof. Using Bayes’ Identity, we have

Pr(BV,m) =
m∏

i=1

Pr(BV,i | BV,i−1), (B.1)

where BV,0 denotes the full space of the Zi . Conditioning on a particular instance of Z1, . . . ,Zi−1
in BV,i−1, we have that

Pr(BV,i |BV,i−1) = Pr(Zi ∈ V ) − Pr(Zi ∈ Wi−1),

where Wi−1 denotes the (f+ i −1)-dimensional space spanned by X1, . . . ,Xf and Z1, . . . ,Zi−1.
We will now establish a uniform bound that does not depend on which particular instance
of Z1, . . . ,Zi−1 in BV,i−1 that we fixed by conditioning. By the definition of unexceptional,
we have

Pr(Zi ∈ V ) >
1

ε1
max

f+1�i�n
Pr(Xi ∈ V ),

and by the Weighted Odlyzko Lemma (see Lemma B.1), we have

Pr(Zi ∈ Wi−1) �
(

p + ε0

100

) n
r
−f−i+1

�
(

p + ε0

100

) n
r
(1−(cm+cf)ε0)

.

Using Taylor’s Theorem with remainder (for example), one can show that(
p + ε0

100

) n
r
(1−(cm+cf)ε0)

� 1

2n
(p + cMedDimε0)

n/r � 1

n
max

f+1�i�n
Pr(Xi ∈ V ),

so long as cMedDim > 1
100 + cm + cf > 1

100 + (cm + cf)p ln( 1
p
) and n is sufficiently large (the

second inequality in the display above is the definition of medium combinatorial dimension).
Thus

Pr(BV,i | BV,i−1) � 1

ε1

(
max

f+1�i�n
Pr(Xi ∈ V )

)(
1 − ε1

n

)
,

and plugging this estimate back into Inequality (B.1) we get

Pr(BV,m) � po(n)

(
maxf+1�i�n Pr(Xi ∈ V )

ε1

)m

. �
To conclude Lemma 9.8 (which implies Lemma 5.6 by setting f = 0), we will proceed as in

the proof for [10, Lemma 4.1].
Let Z1, . . . ,Zm be i.i.d. copies of Z∗

i0,k0
that are independent of the random rows Xf+1, . . . ,Xn.

Using independence and Bayes’ Identity we have

Pr(AV ) = Pr(AV | BV,m) = Pr(AV ∧ BV,m)

Pr(BV,m)

� Pr(AV ∧ BV,m)p−o(n)

(
ε1

)m

.

maxf+1�i�n Pr(Xi ∈ V )
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Because the Zi are linearly independent in V \ V0, we know that there is a subset I ⊂ {f + 1,

f + 2, . . . , n} of cardinality |I | = m, such that {Z1, . . . ,Zm} ∪ {Xi : i /∈ I } spans V . Let CV,I be
the event that {Z1, . . . ,Zm} ∪ {Xi : i /∈ I } spans V . Then we have

Pr(AV ∧ BV,m) �
∑

I⊂{f+1,...,n}
|I |=m

Pr
(
CV,I ∧ {Xi ∈ V : i ∈ I })

�
(

max
f+1�i�n

Pr(Xi ∈ V )
)m ∑

I⊂{f+1,...,n}
|I |=m

Pr(CV,I ).

Summing the above inequality over all unexceptional V (note that
∑

V Pr(CV,I ) � 1) and com-
bining with the bound for Pr(AV ) above gives us

∑
unexceptional V

Pr(AV ) �
(

max
f+1�i�n

Pr(Xi ∈ V )
)m
(

n − f

m

)
p−o(n)

(
ε1

maxf+1�i�n Pr(Xi ∈ V )

)m

� p−o(n)2nεm
1 .

This completes the proof of the estimate for unexceptional V .
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